130 research outputs found

    Frontal plane pelvic motion during gait captures hip osteoarthritis related disability

    Get PDF
    Gait analysis has widely been accepted as an objective measure of function and clinical outcome. Ambulatory accelerometer-based gait analysis has emerged as a clinically more feasible alternative to optical motion capture systems but does not provide kinematic characterisation to identify disease dependent mechanisms causing walking disability. This study investigated the potential of a single inertial sensor to derive frontal plane motion of the pelvis (i.e. pelvic obliquity) and help identify hip osteoarthritis (OA) related gait alterations. Patients with advanced unilateral hip OA (n = 20) were compared to patients with advanced unilateral knee OA (n = 20) and to a healthy control group (n = 20). Kinematic characterisation of frontal plane pelvic motion during gait demonstrated decreased range of motion and increased asymmetry for hip OA patients specifically. </jats:p

    1st EFORT European Consensus: Medical & Scientific Research Requirements for the Clinical Introduction of Artificial Joint Arthroplasty Devices

    Get PDF
    Innovations in Orthopaedics and Traumatology have contributed to the achievement of a high-quality level of care in musculoskeletal disorders and injuries over the past decades. The applications of new implants as well as diagnostic and therapeutic techniques in addition to implementation of clinical research, have significantly improved patient outcomes, reduced complication rates and length of hospital stay in many areas. However, the regulatory framework is extensive, and there is a lack of understanding and clarity in daily practice what the meaning of clinical &amp; pre‐clinical evidence as required by the MDR is. Thus, understanding and clarity are of utmost importance for introduction of new implants and implant-related instrumentation in combination with surgical technique to ensure a safe use of implants and treatment of patients. Therefore EFORT launched IPSI, The Implant and Patient Safety Initiative, which starting from an inaugural workshop in 2021 issued a set of recommendations, notably through a subsequent Delphi Process involving the National Member Societies of EFORT, European Specialty Societies as well as International Experts. These recommendations provide surgeons, researchers, implant manufacturers as well as patients and health authorities with a consensus of the development, implementation, and dissemination of innovation in the field of arthroplasty. The intended key outcomes of this 1st EFORT European Consensus on “Medical &amp; Scientific Research Requirements for the Clinical Introduction of Artificial Joint Arthroplasty Devices”are consented, practical pathways to maintain innovation and optimisation of orthopaedic products and workflows within the boundaries of MDR 2017/745. Open Access practical guidelines based on adequate, state of the art pre-clinical and clinical evaluation methodologies for the introduction of joint replacements and implant-related instrumentation shall provide hands-on orientation for orthopaedic surgeons, research institutes and laboratories, orthopaedic device manufacturers, Notified Bodies but also for National Institutes and authorities, patient representatives and further stakeholders. We would like to acknowledge and thank the Scientific Committee members, all International Expert Delegates, the Delegates from European National &amp; Specialty Societies and the Editorial Team for their outstanding contributions and support during this EFORT European Consensus

    Decreased Serum Zinc Is An Effect Of Ageing And Not Alzheimer\u27s Disease

    Get PDF
    We examined the distribution of zinc in the periphery (erythrocytes and serum) in a large, well-characterised cohort, the Australian Imaging, Biomarkers and Lifestyle (AIBL) study, in order to determine if there is systemic perturbation in zinc homeostasis in Alzheimer’s disease (AD). We observed an age dependent decrease in serum zinc of approximately 0.4% per year. When correcting for the age dependent decline in serum zinc no significant difference between healthy controls (HC), mildly cognitively impaired (MCI) or AD subjects was observed

    A meta-analysis of peripheral tocopherol levels in age-related cognitive decline and Alzheimer's disease.

    Get PDF
    Objectives: Findings from observational studies and clinical trials on the associations between vitamin E and dementia remain controversial. Here we conducted a meta-analysis to determine the difference in blood tocopherols levels between patients with Alzheimer's disease (AD) or age-related poor cognitive function and healthy controls.Methods: Standardised mean difference (SMD) and 95% confidence intervals (CIs) were calculated and entered into a random effects model. Study quality, heterogeneity and publication bias were also investigated.Results: Thirty-one articles were included in the meta-analysis, which included analyses for α-, β-, γ- and δ-tocopherols. These results indicated that individuals with AD or age-related cognitive deficits and mild cognitive impairment (MCI) had lower circulatory concentrations of α-tocophenol compared with healthy controls (AD: SMD = -0.97, 95% confidence interval [CI] = -1.27 to -0.68, Z = 6.45, P < 0.00001; age-related cognitive deficits and MCI: SMD = -0.72, 95% CI = -1.12 to -0.32, Z = -3., P < 0.0005). Levels of β-, γ- and δ-tocophenols did not significantly differ between groups of AD and age-related cognitive deficits compared to controls.Discussion: These results suggest that lower α-tocopherol levels have a strong association with AD and MCI supporting evidence for the role of diet and vitamin E in AD risk and age-related cognitive decline

    Light and flow regimes regulate the metabolism of rivers

    Get PDF
    Mean annual temperature and mean annual precipitation drive much of the variation in productivity across Earth's terrestrial ecosystems but do not explain variation in gross primary productivity (GPP) or ecosystem respiration (ER) in flowing waters. We document substantial variation in the magnitude and seasonality of GPP and ER across 222 US rivers. In contrast to their terrestrial counterparts, most river ecosystems respire far more carbon than they fix and have less pronounced and consistent seasonality in their metabolic rates. We find that variation in annual solar energy inputs and stability of flows are the primary drivers of GPP and ER across rivers. A classification schema based on these drivers advances river science and informs management.We thank Ted Stets, Jordan Read, Tom Battin, Sophia Bonjour, Marina Palta, and members of the Duke River Center for their help in developing these ideas. This work was supported by grants from the NSF 1442439 (to E.S.B. and J.W.H.), 1834679 (to R.O.H.), 1442451 (to R.O.H.), 2019528 (to R.O.H. and J.R.B.), 1442140 (to M.C.), 1442451 (to A.M.H.), 1442467 (to E.H.S.), 1442522 (to N.B.G.), 1624807 (to N.B.G.), and US Geological Survey funding for the working group was supported by the John Wesley Power Center for Analysis and Synthesis. Phil Savoy contributed as a postdoc- toral associate at Duke University and as a postdoctoral associate (contractor) at the US Geological Survey

    Elephant Moraine 96029, a very mildly aqueously altered and heated CM carbonaceous chondrite: Implications for the drivers of parent body processing

    Get PDF
    Elephant Moraine (EET) 96029 is a CMcarbonaceous chondrite regolith breccia with evidence for unusually mild aqueous alteration, a later phase of heating and terrestrial weathering. The presence of phyllosilicates and carbonates within chondrules and the fine-grained matrix indicates that this meteorite was aqueously altered in its parent body. Features showing that water-mediated processing was arrested at a very early stage include a matrix with a low magnesium/iron ratio, chondrules whose mesostasis contains glass and/or quench crystallites, and a gehlenite-bearing calcium- and aluminium-rich inclusion. EET 96029 is also rich in Fe,Ni metal relative to other CM chondrites, and more was present prior to its partial replacement by goethite during Antarctic weathering. In combination, these properties indicate that EET 96029 is one of the least aqueously altered CMs yet described (CM2.7) and so provides new insights into the original composition of its parent body. Following aqueous alteration, and whilst still in the parent body regolith, the meteorite was heated to ~400–600 °C by impacts or solar radiation. Heating led to the amorphisation and dehydroxylation of serpentine, replacement of tochilinite by magnetite, loss of sulphur from the matrix, and modification to the structure of organic matter that includes organic nanoglobules. Significant differences between samples in oxygen isotope compositions, and water/hydroxyl contents, suggests that the meteorite contains lithologies that have undergone different intensities of heating. EET 96029 may be more representative of the true nature of parent body regoliths than many other CM meteorites, and as such can help interpret results from the forthcoming missions to study and return samples from C-complex asteroids
    corecore