23 research outputs found

    Interplay of NH4+ and BH4- reorientational dynamics in NH4BH4

    Get PDF
    The reorientational dynamics of ammonium borohydride (NH4BH4) was studied using quasielastic neutron scattering in the temperature interval from 10 to 240 K, which covers both the dynamically ordered and disordered polymorphs of NH4BH4. In the low-temperature (50 K) ordered polymorph of NH4BH4, analysis of the quasielastic neutron scattering data reveals that no reorientational dynamics is present within the probed timescale region of 0.1 to 100 ps. In the high-temperature (50 K) disordered polymorph, the analysis establishes the onset of NH4+ and BH4- dynamics at around 50 and 125 K, respectively. The relaxation time at 150 K for NH4+ is approximately 1 ps, while around 100 ps for BH4- . The NH4+ dynamics at temperatures below 125 K is associated with preferential tetrahedral tumbling motions, where each of the hydrogen atoms in the NH4+ tetrahedron can visit any of the four hydrogen sites, however, reorientations around a specific axis are more frequently occurring (C-2 or C3). At higher temperatures, the analysis does not exclude a possible evolution of the NH4+ dynamics from tetrahedral tumbling to either cubic tumbling, where the hydrogen atoms can visit any of the eight positions corresponding to the corners of a cube, or isotropic rotational diffusion, where the hydrogen atoms can visit any location on the surface of a sphere. The BH4- dynamics can be described as cubic tumbling. The difference in reorientational dynamics between the two ions is related to the difference of the local environment where the dynamically much slower BH4- anion imposes a noncubic environment on the NH4+ cation

    Structural and dynamic studies of Pr(11^{11}BH4_{4})3_{3}

    Get PDF
    Rare earth borohydrides RE (BH4)(3) are studied in the context of energy storage, lumines-cence and magnetic applications. We have investigated the structural behavior of pra-seodymium borohydride Pr ((BH4)-B-11)(3) containing B-11 isotope because of the previously reported negative thermal expansion. Differential scanning calorimetry (DSC), in-situ var-iable temperature synchrotron radiation powder X-ray diffraction (SR-PXD) and infrared studies reveal that Pr ((BH4)-B-11)(3) undergoes to a volume contraction during the phase tran-sition from alpha alpha-Pr ((BH4)-B-11)(3) to rhombohedral r-Pr ((BH4)-B-11)(3) phase upon heating to 493 K. Surprisingly, the phase transition persists upon cooling at room temperature. Vibrational analysis also shows that the stretching frequency of BH4-3; anion does not change upon heating which indicates that the B-H bond length remains constant during the structural phase transition from alpha-Pr ((BH4)-B-11)(3) to r-Pr ((BH4)-B-11)(3) phase. Additionally, the energy barrier of reorientation motion of the BH4- anion in the alpha-phase was estimated to be ca 23 kJ/mol by quasi-elastic neutron scattering (QENS) and Raman spectroscopy. (C) 2021 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC

    Metallic and complex hydride-based electrochemical storage of energy

    Get PDF
    The development of efficient storage systems is one of the keys to the success of the energy transition. There are many ways to store energy, but among them, electrochemical storage is particularly valuable because it can store electrons produced by renewable energies with a very good efficiency. However, the solutions currently available on the market remain unsuitable in terms of storage capacity, recharging kinetics, durability, and cost. Technological breakthroughs are therefore expected to meet the growing need for energy storage. Within the framework of the Hydrogen Technology Collaboration Program—H2TCP Task-40, IEA\u27s expert researchers have developed innovative materials based on hydrides (metallic or complex) offering new solutions in the field of solid electrolytes and anodes for alkaline and ionic batteries. This review presents the state of the art of research in this field, from the most fundamental aspects to the applications in battery prototypes

    Hydrogen storage in liquid hydrogen carriers: recent activities and new trends

    Get PDF
    Efficient storage of hydrogen is one of the biggest challenges towards a potential hydrogen economy. Hydrogen storage in liquid carriers is an attractive alternative to compression or liquefaction at low temperatures. Liquid carriers can be stored cost-effectively and transportation and distribution can be integrated into existing infrastructures. The development of efficient liquid carriers is part of the work of the International Energy Agency Task 40: Hydrogen-Based Energy Storage. Here, we report the state-of-the-art for ammonia and closed CO2-cycle methanol-based storage options as well for liquid organic hydrogen carriers

    Metallic and complex hydride-based electrochemical storage of energy

    Get PDF
    The development of efficient storage systems is one of the keys to the success of the energy transition. There are many ways to store energy, but among them, electrochemical storage is particularly valuable because it can store electrons produced by renewable energies with a very good efficiency. However, the solutions currently available on the market remain unsuitable in terms of storage capacity, recharging kinetics, durability, and cost. Technological breakthroughs are therefore expected to meet the growing need for energy storage. Within the framework of the Hydrogen Technology Collaboration Program - H2TCP Task-40, IEA's expert researchers have developed innovative materials based on hydrides (metallic or complex) offering new solutions in the field of solid electrolytes and anodes for alkaline and ionic batteries. This review presents the state of the art of research in this field, from the most fundamental aspects to the applications in battery prototypes

    Hydrogen storage in complex hydrides: Past activities and new trends

    Get PDF
    Intense literature and research efforts have focussed on the exploration of complex hydrides for energy storage applications over the past decades. A focus was dedicated to the determination of their thermodynamic and hydrogen storage properties, due to their high gravimetric and volumetric hydrogen storage capacities, but their application has been limited because of harsh working conditions for reversible hydrogen release and uptake. The present review aims at appraising the recent advances on different complex hydride systems, coming from the proficient collaborative activities in the past years from the research groups led by the experts of the Task 40 'Energy Storage and Conversion Based on Hydrogen' of the Hydrogen Technology Collaboration Programme of the International Energy Agency. An overview of materials design, synthesis, tailoring and modelling approaches, hydrogen release and uptake mechanisms and thermodynamic aspects are reviewed to define new trends and suggest new possible applications for these highly tuneable materials

    Synthesis, Crystal Structures and Thermal Properties of Ammine Barium Borohydrides

    No full text
    Ammine metal borohydrides show large compositional and structural diversity, and have been proposed as candidates for solid-state ammonia and hydrogen storage as well as fast cationic conductors. Here, we report the synthesis method of ammine barium borohydrides, Ba(BH4)2·xNH3 (x = 1, 2). The two new compounds were investigated with time-resolved temperature-varied in situ synchrotron radiation powder X-ray diffraction, thermal analysis, infrared spectroscopy and photographic analysis. The compound Ba(BH4)2·2NH3 crystallizes in an orthorhombic unit cell with space group symmetry Pnc2, and is isostructural to Sr(BH4)2·2NH3, forming octahedral [Ba(NH3)2(BH4)4] complexes, which are connected into a two-dimensional layered structure, where the layers are interconnected by dihydrogen bonds, N–Hδ+⋯−δH–B. A new structure type is observed for Ba(BH4)2·NH3, which crystallizes in an orthorhombic unit cell with space group symmetry P212121, forming a three-dimensional framework structure of [Ba(NH3)(BH4)6] complexes. The structure is built from distorted hexagonal chains, where NH3 groups form dihydrogen bonds to the nearby BH4−-groups within the chain. Ba(BH4)2·2NH3 is unstable at room temperature and releases NH3 in two subsequent endothermic reactions with maxima at 49 and 117 °C, eventually reforming Ba(BH4)2. We demonstrate that the thermal stability and composition of the gas release for the ammine alkaline earth metal borohydrides can be correlated to the charge density of the metal cation, but are also influenced by other effects

    Trends in Synthesis, Crystal Structure, and Thermal and Magnetic Properties of Rare-Earth Metal Borohydrides

    No full text
    Synthesis, crystal structures, and thermal and magnetic properties of the complete series of halide-free rare-earth (RE) metal borohydrides are presented. A new synthesis method provides high yield and high purity products. Fifteen new metal borohydride structures are reported. The trends in crystal structures, thermal behavior, and magnetic properties for the entire series of RE(BH4)x are compared and discussed. The RE(BH4)x possess a very rich crystal chemistry, dependent on the oxidation state and the ionic size of the rare-earth ion. Due to the lanthanide contraction, there is a significant decrease in the volume of the RE3+-ion with increasing atomic number, which correlates linearly with the unit cell volume of the α- and β-RE(BH4)3 polymorphs and the solvated complexes α-RE(BH4)3·S(CH3)2. The thermal analysis reveals a one-step decomposition pathway in the temperature range from 247 to 277 °C for all RE(BH4)3 except Lu(BH4)3, which follows a three-step decomposition pathway. In contrast, the RE(BH4)2 decompose at higher temperatures in the range 306 to 390 °C due to lower charge density on the rare-earth ion. The RE(BH4)3 show increasing stability with increasing Pauling electronegativity, which contradicts other main group and transition metal borohydrides. The majority of the compounds follow Curie–Weiss paramagnetic behavior down to 3 K with weak antiferromagnetic interactions and magnetic moments in accord with those of isolated 4f ions. Some of the RE(BH4)x display varying degrees of temperature-dependent magnetic moments due to low-lying excited stated induced by crystal field effects. Additionally, a weak antiferromagnetic ordering is observed in Gd(BH4)3, indicating superexchange through a borohydride group
    corecore