5,409 research outputs found

    Languages of South Sulawesi

    Get PDF

    Enhancing efficiency of single, large-aperture antennas

    Get PDF
    Numerical analysis method provides means of describing energy distribution in focal plane of parabolic surface in terms of phase and wavelength. Two approaches for enhancing antenna efficiency include single, large reflector focused to feeding element, and array of smaller apertures whose individual outputs are summed

    Overcoming the false-minima problem in direct methods: Structure determination of the packaging enzyme P4 from bacteriophage φ13

    Get PDF
    The problems encountered during the phasing and structure determination of the packaging enzyme P4 from bacteriophage φ13 using the anomalous signal from selenium in a single-wavelength anomalous dispersion experiment (SAD) are described. The oligomeric state of P4 in the virus is a hexamer (with sixfold rotational symmetry) and it crystallizes in space group C2, with four hexamers in the crystallographic asymmetric unit. Current state-of-the-art ab initio phasing software yielded solutions consisting of 96 atoms arranged as sixfold symmetric clusters of Se atoms. However, although these solutions showed high correlation coefficients indicative that the substructure had been solved, the resulting phases produced uninterpretable electron-density maps. Only after further analysis were correct solutions found (also of 96 atoms), leading to the eventual identification of the positions of 120 Se atoms. Here, it is demonstrated how the difficulties in finding a correct phase solution arise from an intricate false-minima problem. © 2005 International Union of Crystallography - all rights reserved

    Antibiotic resistance in Staphylococcus aureus-containing cutaneous abscesses of patients with HIV

    Get PDF
    PURPOSE: The aim of this study was to document the resistance patterns found in exudates from cutaneous abscesses of HIV-infected persons. BASIC PROCEDURES: Patient records were reviewed on 93 culture and sensitivity tests performed on exudates taken from incised and drained abscesses of HIV-infected persons. MAIN FINDINGS: Of the specimens, 84.6% were Staphylococcus aureus. Of these, 93.5% were penicillin resistant, 87% oxacillin resistant, 84.4% cephazolin resistant, 84.4% erythromycin resistant, 52.2% ciprofloxacin resistant, and 15.6% tetracycline resistant. Fifty-eight specimens were tested for clindamycin with 29.3% found resistant; 85.7% were methicillin-resistant S aureus (MRSA) (defined as resistant to both penicillin G and oxacillin). All specimens were resistant to multiple antibiotics including antimicrobials that might be considered for use in MRSA. No specimens were resistant to trimethoprim-sulfamethoxazole, rifampin, or vancomycin. CONCLUSIONS: Empiric antimicrobial therapy of HIV-infected persons with cutaneous abscesses must be tailored to the high frequency of antimicrobial drug resistance including MRSA in this population

    Interplanetary communications study Final report

    Get PDF
    Mathematical expression for phase and amplitude distribution in focal plane of apertur

    Microwave Absorption of Surface-State Electrons on Liquid 3^3He

    Full text link
    We have investigated the intersubband transitions of surface state electrons (SSE) on liquid 3^3He induced by microwave radiation at temperatures from 1.1 K down to 0.01 K. Above 0.4 K, the transition linewidth is proportional to the density of 3^3He vapor atoms. This proportionality is explained well by Ando's theory, in which the linewidth is determined by the electron - vapor atom scattering. However, the linewidth is larger than the calculation by a factor of 2.1. This discrepancy strongly suggests that the theory underestimates the electron - vapor atom scattering rate. At lower temperatures, the absorption spectrum splits into several peaks. The multiple peak structure is partly attributed to the spatial inhomogeneity of the static holding electric field perpendicular to the electron sheet.Comment: 15 pages, 7 figures, submitted to J. Phys. Soc. Jp

    The space physics environment data analysis system (SPEDAS)

    Get PDF
    With the advent of the Heliophysics/Geospace System Observatory (H/GSO), a complement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), a grass-roots software development platform (www.spedas.org), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have “crib-sheets,” user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer’s Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its “modes of use” with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans.Published versio
    corecore