70 research outputs found

    Discovering colicin and lectin-like bacteriocins for the creation of disease resistant transgenic plants

    Get PDF
    The colicin and lectin-like bacteriocins are a broad class of antimicrobial proteins produced by Gram-negative bacteria. They are generally narrow spectrum, killing or inhibiting the growth of closely related bacteria. Numerous Gram-negative bacteria that are important pathogens of both animals and plants produce and are susceptible to these bacteriocins. As such, these proteins represent an attractive alternative to traditional small molecule antibiotics for controlling bacterial infection. Very little is known about bacteriocins produced by Gram-negative plant pathogens and so the aim of this work was to discover novel bacteriocins active against globally important plant pathogens from the genera Pectobacterium and Pseudomonas. The bacteriocins discovered in this study were then structurally and functionally characterised and assessed for their ability to impart disease resistance when expressed in a model transgenic system. This study presents the discovery and characterisation of the bacteriocins syringacin M, syringacin L1 and pyocin L1 from the genus Pseudomonas, As well as the discovery and characterisation of the unusual ferredoxin containing pectocins from the genus Pectobacterium. Also presented is the discovery of a novel virulence related ferredoxin/iron-uptake system in Pectobacterium, which is parasitised by the pectocins for cell entry. Additionally, the transgenic expression of the bacteriocin putidacin L1 in both Arabidopsis thaliana and Nicotiana benthamiana was shown to provide these plants with resistance to infection by strains of the plant pathogen P. syringae

    Determination of the molecular basis for coprogen import by Gram-negative bacteria

    Get PDF
    In order to survive in mixed microbial communities, some species of fungi secrete coprogens, siderophores that facilitate capture of the scarce nutrient iron. The TonB-dependent transporter FhuE is integrated in the outer membrane of Gram-negative bacteria and has been reported to scavenge these fungally produced coprogens. In this work, an Escherichia coli strain was engineered that is dependent solely on FhuE for its access to siderophore-sequestered iron. Using this tool, it is shown that while FhuE is highly active in the import of coprogens, it has some level of promiscuity, acting as a low-affinity transporter for related siderophores. The crystal structure of FhuE in complex with coprogen was determined, providing a structural basis to explain this selective promiscuity. The structural data, in combination with functional analysis, presented in this work show that FhuE has evolved to specifically engage with planar siderophores. A potential evolutionary driver, and a critical consequence of this selectivity, is that it allows FhuE to exclude antibiotics that mimic nonplanar hydroxamate siderophores: these toxic molecules could otherwise cross the outer membrane barrier through a Trojan horse mechanism

    The structure of a conserved domain of TamB reveals a hydrophobic β taco fold

    Get PDF
    The translocation and assembly module (TAM) plays a role in the transport and insertion of proteins into the bacterial outer membrane. TamB, a component of this system spans the periplasmic space to engage with its partner protein TamA. Despite efforts to characterize the TAM, the structure and mechanism of action of TamB remained enigmatic. Here we present the crystal structure of TamB amino acids 963-1,138. This region represents half of the conserved DUF490 domain, the defining feature of TamB. TamB963-1138 consists of a concave, taco-shaped β sheet with a hydrophobic interior. This β taco structure is of dimensions capable of accommodating and shielding the hydrophobic side of an amphipathic β strand, potentially allowing TamB to chaperone nascent membrane proteins from the aqueous environment. In addition, sequence analysis suggests that the structure of TamB963-1138 is shared by a large portion of TamB. This architecture could allow TamB to act as a conduit for membrane proteins

    Engineering bacteriocin-mediated resistance against the plant pathogen Pseudomonas syringae.

    Get PDF
    The plant pathogen, Pseudomonas syringae (Ps), together with related Ps species, infects and attacks a wide range of agronomically important crops, including tomato, kiwifruit, pepper, olive and soybean, causing economic losses. Currently, chemicals and introduced resistance genes are used to protect plants against these pathogens but have limited success and may have adverse environmental impacts. Consequently, there is a pressing need to develop alternative strategies to combat bacterial disease in crops. One such strategy involves using narrow-spectrum protein antibiotics (so-called bacteriocins), which diverse bacteria use to compete against closely related species. Here, we demonstrate that one bacteriocin, putidacin L1 (PL1), can be expressed in an active form at high levels in Arabidopsis and in Nicotiana benthamiana in planta to provide effective resistance against diverse pathovars of Ps. Furthermore, we find that Ps strains that mutate to acquire tolerance to PL1 lose their O-antigen, exhibit reduced motility and still cannot induce disease symptoms in PL1-transgenic Arabidopsis. Our results provide proof-of-principle that the transgene-mediated expression of a bacteriocin in planta can provide effective disease resistance to bacterial pathogens. Thus, the expression of bacteriocins in crops might offer an effective strategy for managing bacterial disease, in the same way that the genetic modification of crops to express insecticidal proteins has proven to be an extremely successful strategy for pest management. Crucially, nearly all genera of bacteria, including many plant pathogenic species, produce bacteriocins, providing an extensive source of these antimicrobial agents

    Structural basis for bacterial energy extraction from atmospheric hydrogen

    Get PDF
    Diverse aerobic bacteria use atmospheric H2 as an energy source for growth and survival1. This globally significant process regulates the composition of the atmosphere, enhances soil biodiversity and drives primary production in extreme environments2,3. Atmospheric H2 oxidation is attributed to uncharacterized members of the [NiFe] hydrogenase superfamily4,5. However, it remains unresolved how these enzymes overcome the extraordinary catalytic challenge of oxidizing picomolar levels of H2 amid ambient levels of the catalytic poison O2 and how the derived electrons are transferred to the respiratory chain1. Here we determined the cryo-electron microscopy structure of the Mycobacterium smegmatis hydrogenase Huc and investigated its mechanism. Huc is a highly efficient oxygen-insensitive enzyme that couples oxidation of atmospheric H2 to the hydrogenation of the respiratory electron carrier menaquinone. Huc uses narrow hydrophobic gas channels to selectively bind atmospheric H2 at the expense of O2, and 3 [3Fe–4S] clusters modulate the properties of the enzyme so that atmospheric H2 oxidation is energetically feasible. The Huc catalytic subunits form an octameric 833 kDa complex around a membrane-associated stalk, which transports and reduces menaquinone 94 Å from the membrane. These findings provide a mechanistic basis for the biogeochemically and ecologically important process of atmospheric H2 oxidation, uncover a mode of energy coupling dependent on long-range quinone transport, and pave the way for the development of catalysts that oxidize H2 in ambient air

    The architecture and stabilisation of flagellotropic tailed bacteriophages

    Get PDF
    Funder: Sir Henry Wellcome Fellow (106077/Z/14/Z)Funder: Australian Research Council Laureate Fellow (FL130100038)Abstract: Flagellotropic bacteriophages engage flagella to reach the bacterial surface as an effective means to increase the capture radius for predation. Structural details of these viruses are of great interest given the substantial drag forces and torques they face when moving down the spinning flagellum. We show that the main capsid and auxiliary proteins form two nested chainmails that ensure the integrity of the bacteriophage head. Core stabilising structures are conserved in herpesviruses suggesting their ancestral origin. The structure of the tail also reveals a robust yet pliable assembly. Hexameric rings of the tail-tube protein are braced by the N-terminus and a β-hairpin loop, and interconnected along the tail by the splayed β-hairpins. By contrast, we show that the β-hairpin has an inhibitory role in the tail-tube precursor, preventing uncontrolled self-assembly. Dyads of acidic residues inside the tail-tube present regularly-spaced motifs well suited to DNA translocation into bacteria through the tail

    FusC, a member of the M16 protease family acquired by bacteria for iron piracy against plants.

    Get PDF
    Iron is essential for life. Accessing iron from the environment can be a limiting factor that determines success in a given environmental niche. For bacteria, access of chelated iron from the environment is often mediated by TonB-dependent transporters (TBDTs), which are β-barrel proteins that form sophisticated channels in the outer membrane. Reports of iron-bearing proteins being used as a source of iron indicate specific protein import reactions across the bacterial outer membrane. The molecular mechanism by which a folded protein can be imported in this way had remained mysterious, as did the evolutionary process that could lead to such a protein import pathway. How does the bacterium evolve the specificity factors that would be required to select and import a protein encoded on another organism's genome? We describe here a model whereby the plant iron-bearing protein ferredoxin can be imported across the outer membrane of the plant pathogen Pectobacterium by means of a Brownian ratchet mechanism, thereby liberating iron into the bacterium to enable its growth in plant tissues. This import pathway is facilitated by FusC, a member of the same protein family as the mitochondrial processing peptidase (MPP). The Brownian ratchet depends on binding sites discovered in crystal structures of FusC that engage a linear segment of the plant protein ferredoxin. Sequence relationships suggest that the bacterial gene encoding FusC has previously unappreciated homologues in plants and that the protein import mechanism employed by the bacterium is an evolutionary echo of the protein import pathway in plant mitochondria and plastids

    BonA from Acinetobacter baumannii Forms a Divisome-Localized Decamer That Supports Outer Envelope Function

    Get PDF
    Acinetobacter baumannii is a high-risk pathogen due to the rapid global spread of multidrug-resistant lineages. Its phylogenetic divergence from other ESKAPE pathogens means that determinants of its antimicrobial resistance can be difficult to extrapolate from other widely studied bacteria. A recent study showed that A. baumannii upregulates production of an outer membrane lipoprotein, which we designate BonA, in response to challenge with polymyxins. Here, we show that BonA has limited sequence similarity and distinct structural features compared to lipoproteins from other bacterial species. Analyses through X-ray crystallography, small-angle X-ray scattering, electron microscopy, and multiangle light scattering demonstrate that BonA has a dual BON (Bacterial OsmY and Nodulation) domain architecture and forms a decamer via an unusual oligomerization mechanism. This analysis also indicates this decamer is transient, suggesting dynamic oligomerization plays a role in BonA function. Antisera recognizing BonA shows it is an outer membrane protein localized to the divisome. Loss of BonA modulates the density of the outer membrane, consistent with a change in its structure or link to the peptidoglycan, and prevents motility in a clinical strain (ATCC 17978). Consistent with these findings, the dimensions of the BonA decamer are sufficient to permeate the peptidoglycan layer, with the potential to form a membrane-spanning complex during cell division. IMPORTANCE The pathogen Acinetobacter baumannii is considered an urgent threat to human health. A. baumannii is highly resistant to treatment with antibiotics, in part due to its protective cell envelope. This bacterium is only distantly related to other bacterial pathogens, so its cell envelope has distinct properties and contains components distinct from those of other bacteria that support its function. Here, we report the discovery of BonA, a protein that supports A. baumannii outer envelope function and is required for cell motility. We determine the atomic structure of BonA and show that it forms part of the cell division machinery and functions by forming a complex, features that mirror those of distantly related homologs from other bacteria. By improving our understanding of the A. baumannii cell envelope this work will assist in treating this pathogen

    Ferredoxin containing bacteriocins suggest a novel mechanism of iron uptake in <i>Pectobacterium spp</i>

    Get PDF
    In order to kill competing strains of the same or closely related bacterial species, many bacteria produce potent narrow-spectrum protein antibiotics known as bacteriocins. Two sequenced strains of the phytopathogenic bacterium &lt;i&gt;Pectobacterium carotovorum&lt;/i&gt; carry genes encoding putative bacteriocins which have seemingly evolved through a recombination event to encode proteins containing an N-terminal domain with extensive similarity to a [2Fe-2S] plant ferredoxin and a C-terminal colicin M-like catalytic domain. In this work, we show that these genes encode active bacteriocins, pectocin M1 and M2, which target strains of &lt;i&gt;Pectobacterium carotovorum&lt;/i&gt; and &lt;i&gt;Pectobacterium atrosepticum&lt;/i&gt; with increased potency under iron limiting conditions. The activity of pectocin M1 and M2 can be inhibited by the addition of spinach ferredoxin, indicating that the ferredoxin domain of these proteins acts as a receptor binding domain. This effect is not observed with the mammalian ferredoxin protein adrenodoxin, indicating that &lt;i&gt;Pectobacterium spp.&lt;/i&gt; carries a specific receptor for plant ferredoxins and that these plant pathogens may acquire iron from the host through the uptake of ferredoxin. In further support of this hypothesis we show that the growth of strains of &lt;i&gt;Pectobacterium carotovorum&lt;/i&gt; and &lt;i&gt;atrosepticum&lt;/i&gt; that are not sensitive to the cytotoxic effects of pectocin M1 is enhanced in the presence of pectocin M1 and M2 under iron limiting conditions. A similar growth enhancement under iron limiting conditions is observed with spinach ferrodoxin, but not with adrenodoxin. Our data indicate that pectocin M1 and M2 have evolved to parasitise an existing iron uptake pathway by using a ferredoxin-containing receptor binding domain as a Trojan horse to gain entry into susceptible cells

    Lectin-like bacteriocins from pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor

    Get PDF
    Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins
    • …
    corecore