
Short Article
The Structure of a Conser
ved Domain of TamB
Reveals a Hydrophobic b Taco Fold
Graphical Abstract
Highlights
d The structure of TamB963-1138 reveals a b taco fold with a

hydrophobic interior

d The hydrophobic interior of TamB963-1138 could chaperone

hydrophobic b strands

d Structural analysis suggests the majority of TamB forms a

hydrophobic groove
Josts et al., 2017, Structure 25, 1898–1906
December 5, 2017 ª 2017 The Author(s). Published by Elsevier L
https://doi.org/10.1016/j.str.2017.10.002
Authors

Inokentijs Josts,

Christopher James Stubenrauch,

Grishma Vadlamani,

Khedidja Mosbahi, Daniel Walker,

Trevor Lithgow, Rhys Grinter

Correspondence
rhys.grinter@monash.edu

In Brief

In this work Josts et al. provide structural

insight into the bacterial b barrel

assembly protein, TamB. This structure

suggests that TamB performs its function

via a deep hydrophobic groove, capable

of accommodating hydrophobic

b strands.
td.

mailto:rhys.grinter@monash.�edu
https://doi.org/10.1016/j.str.2017.10.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.str.2017.10.002&domain=pdf


Structure

Short Article
The Structure of a Conserved Domain of TamB
Reveals a Hydrophobic b Taco Fold
Inokentijs Josts,1,2 Christopher James Stubenrauch,4 Grishma Vadlamani,4 Khedidja Mosbahi,3 Daniel Walker,3

Trevor Lithgow,4 and Rhys Grinter4,5,6,*
1The Hamburg Centre for Ultrafast Imaging (CUI), Institute for Biochemistry and Molecular Biology, University of Hamburg,

Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
2Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6,

20146 Hamburg, Germany
3Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow,

Glasgow G12 8QQ, UK
4Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne,

VIC 3804, Australia
5Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, UK
6Lead Contact
*Correspondence: rhys.grinter@monash.edu

https://doi.org/10.1016/j.str.2017.10.002
SUMMARY

The translocation and assembly module (TAM) plays
a role in the transport and insertion of proteins into
the bacterial outer membrane. TamB, a component
of this system spans the periplasmic space to
engage with its partner protein TamA. Despite efforts
to characterize the TAM, the structure and mecha-
nism of action of TamB remained enigmatic. Here
we present the crystal structure of TamB amino acids
963–1,138. This region represents half of the
conserved DUF490 domain, the defining feature of
TamB. TamB963-1138 consists of a concave, taco-
shaped b sheet with a hydrophobic interior. This
b taco structure is of dimensions capable of accom-
modating and shielding the hydrophobic side of an
amphipathic b strand, potentially allowing TamB to
chaperone nascent membrane proteins from the
aqueous environment. In addition, sequence anal-
ysis suggests that the structure of TamB963-1138 is
shared by a large portion of TamB. This architecture
could allow TamB to act as a conduit for membrane
proteins.

INTRODUCTION

In Gram-negative bacteria, the outermembrane (OM) serves as a

highly selective permeability barrier, protecting bacterial cells

from a hostile external environment, while allowing import of

the nutrients required for survival and growth (Silhavy et al.,

2010). In addition, the OM forms the interface between the bac-

teria and its external environment. As such, it plays a pivotal role

in the adherence of bacteria to surfaces, as well as in attack and

defense (Heinz et al., 2016; Pizarro-Cerdá andCossart, 2006). To

perform this diverse set of functions, the OM contains a multi-
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tude of integral membrane proteins (Rollauer et al., 2015). The

transport of these proteins from their site of synthesis in the cyto-

plasm, and their correct and efficient insertion into the OM,

poses a significant challenge. Gram-negative bacteria possess

a specialized nano-machine termed the b barrel assembly ma-

chinery (BAM complex) charged with this task (Noinaj et al.,

2013; Webb et al., 2012). In addition, these bacteria possesses

the translocation and assembly module (the TAM), a nano-ma-

chine which is important in the proper assembly of a subset of

OM proteins (Heinz et al., 2015; Selkrig et al., 2012; Stubenrauch

et al., 2016a). In the Gram-negative bacterium Escherichia coli,

the BAM complex contains five (BamA-E) components centered

around BamA, an integral OM protein of the Omp85 family (Ba-

kelar et al., 2016; Gu et al., 2016; Han et al., 2016). The TAM is

composed of two subunits, TamA an Omp85 family protein

evolutionarily related to BamA and the enigmatic inner mem-

brane-anchored protein TamB (Heinz et al., 2015). In E. coli

and many other Gram-negative bacteria, the presence of

BamA is essential for the growth and survival of the cell (Voul-

houx et al., 2003; Wu et al., 2005). The TAM on the other hand

is dispensable for growth of E. coli under lab conditions; how-

ever, in a mouse model of infection, TAM mutants from various

pathogens exhibit attenuated virulence (Selkrig et al., 2012).

In E. coli, TamA and TamB have been shown to associate and,

asTamB isembedded in the innermembraneviaasignal anchor, it

must span the periplasm to interact with TamA (Selkrig et al.,

2012). In keeping with this, analysis of recombinant TamB by

atomic force microscopy and dynamic light scattering shows it

to be highly prolate, with a length of 150–200 Å (Shen et al.,

2014). Interaction between TamA and TamB occurs via the

conserved C-terminal DUF490 domain of TamB and POTRA1 of

TamA and is required for the proper functioning of the TAM

in vitro (Selkrig et al., 2015; Shen et al., 2014). In vivo, the presence

of both TamA and TamB is required for the correct assembly of a

number ofOMproteins (Heinz et al., 2016;Selkrig et al., 2012;Stu-

benrauchetal., 2016a). In keepingwith the roleof theTAM in infec-

tion, these proteins are predominantly virulence factors, with

prominent roles in bacterial adhesion and biofilm formation (Heinz
r(s). Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).
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Figure 1. Schematic and Secondary Struc-

ture of TamB963-1138

(A) Schematic of TamB showing domains, structural

elements, and secondary structure.

(B) Sequence and secondary structure of

TamB963-1138, secondary structure from crystal

structure is shown: blue arrows represent b sheets;

broken red lines represent residues not resolved in

the crystal structure. Residues discussed in text are

colored red, and those subjected to mutagenesis

are colored green.
et al., 2015; Selkrig et al., 2012; Stubenrauch et al.,2016a). Intrigu-

ingly, recent reports have shown that TamB homologs exist even

in bacteria that lack TamA (Stubenrauch et al., 2016b; Yu et al.,

2017). In Borrelia burgdorferi, the causative agent of Lyme dis-

ease, TamB has been shown to interact with BamA and appears

to be essential for viability (Iqbal et al., 2016). While further inves-

tigation is required, these data point toward a more general role

for TamB homologs in OM protein biogenesis.

TamB is a large protein by bacterial standards, consisting in

E. coli of 1,259 amino acids, which are predicted to be

composed of predominantly b strand structure (Figure 1A) (Heinz

et al., 2015; Shen et al., 2014). To date, no high-resolution struc-

tural information on TamB is available and, as no homologs have

been structurally characterized, very little information about its

structure can be inferred. In this work, we report the crystal

structure of TamB963-1138 from E. coli, a region spanning half of

the conserved DUF490 domain (Figure 1B). This structure re-

veals that TamB963-1138 forms a previously undescribed fold,

consisting of a concave b sheet with a highly hydrophobic inte-

rior, which we refer to as a b taco. We show that TamB963-1138

is stabilized by detergent molecules, which likely reside in the hy-

drophobic cavity of the b taco. Furthermore, sequence analysis

of TamB suggests that this structure is shared by the majority

of the molecule. Given the role of TamB in the transport and

assembly of integral membrane proteins we postulate this hy-

drophobic cavity may serve as a chaperone and conduit for

the hydrophobic b strands of target proteins. This proposed

mechanism of TamB has striking similarities to the lipopolysac-

charide (LPS) transport system Lpt in which a membrane span-

ning b jelly roll with a hydrophobic groove is predicted to act as a

conduit for LPS (Bollati et al., 2015).

RESULTS AND DISCUSSION

The Crystal Structure of TamB963-1138

To gain insight into the structure of the DUF490 domain of TamB,

we attempted to crystalize the full-length domain, as well as a
Struct
number of truncation constructs. One

of these constructs, consisting of resi-

dues 963–1,138 of TamB (designated

TamB963-1138) produced diffraction quality

crystals and data was collected and aniso-

tropically processed to 1.86–2.2 Å (Josts

et al., 2014; Strong et al., 2006). As no

homologs of TamB have been structurally

characterized, selenomethionine-labeled
protein was prepared, crystalized, and the structure was solved

using single-wavelength anomalous dispersion (SAD) (Table 1).

Substructure solution proved difficult because only weak anom-

alous signal was present in the data. Despite this, a heavy atom

substructure was determined consisting of one high-occupancy

site, as well as two low-occupancy sites in close proximity (Fig-

ure S1A). Initial SAD phases lacked contrast, making hand deter-

mination impossible. However, density modification greatly

improved contrast, allowing main-chain tracing (Figures S1B

and S1C). This initial model was then used to phase the higher-

resolution native data by molecular replacement, and the struc-

ture was built and refined (Table S1). The crystal structure of

TamB963-1138 revealed an elongated taco-shaped molecule con-

sisting entirely of b sheet and random coil. This b taco structure is

formedby twomolecules of TamB963-1138, which interact via their

N-terminal b strand to form a continuous 16-stranded curved

b structure (Figure 2A). The two molecules of TamB963-1138 in

this structure consist of eight b strands related by non-crystallo-

graphic symmetry. The first of these strands runs parallel to the

second, with the subsequent strands adopting an anti-parallel

structure (Figure 2B). Between the first and second b strands

29 residues lack electron density due to disorder. This disordered

section leads to ambiguity regarding which molecule the first

TamB963-1138 b strand originates from. Either this first b strand

is connected by the disordered loop to the parallel strand of

one monomer creating a continuous eight-stranded sheet (Fig-

ure 2C), or this loop connects b strand 1 to b strand 2 of the

opposing molecule, leading to a b zipper intercalation of the

two molecules (Figure 2D). Analysis of purified TamB963-1138 in

solution by size-exclusion chromatography coupled to multi-

angle laser light scatter (SEC-MALS) gave a molecular mass of

38 kDa for TamB963-1138. This is twice the 19 kDamass of an indi-

vidual TamB963-1138 molecule, showing that the crystallography

dimer is also the solution state of TamB963-1138 (Figure S2A).

Proline residues 987 and 1,071 at the center of b strands 1 and

4 and glycine 1,035 at the center of b strand 2 create a disconti-

nuity which kinks of the b sheet, facilitating the curvature of the
ure 25, 1898–1906, December 5, 2017 1899



Table 1. TamB963-1138 Crystallographic Data Collection and

Refinement Statistics

DUF490

(963–1,138)

SelMet

DUF490

(963–1,138)

Native

Data Collectiona

Space group P3221 P3221

Cell dimensions

a, b, c (Å) 57.2,57.2,

220.91

57.24, 57.24,

220.71

a, b, g (�) 90, 90, 120 90, 90, 120

Wavelength 0.9763 0.9763

Resolution (Å) 73.58–2.69

(2.82–2.69)

49.57–1.86

(1.89–1.86)

Rmerge 4.2 (64.5) 8.3 (288.7)

Rpim 1.1 (19.3) 4.1 (174.0)

I/s(I) 46.8 (3.2) 11.3 (0.6)

Completeness (%) 99.0 (94.8) 94.5 (99.2)

Redundancy 17.8 (12.8) 9.2 (6.8)

No. of reflections 35,019 (2,208)

Refinement Statistics

Anisotropy correctionb

Resolution truncation

a*, b*, c* (Å) 2.2, 2.2, 1.86

Reflections discarded

Original, discarded, final 34,941, 10,753,

24,188

Rwork/Rfree 20.8/25.1

No. of atoms

Protein 2,091

Waters 131

Ligand/ions 0

RMSD

Bond lengths (Å) 0.011

Bond angles (�) 1.317

Data from one crystal were collected for each structure. RMSD,

root-mean-square deviation.
aValues in parentheses are for highest-resolution shell.
bCorrection applied using the ‘‘Diffraction Anisotropy Server’’ (Strong

et al., 2006).
b taco (Figure 2E). The two molecules of TamB963-1138 are struc-

turally analogous with a Ca root-mean-square deviation of

0.71 Å. The differences between the molecules is accounted

for by flexible loops connecting the b strands; specifically, a large

difference in conformation in the loop connecting b strands 6

and 7 (Figure 2F). As TamB963-1138 only represents a fragment

of the larger TamB, the head-to-head dimer observed in the

crystals structure is unlikely to be physiological. However, the

oligomeric state of TamB in vivo has yet to been definitively

determined, so the relevance of this dimer in unknown. The re-

gion of TamB N-terminal to TamB963-1138 is predicted to consist

of a b structure, and so the interaction between the N-terminal

strands of the two monomers may act as a surrogate for the

b strands of full-length TamB (Figure S3).
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The Interior of the TamB963-1138 b taco Is Highly
Hydrophobic
The most striking feature of the TamB963-1138 crystal structure is

that the interior surface of its b taco is populated entirely by

aliphatic and aromatic residues, making this interior cavity highly

hydrophobic (Figures 3A and 3B). During purification of

TamB963-1138 it was found that the detergent lauryldimethyl-

amine N-oxide (LDAO) was required for stabilization of the

domain. Purification of TamB963-1138 in the absence of LDAO

led the protein to precipitate and resulted in a poor yield of puri-

fied protein. TamB963-1138 could be purified in the presence of

LDAO and, once purified, the protein could be maintained in

the absence of the detergent. However, while analytical SEC

suggests that TamB963-1138 still exists as a dimer under these

conditions (Figure S2B), circular dichroism revealed it to be un-

structured under these conditions, lacking the characteristic

minima for b structured proteins (Figure S2C). Electron density

possibly attributable to the aliphatic chains of stabilizing LDAO

molecules is evident inside the TamB963-1138 cavity (Figure 3C).

This density however, is insufficiently resolved to permit accu-

rate modeling of the LDAO head groups and as a result it was

not possible to unambiguously attribute it to the detergent. As

such, LDAO was not included in the final model submitted to

the PDB.

Given the periplasm-spanning topology of TamB, as well as

the amphipathic characteristics in the substrate proteins assem-

bled by the TAM, the hydrophobic b taco of TamB963-1138 struc-

ture is suggestive of a role for TamB in chaperoning membrane

proteins across the periplasm to TamA in the OM. The open hy-

drophobic cleft of TamB963-1138 could shield the hydrophobic

face of the b strand of an integral membrane protein, while leav-

ing the hydrophilic face exposed to the aqueous environment. In

support of this hypothesis, the interior of the TamB963-1138 b taco

is of a width and depth sufficient to accommodate a single

extended b strand (Figure 3D).

To test this hypothesis, we introduced the charged amino

acids glutamate or arginine into full-length TamB in the place

of Leu1049 and Ile1102, respectively. Both these amino acids

reside in the TamB963-1138 hydrophobic b taco (Figures 4A

and 4B). We then tested the ability of these mutant versions of

TamB to complement a DtamB E. coli strain, by observing its

function in an established pulse-chase assay, where TAM func-

tion is the rate-limiting step in the assembly the fimbrial usher

protein FimD (Stubenrauch et al., 2016a). In this assay, protein-

ase K shaving of the bacterial cell surface is used to detect

properly folded, radiolabeled FimD assembled in the OM.

Exogenously added proteinase K cleaves FimD (90 kDa) at an

extracellular loop, generating a C-terminal (40 kDa) and N-termi-

nal (50 kDa) fragment. However, in the absence of the TAM,

a 45 kDa ‘‘B fragment’’ is generated representing a central

portion of FimD in a non-native conformation (Stubenrauch

et al., 2016a).

Interestingly, placement of an Arg at position 1,102 (Ile1102Arg)

significantly impaired the assembly of FimD, leading to the accu-

mulation of the 45 kDa B fragment, indicating that the Ile1102Arg

mutant can only partly complement a tamB null-phenotype (Fig-

ure 4C). Othermutations in the groove had less impact: the ability

of the Leu1049Glu mutant to assemble FimD was indistinguish-

able from wild-type, BN-PAGE analysis of crude membrane



Figure 2. The Crystal Structure of TamB963-1138

(A) Cross-eye stereo view of the TamB963-1138 dimer; molecule A is

colored blue and molecule B is colored yellow.

(B) Jones’s Rainbow of TamB963-1138, colored from blue (N terminus)

to red (C terminus).

(C) TamB963-1138 showing disordered region connectivity option one

between Asp995 and Pro1025 of molecule A.

(D) TamB963-1138 showing connectivity option two between Asp995 of

molecule A and Ile1026 of molecule B.

(E) The kink at the base of the TamB963-1138 b taco is created by Pro987
and Pro1071 and Gly1035.

(F) A large conformational difference is observed in the loop between

b strands 6 and 7 of TamB963-1138 molecule A and B.

Structure 25, 1898–1906, December 5, 2017 1901



Figure 3. The Interior of the TamB963-1138 b Taco Is Hydrophobic

(A) Cross-eye stereo view of TamB963-1138 showing as sticks the sidechains facing the interior of the b taco, all sidechains are hydrophobic.

(B) Electrostatic surface model of TamB963-1138 molecules A and B, showing the hydrophobic groove.

(C) Electron density present in the TamB963-1138 hydrophobic groove attributable to LDAO present in the crystallization buffer. The map presented in a feature-

enhanced map generated using the Phenix package, contoured to 1.5 s (Afonine et al., 2015).

(D) An amphipathic b strand docked into the TamB963-1138 hydrophobic groove.
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Figure 4. The Effect on the Function of TamB of the Introduction of Charged Residues into the Hydrophobic b Taco of TamB963-1138

(A) Positions of substitution of hydrophobic residues in the TamB963-1138 b taco (shown as red sticks). Glycine at position 1,073 is conserved with SSG4.

(B) The local environment of the hydrophobic amino acid changed (panel 1) and their corresponding charged residue substitutions (panel 2).

(C and D) The effect of the mutations shown in (A and B) on the ability of a plasmid-encoded copy of the tamB allele to complement a DtamB null-phenotype.

(legend continued on next page)
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extracts revealed that both mutant versions of TamB were

capable of interacting with TamA to form the TAM, indicating

that the defect in TamBIle1102Arg is not due to a gross defect in

TamB production or structure (Figure 4D). Why TamBIle1102Arg

was defective in our assay, but TamBLeu1049Glu remained func-

tional, is unknown. However, while the Leu1049Glu mutation

would certainly change the local charge of the b taco, it does

not project into the cavity to the extent that bulky arginine at

1,102 does. Future work involving more thorough mutagenesis

studies of TamB would be useful in answering these questions.

To create the hydrophobic b taco structure found in

TamB963-1138, the amino acid sequence of the b strands consist

of alternating hydrophobic and hydrophilic amino acids. The

sidechains projecting from a face of a b sheet are on alternate

sides of the strands, so that the patterning observed in b taco

of TamB creates one hydrophobic face (the internal cavity) and

one hydrophilic face that would face the periplasmic environ-

ment. This sequence pattern is reminiscent of b barrel mem-

brane proteins but in that case the hydrophobic side of the

b sheet is embedded in the lipid bilayer. Sequence analysis of

the TamB family reveals this alternating pattern of conserved

hydrophobic and hydrophilic residues occurs not only in the

TamB963-1138, but is widely distributed throughout the majority

of TamB (Figure S4). Extrapolating from the structure of

TamB963-1138, this pattern suggests that the extended TamB

molecule consists of long sections of hydrophobic channel.

This proposed structure for TamB has a striking similarity to

the well-characterized LPS transport system of Gram-negative

bacteria (Sperandeo et al., 2009). Three proteins from this sys-

tem, LptC, LptA, and LptD, contain or consist of a b jelly roll

with an interior hydrophobic groove (Dong et al., 2014). These

proteins are predicted to interact to form a hydrophobic conduit

for the aliphatic chains of LPS across the periplasm, from the

inner to OMs (Bollati et al., 2015; Dong et al., 2014). In an inter-

esting parallel to TamB963-1138, the b jelly domain of LptD, the

OM component of this system, was crystallized with two deter-

gent molecules in its hydrophobic groove (Qiao et al., 2014).

A Structure-Function Relationship in Distant DUF490
Homologs?
TamB homologs have been shown to be widely conserved in

bacterial diderms, where they are involved in OM biogenesis in

distantly related genera, from Escherichia to Borrelia to Deino-

coccus (Heinz et al., 2015; Iqbal et al., 2016; Selkrig et al.,

2015; Yu et al., 2017). The distribution of TamB-like proteins is,

however, not limited to the bacterial kingdom, with proteins con-

taining the conserved DUF490 domain having also been identi-

fied in plants (Heinz et al., 2015). In a recent study screening

rice (Oryza sativa) mutants for defects in starch accumulation,
(C) Pulse-chase assessment of 35S-FimD assembly wasmonitored over time in wil

and either the control pACYCDuet-1 plasmid, or the indicated complementing tam

without 50 mg/mL proteinase K (PK). Total protein was analyzed by SDS-PAGE an

in red), is indicative of improperly folded FimD due to impaired functioning of the T

is highlighted with a dashed rectangle.

(D) Membrane extract of wild-type, DtamA, or DtamB cells harboring either the c

were prepared. Membrane protein (100 mg) was analyzed by blue native (BN)-P

domains of TamA (Selkrig et al., 2012). The TAM does not form inDtamA orDtamB

on BN-PAGE.
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the protein SSG4 (for substandard starch grain 4) was identified.

SSG4 is a large (2,132 amino acid) protein consisting of predom-

inantly b structure and a TamB-like C-terminal DUF490 domain.

SSG4 is localized to the amyloplast, the plastid responsible for

starch synthesis in plants. This organelle was derived by evolu-

tion from an ancient symbiotic Cyanobacterium (Chan et al.,

2011). Mutation of Gly1924Ser in the DUF490 domain of SSG4

leads to enlarged starch granules and seed chalkiness (Mat-

sushima et al., 2014). The authors suggest that this glycine is

crucial to function and that it is conserved in TamB proteins

from Proteobacteria (Matsushima et al., 2014). While plastids

and Cyanobacteria share an evolutionary history, their protein-

transport pathways are not homologous: proteins are imported

into plastids from the cytoplasm, and there is no evidence of a

vestigial protein secretion pathway from the internal compart-

ments of the plastid out to its OM (Inoue, 2011; Strittmatter

et al., 2010). Therefore, if SSG4 also plays a role in membrane

protein biogenesis in the plastid it must be distinct from that

of TamB.

Sequence alignment between TamB and SSG4 shows that the

conserved glycine falls within the TamB963-1138 crystal structure

corresponding to Gly1073 (Matsushima et al., 2014). Gly1073 is

located in b strand 4, adjacent to the kink in the b sheet caused

by Pro1071 (Figure 4A). To test the significance of glycine at this

position for the function of TamB, we subjected it to mutagen-

esis. However, substitution of either serine or glutamate for

Gly1073 did not affect the function of the TAM in the assembly

of FimD into the OM of E. coli (Figures 4C and 4D). While this

finding does not rule out the importance of Gly1073 in the function

of TamB, it shows that substitution of this residue does not result

in a gross defect in the function of this protein. To determine if

TamB and SSG4 do indeed share a related function in these

distantly related organisms, further investigation will be required.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-TamA (POTRA domains only) antibody produced in rabbit This paper N.A

Anti-Rabbit IgG (whole molecule)-Peroxidase antibody produced in goat Sigma-Aldrich A6154; RRID: AB_258284

Bacterial and Virus Strains

E. coli DH5a: F- F80lacZDM15 D(lacZYA-argF) U169 recA1 endA1

hsdR17(rk-, mk+) phoA supE44 thi-1 gyrA96 relA1 l-

Invitrogen For example: Cat#, 18265017

E. coli BL21(DE3): F- ompT hsdSB (rB-mB-) gal dcm (DE3) New England Biolabs For example: Cat#, C2527H

E. coli BL21 Star� (DE3): F- ompT hsdSB (rB-mB-) gal dcm rne131 (DE3) Invitrogen For example: Cat#, C6010-03

E. coli BL21 Star� (DE3) DtamA: F- ompT hsdSB (rB-mB-) gal dcm rne131

(DE3) DtamA::Kan

Stubenrauch et al., 2016a N.A

E. coli BL21 Star� (DE3) DtamB::Kan Stubenrauch et al., 2016a N.A

Chemicals, Peptides, and Recombinant Proteins

20 mg.mL-1 proteinase K solution Promega Cat#, MC500

EXPRE35S35S [35S]-Protein Labelling Mix Perkin Elmer NEG072

Amersham ECL Prime Western Blotting Detection Reagent GE Healthcare Life Sciences RPN2232

Dnase A Sigma Cat#, E1014

EDTA-free Complete Protease Inhibitor Cocktail Roche Cat#, 04693132001

Ni-NTA Agarose Invitrogen Cat#, R901-01

LDAO Sigma Cat#, 40236

Deposited Data

Crystal Structure of TamB963-1138 This paper PDB:5VTG

Oligonucleotides

TamB Leu 1049 to Glu (TTTGGCCTGAAAGCGCGGGAGACGGGCGATCT

CAATGT),

This paper N.A

TamB Gly 1073 to Ser (GCAGATCAACATCCCTGAAAGTCGCTTCCATGC

CTATGGTC)

This paper N.A

TamB Gly 1073 to Glu (CAGATCAACATCCCTGAAGAGCGCTTCCATGCC

TATGGTC)

This paper N.A

TamB Ile 1102 to Arg (GCCAGATCAACCGTATCTTAATCGTGAAGCTATTC

GTAACCCGGA)

This paper N.A

Recombinant DNA

pET21a, confers ampicillin resistance Merck 69740-3

pACYCDuet-1, confers chloramphenicol resistance (used as an empty

vector control for the various tamB complementation plasmids)

Novagen Cat#, 71147-3

pTamB, confers chloramphenicol resistance Stubenrauch et al., 2016a referred to as pCJS72 therein

pTamB-G1073S, confers chloramphenicol resistance This paper N.A

pTamB-G1073E, confers chloramphenicol resistance This paper N.A

pTamB-I1102R, confers chloramphenicol resistance This paper N.A

pTamB-L1049E, confers chloramphenicol resistance This paper N.A

pKS02, confers ampicillin resistance Stubenrauch et al., 2016a N.A

Software and Algorithms

Coot Emsley et al., 2010 https://sbgrid.org/software/

CCP4 suite Winn et al., 2011 https://sbgrid.org/software/

XDS Kabsch, 2010 https://sbgrid.org/software/

Phenix Adams et al., 2010 https://sbgrid.org/software/
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Storage phosphor screen: Unmounted General Purpose, 20 3 25 cm GE Healthcare Life Sciences Cat# 63-0034-87

Exposure cassette for unmounted screens, 20 3 25 cm GE Healthcare Life Sciences Cat# 63-0035-44

Typhoon Trio GE Healthcare Life Sciences 63-0055-87

SG50 gradient maker GE Healthcare Life Sciences SG50
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Rhys

Grinter (Rhys.grinter@monash.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Expression of proteins used for crystallographic studies and analytical size exclusion chromatography (SEC) was performed in E. coli

BL21(DE3). Cells were grown at 37 �C in Terrific broth (TB). When optical density at 600 nm reached 0.8, protein expression was

induced with the addition of 0.5 mM IPTG and cells were incubated overnight at 25 �C before harvest.

For membrane isolation, BN-PAGE and pulse chase analyses, E. coli BL21 Star� (DE3) and derivative strains were used. For

plasmid storage, E. coli DH5a was used. These strains were routinely grown in lysogeny broth (LB, containing 10 g.L-1 tryptone,

5 g.L-1 yeast extract and 5 g.L-1 NaCl), at 37 �C and 200 strokes per minute (25 mm orbit). For strain storage, saturated overnight

culture was diluted 1:1 in 40 % v/v glycerol, snap frozen in liquid nitrogen and kept at -80 �C.
Where appropriate, the following antibiotics were used for selection: 34 mg.mL-1 chloramphenicol, 30 mg.mL-1 kanamycin,

and/or 100 mg.mL-1 ampicillin. If solid media was required, 15 g.L-1 agar was added to the growth medium.

METHOD DETAILS

Protein Expression, Purification, Crystallization and Data Collection
Native TamB963-1138 was expressed and purified as described by (Josts et al., 2014). Briefly, the gene fragment encoding the DUF490

domain residues 963-1138 from TamB from E. coli K12 was ligated into pET-21a via NdeI and XhoI restriction sites producing a

C-terminally His6 tagged product. This construct was transformed into E. coli BL21 (DE3) cells which were grown in LB

(+ 100 ug.ml-1 Ampicillin and 3% glycerol) to an OD of 0.6, before induction with 0.5 mM IPTG. Cells were then grown for 15 hours

at 25�C and harvested by centrifugation (5000 g). Cells were resuspended in 20 mM Tris–HCl, 10 mM imidazole, 0.5 M NaCl, 5%(v/v)

glycerol, 0.05% LDAO pH 7.5 then lysed via sonication, supernatant was clarified by centrifugation (30,000 g). TamB963-1138 was pu-

rified from this clarified supernatant by a 2-step purification of nickel affinity and size exclusion (Superdex S200) chromatography.

Clarified cell lysate was applied to a 5ml Ni-agarose column and the column was washed with at least 10 column volumes of

20 mM Tris–HCl, 10 mM imidazole, 0.5 M NaCl, 5%(v/v) glycerol, 0.05% LDAO pH 7.5. Protein was then eluted from the column

with a 0-100% gradient of of 20 mM Tris–HCl, 500 mM imidazole, 0.5 M NaCl, 5%(v/v) glycerol, 0.05% LDAO pH 7.5 over 10 column

volumes. Fractions containing DUF490963-1138 were then applied to a 26/200 Superdex S200 column equilibrate in 20 mM Tris-HCl,

200 mM NaCl, 0.05% LDAO. DUF490963-1138 eluted as multimeric species on size exclusion, however a single peak most likely cor-

responding to a monomer or dimer was pooled and concentrated to 8-15 mg.ml-1 prior sparse matrix screening for crystallization

conditions.

For selenomethionine labelling TamB963-1138 expression construct described above was transformed into the methionine auxotro-

phic strain E. coli B834 (DE3). Cells were grown at 37 �C in M9minimal media (+ 100 ug.ml-1 ampicillin, 50 ug.ml-1 selenomethionine,

100 ug.ml-1 other amino acids, 0.5 ug.ml thiamine) to an OD600 of 0.4 before induction with 0.5 mM IPTG. Cells were then grown for

15 hours at 25 �C before harvesting, and protein purified as described above. 1 mMDTT was included in all buffers to prevent oxida-

tion of the selenium.

Crystallisation was performed as previously described (Josts et al., 2014). Protein for crystalisation was in a buffer containing:

50 mM Tris–HCl, 200 mM NaCl, 0.05% LDAO pH 7.5. Crystals were grown with a reservoir solution containing: 0.1 M HEPES,

15%(v/v) PEG 400, 0.2 M CaCl2 pH 7.0. Crystals were transferred to cryoprotectant consisting of reservoir solution with 25%(v/v)

PEG 400 and flash cooled in liquid nitrogen. Data was collected at 100 �K (0.9752 Å) at Diamond Lightsource, UK.

Size-Exclusion Chromatography Multiangle Light Scattering (SEC-MALS)
The absolutemolecular mass of TamB963-1138 was determined by SEC-MALS. 100-ml protein samples (1-5mg.ml-1) were loaded onto

a Superdex 200 10/300 GL size-exclusion chromatography column in 20mM Tris , 200 mMNaCl 0.05% LDAO [pH 7.9] at 0.6 ml/min

with a Shimadzu Nexera SR. The column output was fed into a DAWN HELEOS II MALS detector (Wyatt Technology) followed by an

Optilab T-rEX differential refractometer (Wyatt Technology). Light scattering and differential refractive index data were collected and
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analyzed with ASTRA 6 software (Wyatt Technology). Molecular masses and estimated errors were calculated across individual

eluted peaks by extrapolation from Zimm plots with a dn/dc value of 0.1850ml/g. SEC-MALS data are presented with light scattering

(LS) and refractive index change plotted alongside fitted molecular masses (Mr).

Circular Dichroism Analysis
Circular dichorismmeasurements were obtained for TamB963-1138 at 1 mg/ml in 20 mM Tris , 200 mMNaCl [pH 7.9] the presence and

absence of 0.03 % LDAO at 24�C using a Jasco J-810 spectropolarimeter (Jasco UK Ltd).

Experimental Phasing, Model Building and Refinement
Based on the Matthews coefficient for the DUF490963-1138 crystals, two molecules were predicted to be present in the crystal asym-

metric unit (ASU), with a solvent content of 50 %. One molecule per ASU was also a possibility, with a solvent content of 76%. Each

DUF490963-1138 molecule has 2 methionine residues (discounting the N-terminal methionine which is likely to be cleaved), giving 4 as

the most likely number selenium atoms present. To locate heavy atom sites in diffraction data from the selenomethionine labelled

DUF490963-1138 data was collected at the selenium edge and processed to 2.7 Å. Anomalous signal for the data was detected up

to 7.4 Å using Xtriage from the Phenix package (Adams et al., 2010). This was weaker than expected given the methionine to amino

acid residue ratio (1:88). ShelxC was employed for data preparation, followed by ShelxD to locate selenium sites (Sheldrick, 2010).

The best substructure solutions were obtained with 3 selenium sites with occupancies of 0.87, 0.47 and 0.31, rather than the 4 sites

expected for 2 molecules per ASU. These sites were then provided along with the DUF490 anomalous dataset to Autosol from the

Phenix package for phasing and density modification (Adams et al., 2010). Contrast of the initial experimentally phased maps was

poor, making it difficult to determine the corrected hand of the screw axis (P3121 or P3221). However, density modification greatly

improvedmap contrast with clear density present for molecules consisting of an elongated U-shaped b-sheet in the solution from the

correct hand with the space group P3221 (Figure S1). This experimentally phased map was then used to construct a provisional

model. This structure was then used as a molecular replacement model for the higher resolution native data (2.1 Å). The

DUF490963-1138 was then iteratively built and refined using COOT and Phenix refine to give the final structure with Rwork and Rfree

of 20.8% a 25.1% respectively (Emsley et al., 2010).

Sequence and Structure Analysis
Structural analysis and figure construction was performed using pymol and QtMG structural graphics packages (McNicholas et al.,

2011). Secondary structure prediction for TamB was performed using the JPred4 webserver (Drozdetskiy et al., 2015).

Amino acid sequences for TamB homologues were identified using a Hmmer search against the rp15 database, with TamB from

E. coli as the query sequence and an e-value cut off of 1e-30. Sequences identified were triaged for those +/- 500 amino acids in

length of TamB from E. coli and aligned using clustalx (Finn et al., 2011).

TamB Plasmid Mutagenesis
In order to introduce single amino acid mutations onto the TamB963-1138 region of tamB in pTamB (pCJS72) the whole plasmid PCR

mutagenesis method was utilised. A reaction was assembled in 50 ml H2O containing: 2.5 U (1 ml) PfuTurbo polymerase, 5 ml 10 x Pfu

reaction buffer, 125 ng each of forward and reverse primers (see below), 50 ng pTamB DNA and 1 ml 10 mM dNTPmix. The following

forward primers were utilised for each mutation, with the reverse complement of the listed sequence used for the reverse primer:

Leu 1049 to Glu (TTTGGCCTGAAAGCGCGGGAGACGGGCGATCTCAATGT),

Gly 1073 to Ser (GCAGATCAACATCCCTGAAAGTCGCTTCCATGCCTATGGTC),

Gly 1073 to Glu (CAGATCAACATCCCTGAAGAGCGCTTCCATGCCTATGGTC),

Ile 1102 to Arg (GCCAGATCAACCGTATCTTAATCGTGAAGCTATTCGTAACCCGGA)

The reaction mixture was subjected to the following thermocycling regime: 1 x 95�C for 30 seconds, 18 x ( 95�C for 30 seconds,

55�C for 60 seconds, 68�C for 7 minutes). 1 ml of DpnI was then added to the reaction which was incubated at 37�C for 1 hour. The

reactionmixture was then transformed into E. coliDH5a and plated onto LB agar containing 30 mg/ml chloramphenicol. Plasmid DNA

was extracted from resultant colonies and sequenced to confirm that the desired mutation and no other mutations were present.

Chemical Transformation
E. coliDH5awere Saturated overnight cultures were diluted 1:50 into fresh 30mL LB, supplemented with appropriate antibiotics, and

incubated until mid-log phase. The culture was chilled on ice for 30 min, then subjected to centrifugation (4415 3g, 4 �C, 15 min)

and resuspended in 4.5 mL ice cold 0.1 M CaCl2. The suspension was chilled on ice for a further 30 min, centrifuged as before

and resuspended in 150 mL 0.1 M CaCl2. Following a 2-hour incubation on ice, 75 mL LB (supplemented with 30 % w/v glycerol)

were aliquoted and snap frozen and stored at -80 �C.
Cells (20-50 mL) were thawed on ice and incubated with 20-50 ng plasmid DNA for 40 min on ice. Cells were heat shocked at 42 �C

for 45 s, then incubated on ice for 2 min before 250 mL LB media was added and cells were allowed to recover for 1 hour. Samples

were then spread-plated onto LB agar containing appropriate antibiotics, and following a 24-hour incubation at 37 �C, transformants

were selected for subsequent analyses.
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Electro-Transformation
Saturated overnight cultures were diluted 1:50 into fresh 30 mL LB, supplemented with appropriate antibiotics, and incubated until

mid-log phase. The culture was subjected to four rounds of centrifugation (3485 3g, 4 �C, 10 min), followed by resuspension in

increasingly smaller volumes of 10% v/v glycerol: 12 mL, 6 mL, 3 mL, 0.3 mL. Cells (50 mL) were briefly incubated on ice with

20-50 ng plasmid DNA and then transferred to a chilled electroporation cuvette (1 mm gap). Samples were electroporated

(1.8 kV, 200 U, 25 mF) and immediately transferred to 250 mL LB and allowed to recover for 1 hour. Transformants were then selected

for on solid media, supplemented with appropriate antibiotics, after a 24-hour incubation at 37 �C.

Crude Membrane Isolation
Saturated overnight cultures were diluted 1:100 into fresh 50 mL LB, supplemented with appropriate antibiotics, and incubated until

the optical density at 600 nm was between 0.8 and 1.2. The culture was subjected to centrifugation (46093g, 4 �C, 10 min) and then

resuspended in 10 mL sonication buffer (2 mMEDTA, 150mMNaCl, 10 mM Tris-HCl, pH 7.5). Samples were lysed by sonication and

the sample was subjected to centrifugation to remove unbroken cells (26683g, 4 �C, 5 min). The supernatant was then subjected to

centrifugation (16743 3g, 4 �C, 10 min), and the membrane pellet was resuspended in 1 mL SEM buffer (1 mM EDTA, 250 mM

sucrose, 10 mM MOPS-KOH, pH 7.2). Membranes were snap frozen in liquid nitrogen, and stored at -80 �C.

Blue Native-PAGE and Immunoblotting
Membranes comprising 150 mg.mL-1 protein were thawed on ice, and subjected to centrifugation (136003g, 4 �C, 5min). Membranes

were resuspended in 36 mL blue native lysis buffer (10mg.mL-1 DDM, 1mMPMSF, 50mMNaCl, 50mM6-aminohexanoic acid, 1mM

EDTA, 7.5 % w/v glycerol, 25 mM imidazole-HCl, pH 7.0) (Note: PMSF has a short half-life in aqueous solutions and was therefore

added immediately before use from a master stock of 100 mM PMSF in isopropanol). Samples were incubated on ice for no more

than 30 min, and then subjected to centrifugation (21200 3g, 4 �C, 10 min). The supernatant was transferred to 9 mL 53 blue native

sample buffer (3 parts blue native lysis buffer and 1 part of a stock solution comprising 100 mM 6-aminohexanoic acid and 4 % w/v

coomassie brilliant blue G-250). With a 40 % T, 2.6 % C acrylamide/bis acrylamide solution (such as 40% Acrylamide/bis solution

37.5:1, Bio-Rad, cat#1610148), a 4%acrylamide (4% v/v acrylamide 37.5:1mixture, 3.75%w/v glycerol, 500mM6-aminohexanoic

acid, 25 mM imidazole-HCl, pH 7.0, 0.1 % v/v TEMED, 0.09 % w/v ammonium persulfate) and a 14 % acrylamide (14 % v/v acryl-

amide 37.5:1 mixture, 20.25 % w/v glycerol, 500 mM 6-aminohexanoic acid, 25 mM imidazole-HCl, pH 7.0, 0.05 % v/v TEMED,

0.045% w/v ammonium persulfate) mixture were used to cast a 4-14 % blue native gradient gel with an SG50 gradient maker as

per manufacturer’s instructions.

Samples (30 mL, comprising 100 mg membrane protein) and size markers (30 mL, 1.5 mg.mL-1 ferritin, 1.5 mg.mL-1 catalase,

1.5 mg.mL-1 BSA, 50 mM NaCl, 55 mM 6-aminohexanoic acid, 1 mM EDTA, 7.5 % w/v glycerol, 0.2 % w/v Coomassie brilliant

blue G-250, 25 mM imidazole-HCl, pH 7.0) were loaded onto 4-14 % blue native gradient gels and analysed by blue native PAGE

as follows. Anode buffer (25 mM imidazole-HCl, pH 7.0) and dark blue cathode buffer (0.05 % w/v Coomassie brilliant blue

G-250, 50 mM tricine-imidazole, pH 7.0) were added to the lower and upper tanks, respectively, and subjected to electrophoresis

(250 V, 7.5-8.0 mA, 4 �C), until the dye front has migrated two-thirds of the gel. Replace the buffer in the upper tank with a slightly

blue cathode buffer (0.001 % w/v Coomassie brilliant blue G-250, 50 mM tricine-imidazole, pH 7.0) and subject to electrophoresis

(250 V, 7.5-8.0 mA, 4 �C) until the dark blue cathode buffer within the gel has been completely replaced by the slightly blue cathode

buffer. Samples in the gel were denatured as follows. Blue native denaturing buffer (1 % w/v DTT, 4 % w/v SDS, 50 mM Tris-HCl,

pH 6.8) was heated to 65 �C and poured over the 4-14% blue native gradient gel (100 mL per 153 7 cm gel). The gel was then incu-

bated (37 �C, 40 rpm, 25 mm orbit) for 20 min, and after briefly rinsing the gel in water, it was transferred to CAPS western transfer

buffer (10 % v/v methanol, 20 mM CAPS-NaOH, pH 11.0) and incubated (room temperature, 40 rpm, 25 mm orbit) for 10 min. De-

natured protein was transferred to 0.45 mm PVDF membranes (as per manufacturer’s instructions) using CAPS western transfer

buffer.

Residual coomassie was removed from the PVDF membrane (with methanol), before rinsing briefly in TBS-T buffer (0.2 % v/v

Tween-20, 8 g.L-1 NaCl, 0.2 g.L-1 KCl, 30 g.L-1 Tris-HCl, pH 7.4). Membranes were incubated in blocking buffer (2.5 % w/v skim

milk powder in TBS-T) for 30-60 min (room temperature, 40 rpm, 25 mm orbit) or overnight (4 �C, 40 rpm, 25 mm orbit), before

incubation in rabbit anti-TamA antibodies (1:20,000 dilution in blocking buffer) for 1 hour (room temperature, 40 rpm, 25 mm orbit).

Membranes were washed three times in TBS-T (room temperature, 40 rpm, 25mm orbit) for 5-10min each, before incubation in goat

anti-rabbit antibodies (1:20,000 dilution in blocking buffer) for 30min (room temperature, 40 rpm, 25mmorbit). Membranes were then

washed as before, followed by incubation with Amersham ECL Prime Western Blotting Detection Reagent as per manufacturer’s

instructions. Chemiluminescent membranes were then exposed to super RX-N film (Fujifilm) in an Amersham Hypercassette�
(GE Healthcare Life Sciences) for up to 10 min, and developed using the SRX-101A medical film processor (Konica) as per

manufacturer’s instructions.

Pulse Chase Analysis of FimD Assembly
Saturated overnight cultures were diluted 1:100 into fresh LB, supplementedwith chloramphenicol and ampicillin, and incubated until

mid-log phase. The culture was subjected to centrifugation (4609 3g, 4 �C, 10 min), washed in M9-S media (47.8 mM Na2HPO4,

22 mM KH2PO4, 8.56 mM NaCl, 11.1 mM glucose, 1.12 mM thiamine, 1 mMMgCl2, 0.1 mM CaCl2 and 45.4 pg.mL-1 of the 18 stan-

dard non-sulphur containing amino acids, with an additional 181.6 pg.mL-1 leucine [i.e. 227 pg.mL-1 leucine total]), and after another
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round of centrifugation, was resuspended in M9-S media (equal to the volume of LB removed following centrifugation). After 30 min

incubation (37 �C, 200 rpm, 25 mm orbit), cells were normalised to an optical density at 600 nm of 0.6 and diluted 1:1 in 40 % v/v

glycerol. The samples were then snap-frozen (1.3 mL aliquots) in liquid nitrogen and stored at -80 �C. Each batch of cells was consid-

ered to be one set of technical replicates.

Aliquots were thawed on ice, subjected to centrifugation (30003g, 4 �C, 5min) and resuspended in 650 mLM9-Smedia. Rifampicin

(500 mg mL-1) was added to inhibit transcription (37 �C, 400 rpm, 3 mm orbit) for 60 min before 0.2 mM of pre-warmed IPTG was

added (30 �C, static) to induce pKS02-based fimD expression for 5 min. Cells were then ‘pulsed’ with 22 mCi.mL-1 of pre-warmed

EXPRE35S35S [35S]-Protein LabellingMix (routinely containing 73% [35S]-methionine, 22% [35S]-cysteine) for 45 s, then immediately

transferred to ice. Samples were then subjected to centrifugation (3000 3g, 4 �C, 5 min) and resuspended in 650 mL M9+S media

(M9-S media, but 1 mM MgSO4 replaces MgCl2 and 45.5 pg.mL-1 methionine and cysteine were added). The ‘chase’ component

was considered to have begun immediately on resuspension of M9+S media and was performed for 32 minutes (30 �C, static).
For analysis by protease shaving, at each chase time point (10 sec, 2, 4, 8, 16, and 32min), 50 mL aliquots were incubated on ice for

10 min with (all time points) or without (32 min timepoint only) 50 mg/mL proteinase K. Trichloroacetic acid (10 % v/v final) was then

added and protein precipitates were collected by centrifugation (250003g, 4 �C, 15 min). The precipitate was washed with acetone,

subjected to centrifugation as before, and the pellet was air-dried. The sample was resuspended in 50 mL SDS sample buffer

(10 % v/v glycerol, 1 % w/v SDS, 100 mM DTT, 0.01 % w/v bromophenol blue, 100 mM Tris-HCl, pH 6.8) and boiled for 3-5 min.

Samples (10 mL) were loaded into 12% SDS acrylamide gel and analysed by SDS-PAGE. Proteins were transferred to 0.45 mm nitro-

cellulose membrane and the membrane was air dried. Radiation was captured for 12-18 hours using the storage phosphor screen

(as per manufacturer’s instructions) and analysed using the Typhoon Trio (320 nm).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical methods were not utilised in analysis of the significance of data in this study

DATA AND SOFTWARE AVAILABILITY

The coordinates and structure factors for the crystal structure of TamB963-1138 have been deposited in the PDB under the accession

number: 5VTG
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