Structural and functional characterization of a modified legionaminic acid involved in glycosylation of a bacterial lipopolysaccharide

Nathan D. McDonald¹, Kristen E. DeMeester², Amanda L. Lewis³, Catherine Leimkuhler Grimes^{1,2} and E. Fidelma Boyd^{1*}.

Supporting Figure S1

Supporting Figure S2

Supporting Figure S3

Supporting Figure S4

Supporting Figure S5

Supporting Figure S6

Supporting Figure S7

Supporting information Figure S1: Diversity of nonulosonic acids biosynthesized by bacteria. Many bacterial species have been shown to produce *N*-acetylneuraminic acid (Sialic acid) or the di-*N*-acetylated bacterial specific NulOs of which there are seven described isomers.

Supporting information Figure S2: Nuclear Magnetic Resonance (NMR) Characterization Spectra of **Leg5Ac7AcAla**. (A). Proton ¹HNMR analysis in D₂O (water suppression bbfo_zgpr at 4.70ppm) with zoomed in field offset in left corner (1-4.5ppm). (B) Carbon ¹³CNMR analysis in D₂O. (C) 2-D Correlation Spectroscopy (COSY) and (D) 2-D Heteronuclear Single Quantum Correlation (HSQC) NMR spectra without water suppression.

Supporting information Figure S3: Mass spectrometry analysis of *V. vulnificus* YJ016 Δ *nab1* nonulosonic acid. A) DMB-derivatized NulO collected from YJ016 Δ *nab1* which B) has a [M+H]⁺ of 451.20.

Supporting information Figure S4: Predicted catabolism of Leg5Ac7AcAla in *V. vulnificus* CMCP6. A) Genomic arrangement of sialic acid transport and catabolism cluster in *V. vulnificus* and B) schematic diagram of the predicted accumulation of Leg5Ac7AcAla upon mutation of $\Delta nanA/\Delta nab1$ mutant. C) HPLC analysis of DMB-derivatized cellular fractions from CMCP6 $\Delta nanA$ revealing accumulation of sialic acid from the media as well as WT levels of Leg5Ac7AcAla.

Supporting information Figure S5: NulO mutant exhibit increased sensitivity towards the antimicrobial peptide polymyxin B (PmB). Wild-type CMCP6 and the $\Delta nab2$ deletion mutant were grown to mid-exponential phase and resuspended in PBS containing 80 µg/ml of PmB. Cell lysis was monitored as a decreased in optical density measured every 5 minutes over the course of 60 minutes. Error bars represent standard deviation (SD). Experiments performed in triplicate and two biological replicates.

Supporting information Figure S6: *V. vulnificus* survival in human serum. A) WT CMCP6 the $\Delta nab2$ deletion mutant and a capsule negative strain CMCP6/T were exposed to active normal human serum or B) heat inactivated serum. The CFUs were enumerated immediately following exposure to serum and in 30 min. intervals for 2 h. Experiment was conducted in duplicate with three technical replicates. Error bars represent SD.

Supporting information Figure S7: Biofilm formation *V. vulnificus nab1* **complement strain**. The strains were grown statically for 24 h in Marine Broth at RT. Biofilms were stained with 0.1% crystal violet resuspended in DMSO and the OD measured. Individual points represent independent experiments consisting of six technical replicates. Lines indicate mean and +/- SD.