8,477 research outputs found

    The GENGA Code: Gravitational Encounters in N-body simulations with GPU Acceleration

    Full text link
    We describe an open source GPU implementation of a hybrid symplectic N-body integrator, GENGA (Gravitational ENcounters with Gpu Acceleration), designed to integrate planet and planetesimal dynamics in the late stage of planet formation and stability analyses of planetary systems. GENGA uses a hybrid symplectic integrator to handle close encounters with very good energy conservation, which is essential in long-term planetary system integration. We extended the second order hybrid integration scheme to higher orders. The GENGA code supports three simulation modes: Integration of up to 2048 massive bodies, integration with up to a million test particles, or parallel integration of a large number of individual planetary systems. We compare the results of GENGA to Mercury and pkdgrav2 in respect of energy conservation and performance, and find that the energy conservation of GENGA is comparable to Mercury and around two orders of magnitude better than pkdgrav2. GENGA runs up to 30 times faster than Mercury and up to eight times faster than pkdgrav2. GENGA is written in CUDA C and runs on all NVIDIA GPUs with compute capability of at least 2.0.Comment: Accepted by ApJ. 18 pages, 17 figures, 4 table

    Bose-Einstein Condensates in Optical Quasicrystal Lattices

    Full text link
    We analyze the physics of Bose-Einstein condensates confined in 2D quasi-periodic optical lattices, which offer an intermediate situation between ordered and disordered systems. First, we analyze the time-of-flight interference pattern that reveals quasi-periodic long-range order. Second, we demonstrate localization effects associated with quasi-disorder as well as quasiperiodic Bloch oscillations associated with the extended nature of the wavefunction of a Bose-Einstein condensate in an optical quasicrystal. In addition, we discuss in detail the crossover between diffusive and localized regimes when the quasi-periodic potential is switched on, as well as the effects of interactions

    Fluxes and Warping for Gauge Couplings in F-theory

    Full text link
    We compute flux-dependent corrections in the four-dimensional F-theory effective action using the M-theory dual description. In M-theory the 7-brane fluxes are encoded by four-form flux and modify the background geometry and Kaluza-Klein reduction ansatz. In particular, the flux sources a warp factor which also depends on the torus directions of the compactification fourfold. This dependence is crucial in the derivation of the four-dimensional action, although the torus fiber is auxiliary in F-theory. In M-theory the 7-branes are described by an infinite array of Taub-NUT spaces. We use the explicit metric on this geometry to derive the locally corrected warp factor and M-theory three-from as closed expressions. We focus on contributions to the 7-brane gauge coupling function from this M-theory back-reaction and show that terms quadratic in the internal seven-brane flux are induced. The real part of the gauge coupling function is modified by the M-theory warp factor while the imaginary part is corrected due to a modified M-theory three-form potential. The obtained contributions match the known weak string coupling result, but also yield additional terms suppressed at weak coupling. This shows that the completion of the M-theory reduction opens the way to compute various corrections in a genuine F-theory setting away from the weak string coupling limit.Comment: 46 page

    Extinction Rates for Fluctuation-Induced Metastabilities : A Real-Space WKB Approach

    Full text link
    The extinction of a single species due to demographic stochasticity is analyzed. The discrete nature of the individual agents and the Poissonian noise related to the birth-death processes result in local extinction of a metastable population, as the system hits the absorbing state. The Fokker-Planck formulation of that problem fails to capture the statistics of large deviations from the metastable state, while approximations appropriate close to the absorbing state become, in general, invalid as the population becomes large. To connect these two regimes, a master equation based on a real space WKB method is presented, and is shown to yield an excellent approximation for the decay rate and the extreme events statistics all the way down to the absorbing state. The details of the underlying microscopic process, smeared out in a mean field treatment, are shown to be crucial for an exact determination of the extinction exponent. This general scheme is shown to reproduce the known results in the field, to yield new corollaries and to fit quite precisely the numerical solutions. Moreover it allows for systematic improvement via a series expansion where the small parameter is the inverse of the number of individuals in the metastable state

    Bose Einstein Condensate in a Box

    Full text link
    Bose-Einstein condensates have been produced in an optical box trap. This novel optical trap type has strong confinement in two directions comparable to that which is possible in an optical lattice, yet produces individual condensates rather than the thousands typical of a lattice. The box trap is integrated with single atom detection capability, paving the way for studies of quantum atom statistics.Comment: 4 pages, 5 figure

    Speeding up the GENGA N-body integrator on consumer-grade graphics cards

    Get PDF
    Context. Graphics processing unit (GPU) computing has become popular due to the enormous calculation potential that can be harvested from a single card. The N-body integrator Gravitational ENcounters with GPU Acceleration (GENGA) is built to harvest the computing power from such cards, but it suffers a severe performance penalty on consumer-grade Nvidia GPUs due to their artificially truncated double precision performance. Aims. We aim to speed up GENGA on consumer-grade cards by harvesting their high single-precision performance. Methods. We modified GENGA to have the option to compute the mutual long-distance forces between bodies in single precision and tested this with five experiments. First, we ran a high number of simulations with similar initial conditions of on average 6600 fully self-gravitating planetesimals in both single and double precision to establish whether the outcomes were statistically different. These simulations were run on Tesla K20 cards. We supplemented this test with simulations that (i) began with a mixture of planetesimals and planetary embryos, (ii) planetesimal-driven giant planet migration, and (iii) terrestrial planet formation with a dissipating gas disc. All of these simulations served to determine the accuracy of energy and angular momentum conservation under various scenarios with single and double precision forces. Second, we ran the same simulation beginning with 40 000 self-gravitating planetesimals using both single and double precision forces on a variety of consumer-grade and Tesla GPUs to measure the performance boost of computing the long-range forces in single precision. Results. We find that there are no statistical differences when simulations are run with the gravitational forces in single or double precision that can be attributed to the force prescription rather than stochastic effects. The accumulations in uncertainty in energy are almost identical when running with single or double precision long-range forces. However, the uncertainty in the angular momentum using single rather than double precision long-range forces is about two orders of magnitude greater, but still very low. Running the simulations in single precision on consumer-grade cards decreases running time by a factor of three and becomes within a factor of three of a Tesla A100 GPU. Additional tuning speeds up the simulation by a factor of two across all types of cards. Conclusions. The option to compute the long-range forces in single precision in GENGA when using consumer-grade GPUs dramatically improves performance at a little penalty to accuracy. There is an additional environmental benefit because it reduces energy usage

    The spin-1/2 XXZ Heisenberg chain, the quantum algebra U_q[sl(2)], and duality transformations for minimal models

    Get PDF
    The finite-size scaling spectra of the spin-1/2 XXZ Heisenberg chain with toroidal boundary conditions and an even number of sites provide a projection mechanism yielding the spectra of models with a central charge c<1 including the unitary and non-unitary minimal series. Taking into account the half-integer angular momentum sectors - which correspond to chains with an odd number of sites - in many cases leads to new spinor operators appearing in the projected systems. These new sectors in the XXZ chain correspond to a new type of frustration lines in the projected minimal models. The corresponding new boundary conditions in the Hamiltonian limit are investigated for the Ising model and the 3-state Potts model and are shown to be related to duality transformations which are an additional symmetry at their self-dual critical point. By different ways of projecting systems we find models with the same central charge sharing the same operator content and modular invariant partition function which however differ in the distribution of operators into sectors and hence in the physical meaning of the operators involved. Related to the projection mechanism in the continuum there are remarkable symmetry properties of the finite XXZ chain. The observed degeneracies in the energy and momentum spectra are shown to be the consequence of intertwining relations involving U_q[sl(2)] quantum algebra transformations.Comment: This is a preprint version (37 pages, LaTeX) of an article published back in 1993. It has been made available here because there has been recent interest in conformal twisted boundary conditions. The "duality-twisted" boundary conditions discussed in this paper are particular examples of such boundary conditions for quantum spin chains, so there might be some renewed interest in these result

    Extracting Atoms on Demand with Lasers

    Get PDF
    We propose a scheme that allows to coherently extract cold atoms from a reservoir in a deterministic way. The transfer is achieved by means of radiation pulses coupling two atomic states which are object to different trapping conditions. A particular realization is proposed, where one state has zero magnetic moment and is confined by a dipole trap, whereas the other state with non-vanishing magnetic moment is confined by a steep microtrap potential. We show that in this setup a predetermined number of atoms can be transferred from a reservoir, a Bose-Einstein condensate, into the collective quantum state of the steep trap with high efficiency in the parameter regime of present experiments.Comment: 11 pages, 8 figure
    corecore