176 research outputs found

    Caveolin-1 and Altered Neuregulin Signaling Contribute to the Pathophysiological Progression of Diabetic Peripheral Neuropathy

    Get PDF
    Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.OBJECTIVE Evaluate if Erb B2 activation and the loss of caveolin-1 (Cav1) contribute to the pathophysiological progression of diabetic peripheral neuropathy (DPN). RESEARCH DESIGN AND METHODS Cav1 knockout and wild-type C57BL/6 mice were rendered diabetic with streptozotocin, and changes in motor nerve conduction velocity (MNCV), mechanical and thermal hypoalgesia, Erb B2 phosphorylation (pErb B2), and epidermal nerve fiber density were assessed. The contribution of Erb B2 to DPN was assessed using the Erb B2 inhibitors PKI 166 and erlotinib and a conditional bitransgenic mouse that expressed a constitutively active form of Erb B2 in myelinated Schwann cells (SCs). RESULTS Diabetic mice exhibited decreased MNCV and mechanical and thermal sensitivity, but the extent of these deficits was more severe in diabetic Cav1 knockout mice. Diabetes increased pErb B2 levels in both genotypes, but the absence of Cav1 correlated with a greater increase in pErb B2. Erb B2 activation contributed to the mechanical hypoalgesia and MNCV deficits in both diabetic genotypes because treatment with erlotinib or PKI 166 improved these indexes of DPN. Similarly, induction of a constitutively active Erb B2 in myelinated SCs was sufficient to decrease MNCV and induce a mechanical hypoalgesia in the absence of diabetes. CONCLUSIONS Increased Erb B2 activity contributes to specific indexes of DPN, and Cav1 may be an endogenous regulator of Erb B2 signaling. Altered Erb B2 signaling is a novel mechanism that contributes to SC dysfunction in diabetes, and inhibiting Erb B2 may ameliorate deficits of tactile sensitivity in DPN. Diabetic peripheral neuropathy (DPN) is a common complication of diabetes (1). Although hyperglycemia is the definitive cause of DPN (2), the vascular, glial, and neuronal damage that underlies the progressive axonopathy in DPN has a complex biochemical etiology involving oxidative stress (3,4), protein glycation (5), protein kinase C activation (6), polyol synthesis (7), and the hexosamine pathway (8). Altered neurotrophic support also contributes to sensory neuron dysfunction in DPN (9), but whether diabetes may alter growth factor signaling in Schwann cells (SCs), which also undergo substantial degeneration in diabetes, is poorly defined. Neuregulins are growth factors that control SC growth, survival, and differentiation via their interaction with Erb B receptors (10). Although Erb B2 signaling promotes developmental myelination and is clearly trophic for SCs, pharmacological evidence supports that pathologic activation of Erb B2 after axotomy (11) or infection with leprosy bacilli (12) is sufficient to induce SC dedifferentiation and demyelination. Additionally, genetic evidence supports that Erb B2 can promote the development of sensory neuropathies independent of diabetes because expression of a dominant-negative Erb B4 in nonmyelinating (13) or myelinating (14) SCs induced a temperature or mechanical sensory neuropathy, respectively. Given the contribution of Erb B2 to the degeneration of SCs, endogenous proteins that regulate Erb B2 activity may influence the development of certain aspects of sensory neuropathies. The interaction of Erb B2 with the protein caveolin-1 (Cav1) inhibits the intrinsic tyrosine kinase activity of the receptor (15). Cav1 is highly expressed in mature, myelinated SCs (16), and we have shown that prolonged hyperglycemia promoted the downregulation of Cav1 in SCs of sciatic nerve (17). Cav1 may regulate Erb B2 signaling in SCs because its forced downregulation was sufficient to enhance neuregulin-induced demyelination of SC–dorsal root ganglion (DRG) neuron cocultures (18). However, it is unknown whether an increase in Erb B2 activity may contribute to the pathophysiological development of DPN and if changes in Cav1 expression may alter Erb B2 activation in diabetic nerve. In the current study, we demonstrate that diabetic Cav1 knockout mice showed an increased activation of Erb B2 and developed greater motor nerve conduction velocity (MNCV) deficits relative to their wild-type counterparts. Inhibition of Erb B2 with two structurally diverse inhibitors corrected the MNCV deficits and mechanical hypoalgesia evident after 6 or 15 weeks of diabetes. Also, induction of a constitutively active Erb B2 in myelinated SCs of adult mice was sufficient to recapitulate the MNCV and mechanical sensitivity deficits observed in the diabetic mice. These studies provide the first evidence that activation of Erb B2 contributes to deficits associated with myelinated fiber function in diabetic nerve and suggest that Cav1 may serve as an endogenous regulator of Erb B2.This work was supported by grants from the Juvenile Diabetes Research Foundation and the National Institutes of Health (NS-054847 and DK-073594)

    Neuregulin 1 Type III/ErbB Signaling Is Crucial for Schwann Cell Colonization of Sympathetic Axons

    Get PDF
    Analysis of Schwann cell (SC) development has been hampered by the lack of growing axons in many commonly used in vitro assays. As a consequence, the molecular signals and cellular dynamics of SC development along peripheral axons are still only poorly understood. Here we use a superior cervical ganglion (SCG) explant assay, in which axons elongate after treatment with nerve growth factor (NGF). Migration as well as proliferation and apoptosis of endogenous SCG-derived SCs along sympathetic axons were studied in these cultures using pharmacological interference and time-lapse imaging. Inhibition of ErbB receptor tyrosine kinases leads to reduced SC proliferation, increased apoptosis and thereby severely interfered with SC migration to distal axonal sections and colonization of axons. Furthermore we demonstrate that SC colonization of axons is also strongly impaired in a specific null mutant of an ErbB receptor ligand, Neuregulin 1 (NRG1) type III. Taken together, using a novel SC development assay, we demonstrate that NRG1 type III serves as a critical axonal signal for glial ErbB receptors that drives SC development along sympathetic axons

    Recall patterns and risk of primary liver cancer for subcentimeter ultrasound liver observations: a multicenter study

    Get PDF
    BACKGROUND: Patients with cirrhosis and subcentimeter lesions on liver ultrasound are recommended to undergo short-interval follow-up ultrasound because of the presumed low risk of primary liver cancer (PLC). AIMS: The aim of this study is to characterize recall patterns and risk of PLC in patients with subcentimeter liver lesions on ultrasound. METHODS: We conducted a multicenter retrospective cohort study among patients with cirrhosis or chronic hepatitis B infection who had subcentimeter ultrasound lesions between January 2017 and December 2019. We excluded patients with a history of PLC or concomitant lesions ≥1 cm in diameter. We used Kaplan Meier and multivariable Cox regression analyses to characterize time-to-PLC and factors associated with PLC, respectively. RESULTS: Of 746 eligible patients, most (66.0%) had a single observation, and the median diameter was 0.7 cm (interquartile range: 0.5-0.8 cm). Recall strategies varied, with only 27.8% of patients undergoing guideline-concordant ultrasound within 3-6 months. Over a median follow-up of 26 months, 42 patients developed PLC (39 HCC and 3 cholangiocarcinoma), yielding an incidence of 25.7 cases (95% CI, 6.2-47.0) per 1000 person-years, with 3.9% and 6.7% developing PLC at 2 and 3 years, respectively. Factors associated with time-to-PLC were baseline alpha-fetoprotein \u3e10 ng/mL (HR: 4.01, 95% CI, 1.85-8.71), platelet count ≤150 (HR: 4.90, 95% CI, 1.95-12.28), and Child-Pugh B cirrhosis (vs. Child-Pugh A: HR: 2.54, 95% CI, 1.27-5.08). CONCLUSIONS: Recall patterns for patients with subcentimeter liver lesions on ultrasound varied widely. The low risk of PLC in these patients supports short-interval ultrasound in 3-6 months, although diagnostic CT/MRI may be warranted for high-risk subgroups such as those with elevated alpha-fetoprotein levels

    Facial expression training optimises viewing strategy in children and adults

    Get PDF
    This study investigated whether training-related improvements in facial expression categorization are facilitated by spontaneous changes in gaze behaviour in adults and nine-year old children. Four sessions of a self-paced, free-viewing training task required participants to categorize happy, sad and fear expressions with varying intensities. No instructions about eye movements were given. Eye-movements were recorded in the first and fourth training session. New faces were introduced in session four to establish transfer-effects of learning. Adults focused most on the eyes in all sessions and increased expression categorization accuracy after training coincided with a strengthening of this eye-bias in gaze allocation. In children, training-related behavioural improvements coincided with an overall shift in gaze-focus towards the eyes (resulting in more adult-like gaze-distributions) and towards the mouth for happy faces in the second fixation. Gaze-distributions were not influenced by the expression intensity or by the introduction of new faces. It was proposed that training enhanced the use of a uniform, predominantly eyes-biased, gaze strategy in children in order to optimise extraction of relevant cues for discrimination between subtle facial expressions
    corecore