15 research outputs found

    Gene expression results in lipopolysaccharide-stimulated monocytes depend significantly on the choice of reference genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression in lipopolysaccharide (LPS)-stimulated monocytes is mainly studied by quantitative real-time reverse transcription PCR (RT-qPCR) using GAPDH (glyceraldehyde 3-phosphate dehydrogenase) or ACTB (beta-actin) as reference gene for normalization. Expression of traditional reference genes has been shown to vary substantially under certain conditions leading to invalid results. To investigate whether traditional reference genes are stably expressed in LPS-stimulated monocytes or if RT-qPCR results are dependent on the choice of reference genes, we have assessed and evaluated gene expression stability of twelve candidate reference genes in this model system.</p> <p>Results</p> <p>Twelve candidate reference genes were quantified by RT-qPCR in LPS-stimulated, human monocytes and evaluated using the programs geNorm, Normfinder and BestKeeper. geNorm ranked PPIB (cyclophilin B), B2M (beta-2-microglobulin) and PPIA (cyclophilin A) as the best combination for gene expression normalization in LPS-stimulated monocytes. Normfinder suggested TBP (TATA-box binding protein) and B2M as the best combination. Compared to these combinations, normalization using GAPDH alone resulted in significantly higher changes of TNF-α (tumor necrosis factor-alpha) and IL10 (interleukin 10) expression. Moreover, a significant difference in TNF-α expression between monocytes stimulated with equimolar concentrations of LPS from N. meningitides and E. coli, respectively, was identified when using the suggested combinations of reference genes for normalization, but stayed unrecognized when employing a single reference gene, ACTB or GAPDH.</p> <p>Conclusions</p> <p>Gene expression levels in LPS-stimulated monocytes based on RT-qPCR results differ significantly when normalized to a single gene or a combination of stably expressed reference genes. Proper evaluation of reference gene stabiliy is therefore mandatory before reporting RT-qPCR results in LPS-stimulated monocytes.</p

    Rapid and reliable detection of α-globin copy number variations by quantitative real-time PCR

    Get PDF
    Background Alpha-thalassemia is the most common human genetic disease worldwide. Copy number variations in the form of deletions of α-globin genes lead to α-thalassemia while duplications of α-globin genes can cause a severe phenotype in β-thalassemia carriers due to accentuation of globin chain imbalance. It is important to have simple and reliable methods to identify unknown or rare deletions and duplications in cases in which thalassemia is suspected but cannot be confirmed by multiplex gap-PCR. Here we describe a copy number variation assay to detect deletions and duplications in the α-globin gene cluster (HBA-CNV). Results Quantitative real-time PCR was performed using four TaqMan® assays which specifically amplify target sequences representing both the α-globin genes, the –α3.7 deletion and the HS-40 region. The copy number for each target was determined by the 2-ΔΔCq method. To validate our method, we compared the HBA-CNV method with traditional gap-PCR in 108 samples from patients referred to our laboratory for hemoglobinopathy evaluation. To determine the robustness of the four assays, we analyzed samples with and without deletions diluted to obtain different DNA concentrations. The HBA-CNV method identified the correct copy numbers in all 108 samples. All four assays showed the correct copy number within a wide range of DNA concentrations (3.2-100 ng/μL), showing that it is a robust and reliable method. By using the method in routine diagnostics of hemoglobinopathies we have also identified several deletions and duplications that are not detected with conventional gap-PCR. Conclusions HBA-CNV is able to detect all known large deletions and duplications affecting the α-globin genes, providing a flexible and simple workflow with rapid and reliable results

    Rapid and reliable detection of α-globin copy number variations by quantitative real-time PCR

    Get PDF
    Background Alpha-thalassemia is the most common human genetic disease worldwide. Copy number variations in the form of deletions of α-globin genes lead to α-thalassemia while duplications of α-globin genes can cause a severe phenotype in β-thalassemia carriers due to accentuation of globin chain imbalance. It is important to have simple and reliable methods to identify unknown or rare deletions and duplications in cases in which thalassemia is suspected but cannot be confirmed by multiplex gap-PCR. Here we describe a copy number variation assay to detect deletions and duplications in the α-globin gene cluster (HBA-CNV). Results Quantitative real-time PCR was performed using four TaqMan® assays which specifically amplify target sequences representing both the α-globin genes, the –α3.7 deletion and the HS-40 region. The copy number for each target was determined by the 2-ΔΔCq method. To validate our method, we compared the HBA-CNV method with traditional gap-PCR in 108 samples from patients referred to our laboratory for hemoglobinopathy evaluation. To determine the robustness of the four assays, we analyzed samples with and without deletions diluted to obtain different DNA concentrations. The HBA-CNV method identified the correct copy numbers in all 108 samples. All four assays showed the correct copy number within a wide range of DNA concentrations (3.2-100 ng/μL), showing that it is a robust and reliable method. By using the method in routine diagnostics of hemoglobinopathies we have also identified several deletions and duplications that are not detected with conventional gap-PCR. Conclusions HBA-CNV is able to detect all known large deletions and duplications affecting the α-globin genes, providing a flexible and simple workflow with rapid and reliable results

    A novel 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) splice variant with an alternative exon 1 potentially encoding an extended N-terminus

    Get PDF
    Background The major rate-limiting enzyme for de novo cholesterol synthesis is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR). HMGCR is sterically inhibited by statins, the most commonly prescribed drugs for the prevention of cardiovascular events. Alternative splicing of HMGCR has been implicated in the control of cholesterol homeostasis. The aim of this study was to identify novel alternatively spliced variants of HMGCR with potential physiological importance. Results Bioinformatic analyses predicted three novel HMGCR transcripts containing an alternative exon 1 (HMGCR-1b, -1c, -1d) compared with the canonical transcript (HMGCR-1a). The open reading frame of the HMGCR-1b transcript potentially encodes 20 additional amino acids at the N-terminus, compared with HMGCR-1a. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to examine the mRNA levels of HMGCR in different tissues; HMGCR-1a was the most highly expressed variant in most tissues, with the exception of the skin, esophagus, and uterine cervix, in which HMGCR-1b was the most highly expressed transcript. Atorvastatin treatment of HepG2 cells resulted in increased HMGCR-1b mRNA levels, but unaltered proximal promoter activity compared to untreated cells. In contrast, HMGCR-1c showed a more restricted transcription pattern, but was also induced by atorvastatin treatment. Conclusions The gene encoding HMGCR uses alternative, mutually exclusive exon 1 sequences. This contributes to an increased complexity of HMGCR transcripts. Further studies are needed to investigate whether HMGCR splice variants identified in this study are physiologically functional

    Copy number variations of the ATP-binding cassette transporter ABCC6 gene and its pseudogenes

    Get PDF
    Background The ATP-binding cassette transporter ABCC6 gene is located on chromosome 16 between its two pseudogenes (ABCC6P1 and ABCC6P2). Previously, we have shown that ABCC6P1 is transcribed and affects ABCC6 at the transcriptional level. In this study we aimed to determine copy number variations of ABCC6, ABCC6P1 and ABCC6P2 in different populations. Moreover, we sought to study the transcription pattern of ABCC6 and ABCC6 pseudogenes in 39 different human tissues. Findings Genomic DNA from healthy individuals from five populations, Chinese (n = 24), Middle East (n = 20), Mexicans (n = 24), Caucasians (n = 50) and Africans (n = 24), were examined for copy number variations of ABCC6 and its pseudogenes by pyrosequencing and quantitative PCR. Copy number variation of ABCC6 was very rare (2/142; 1.4%). However, one or three copies of ABCC6P1 were relatively common (3% and 8%, respectively). Only one person had a single copy of ABCC6P2 while none had three copies. In Chinese, deletions or duplications of ABCC6P1 were more frequent than in any other population (9/24; 37.5%). The transcription pattern of ABCC6P2 was highly similar to ABCC6 and ABCC6P1, with highest transcription in liver and kidney. Interestingly, the total transcription level of pseudogenes, ABCC6P1 + ABCC6P2, was higher than ABCC6 in most tissues, including liver and kidney. Conclusions Copy number variations of the ABCC6 pseudogenes are quite common, especially in populations of Chinese ancestry. The expression pattern of ABCC6P2 in 39 human tissues was highly similar to that of ABCC6 and ABCC6P1 suggesting similar regulatory mechanisms for ABCC6 and its pseudogenes

    Serum bilirubin concentration in healthy adult North-Europeans is strictly controlled by the UGT1A1 TA-repeat variants.

    No full text
    The major enzyme responsible for the glucuronidation of bilirubin is the uridine 5'-diphosphoglucose glucuronosyltransferase A1 (UGT1A1) enzyme, and genetic variation in the UGT1A1 gene is reported to influence the bilirubin concentration in the blood. In this study, we have investigated which gene-/haplotype variants may be useful for genetic testing of Gilbert's syndrome. Two groups of samples based on serum bilirubin concentrations were obtained from the Nordic Reference Interval Project Bio-bank and Database (NOBIDA): the 150 individuals with the highest bilirubin (>17.5 µmol/L) and the 150 individuals with normal bilirubin concentrations (<17.5 µmol/L). The individuals were examined for the TA6>TA7 variant in the UGT1A1 promoter and 7 tag-SNPs in an extended promoter region of UGT1A1 (haplotype analysis) and in selected SNPs in candidate genes (SLCO1B3, ABCC2 and NUP153). We found significant odds ratios for high bilirubin level for all the selected UGT1A1 variants. However, in stepwise multivariate logistic regression analysis of all genetic variants together with age, sex, country of origin and fasting time, the repeat variants of UGT1A1 TA6>TA7 and SLCO1B3 rs2117032 T>C were the only variants significantly associated with higher bilirubin concentrations. Most individuals with high bilirubin levels were homozygous for the TA7-repeat (74%) while only 3% were homozygous for the TA7-repeat in individuals with normal bilirubin levels. Among individuals heterozygous for the TA7-repeat, a low frequent UGT1A1-diplotype harboring the rs7564935 G-variant was associated with higher bilirubin levels. In conclusion, our results demonstrate that in testing for Gilbert's syndrome, analyzing for the homozygous TA7/TA7-genotype would be appropriate

    The Relationship between median bilirubin concentrations and UGT1A1 diplotypes.

    No full text
    <p>UGT1A1 rs8175347genotypes are marked in triangles (TA<sub>6</sub>/TA<sub>6</sub>), crosses (TA<sub>6</sub>/TA<sub>7</sub>) and circles (TA<sub>7</sub>/TA<sub>7</sub>).</p

    Frequencies and chromosomal localization of SNPs in normal and high bilirubin individuals.

    No full text
    <p>Minor allele frequencies for Caucasians were obtained from dbSNP at <a href="http://www.ncbi.nlm.nih.gov/SNP" target="_blank">http://www.ncbi.nlm.nih.gov/SNP</a> or from references indicated.</p>a<p>Bilirubin Total frequencies and HWE P-values were estimated based on the total NORIP population: The normal and high bilirubin groups represent the 91.5 and 8.5 percentiles of the total NORIP population, respectively.</p>b<p>Ref:<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0090248#pone.0090248-Beutler1" target="_blank">[24]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0090248#pone.0090248-Hall1" target="_blank">[25]</a>.</p>c<p>Pearson chi-square test was used to compare SNP frequencies between normal- and high bilirubin individuals. P-values were adjusted for multiple comparison by false discovery rate (FDR); q<0.05.</p
    corecore