3,106 research outputs found
Anomalous impurity effects in nonadiabatic superconductors
We show that, in contrast with the usual electron-phonon Migdal-Eliashberg
theory, the critical temperature Tc of an isotropic s-wave nonadiabatic
superconductor is strongly reduced by the presence of diluted non-magnetic
impurities. Our results suggest that the recently observed Tc-suppression
driven by disorder in K3C60 [Phys. Rev. B vol.55, 3866 (1997)] and in
Nd(2-x)CexCuO(4-delta) [Phys. Rev. B vol.58, 8800 (1998)] could be explained in
terms of a nonadiabatic electron-phonon coupling. Moreover, we predict that the
isotope effect on Tc has an impurity dependence qualitatively different from
the one expected for anisotropic superconductors.Comment: 10 pages, euromacr.tex, europhys.sty, 6 figures. Replaced with
accepted version (Europhysics Letters
Speed limit to the Abrikosov lattice in mesoscopic superconductors
We study the instability of the superconducting state in a mesoscopic
geometry for the low pinning material MoGe characterized by a large
Ginzburg-Landau parameter. We observe that in the current driven switching to
the normal state from a nonlinear region of the Abrikosov flux flow, the mean
critical vortex velocity reaches a limiting maximum velocity as a function of
the applied magnetic field. Based on time dependent Ginzburg-Landau simulations
we argue that the observed behavior is due to the high velocity vortex dynamics
confined on a mesoscopic scale. We build up a general phase diagram which
includes all possible dynamic configurations of Abrikosov lattice in a
mesoscopic superconductor.Comment: 7 pages, 6 figure
ARPES kink is a "smoking gun" for the theory of high-Tc superconductors: dominance of the electron-phonon interaction with forward scattering peak
The ARPES spectra in high-Tc superconductors show four distinctive features
in the quasiparticle self-energy. All of them can be explained consistently by
the theory in which the electron phonon interaction (EPI) with the forward
scattering peak dominates over the Coulomb scattering. In particular, this
theory explains why there is no shift of the nodal kink at 70 meV in the
superconducting state, contrary to the clear shift of the anti-nodal
singularity at 40 meV. The theory predicts a ``knee''-like structure of the
imaginary part of the self-energy, which is phonon dominated for , and shows linear behavior for - due to the Coulomb scattering. Recent ARPES spectra give
that the EPI coupling constant is much larger than the Coulomb one. The
dip-hump structure in the spectral function comes out naturally from the
proposed theory.Comment: 5 pages, 3 figure
Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer’s Disease in the 3xTg-AD mouse model
Alzheimer's disease (AD) is the most common cause of dementia in the elderly. In the pathogenesis of AD a pivotal role is played by two neurotoxic proteins that aggregate and accumulate in the central nervous system: amyloid beta and hyper-phosphorylated tau. Accumulation of extracellular amyloid beta plaques and intracellular hyper-phosphorylated tau tangles, and consequent neuronal loss begins 10-15 years before any cognitive impairment. In addition to cognitive and behavioral deficits, sensorial abnormalities have been described in AD patients and in some AD transgenic mouse models. Retina can be considered a simple model of the brain, as some pathological changes and therapeutic strategies from the brain may be observed or applicable to the retina. Here we propose new retinal biomarkers that could anticipate the AD diagnosis and help the beginning and the follow-up of possible future treatments. We analyzed retinal tissue of triple-transgenic AD mouse model (3xTg-AD) for the presence of pathological hallmarks during disease progression. We found the presence of amyloid beta plaques, tau tangles, neurodegeneration, and astrogliosis in the retinal ganglion cell layer of 3xTg-AD mice, already at pre-symptomatic stage. Moreover, retinal microglia in pre-symptomatic mice showed a ramified, anti-inflammatory phenotype which, during disease progression, switches to a pro-inflammatory, less ramified one, becoming neurotoxic. We hypothesize retina as a window through which monitor AD-related neurodegeneration process
Nonadiabatic Superconductivity and Vertex Corrections in Uncorrelated Systems
We investigate the issue of the nonadiabatic superconductivity in
uncorrelated systems. A local approximation is employed coherently with the
weak dependence on the involved momenta. Our results show that nonadiabatic
vertex corrections are never negligible, but lead to a strong suppression of
with respect to the conventional theory. This feature is understood in
terms of the momentum-frequency dependence of the vertex function. In contrast
to strongly correlated systems, where the small -selection probes the
positive part of vertex function, vertex corrections in uncorrelated systems
are essentially negative resulting in an effective reduction of the
superconducting pairing. Our analysis shows that vertex corrections in
nonadiabatic regime can be never disregarded independently of the degree of
electronic correlation in the system.Comment: 4 pages, 3 eps fig
The Longitudinal Interplay between Sleep, Anthropometric Indices, Eating Behaviors, and Nutritional Aspects: A Systematic Review and Meta-Analysis
Sleep is fundamental for adolescents’ healthy development but undergoes dramatic changes in quantity and quality due to the conflict between biological and social rhythms. Insufficient sleep has been associated with worse physical health status and irregular eating behaviors in adolescents. This review aims to systematically synthesize the longitudinal associations between adolescents’ sleep dimensions (i.e., duration, timing, quality, and insomnia symptoms) and physical health indicators (i.e., anthropometric indices, fat percentage, and risk of obesity), eating behaviors, and nutritional aspects (i.e., type of diet related to the intake of specific foods and nutrients, amount and timing of food consumption, energy expenditure). A total of 28 longitudinal studies were included. The meta-analytic results showed that longer sleep duration, better sleep quality, and lower insomnia symptoms were associated with lower BMI and fat percentage and that shorter sleep duration (<7 h) and lower sleep quality were associated with a higher risk of obesity. Conversely, anthropometric indices were not related to sleep over time. Limited literature examined the bidirectional association between adolescents’ sleep and their eating behaviors and nutritional aspects. Such knowledge sheds new light on the role of sleep for adolescents’ health, highlighting the need to examine further the interplay between these variables
Deep Electrical Resistivity Tomography for the Hydrogeological Setting of Muro Lucano Mounts Aquifer (Basilicata, Southern Italy)
The proposed work concerns the application of a deep geoelectrical survey to a carbonate aquifer in order to define the best location for exploitation well drilling for increasing water supply. However, an optimal characterization of a groundwater resource is the necessary condition to reach the indicated aim. Therefore, the geoelectrical investigation was guided from the previous geological and hydrogeological characterization. Moreover, geophysical methods are good tools to improve the groundwater model when detailed information is necessary, such as the localization of a pumping well. The work summarizes the hydrogeological knowledge at the West of the Basilicata Region (Muro Lucano, Italy). The investigated area is characterized by the presence of a karst aquifer which is made up of a carbonate ridge (Castelgrande, Muro Lucano) that tectonically dips southward and is widely covered by Pliocene deposits (sands and conglomerates), by the Irpinian unit and Sicilide unit formations, and by debris slope and landslide deposits. The assessment of the complex hydrogeological framework of the area was detailed by the use of a new multichannel deep geoelectrical technique (DERT). In details, the proposed technique was able to successfully locate a less resistive zone connected to a more fractured limestone and then it was suitable for the localization of a groundwater exploitation well
KCa3.1 inhibition switches the phenotype of glioma-infiltrating microglia/macrophages
Among the strategies adopted by glioma to successfully invade the brain parenchyma is turning the infiltrating microglia/macrophages (M/MΦ) into allies, by shifting them toward an anti-inflammatory, pro-tumor phenotype. Both glioma and infiltrating M/MΦ cells express the Ca(2+)-activated K(+) channel (KCa3.1), and the inhibition of KCa3.1 activity on glioma cells reduces tumor infiltration in the healthy brain parenchyma. We wondered whether KCa3.1 inhibition could prevent the acquisition of a pro-tumor phenotype by M/MΦ cells, thus contributing to reduce glioma development. With this aim, we studied microglia cultured in glioma-conditioned medium or treated with IL-4, as well as M/MΦ cells acutely isolated from glioma-bearing mice and from human glioma biopsies. Under these different conditions, M/MΦ were always polarized toward an anti-inflammatory state, and preventing KCa3.1 activation by 1-[(2-Chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), we observed a switch toward a pro-inflammatory, antitumor phenotype. We identified FAK and PI3K/AKT as the molecular mechanisms involved in this phenotype switch, activated in sequence after KCa3.1. Anti-inflammatory M/MΦ have higher expression levels of KCa3.1 mRNA (kcnn4) that are reduced by KCa3.1 inhibition. In line with these findings, TRAM-34 treatment, in vivo, significantly reduced the size of tumors in glioma-bearing mice. Our data indicate that KCa3.1 channels are involved in the inhibitory effects exerted by the glioma microenvironment on infiltrating M/MΦ, suggesting a possible role as therapeutic targets in glioma
Parallel pumping of magnetic vortex gyrations in spin-torque nano-oscillators
We experimentally demonstrate that large magnetic vortex oscillations can be
parametrically excited in a magnetic tunnel junction by the injection of
radio-frequency (rf) currents at twice the natural frequency of the gyrotropic
vortex core motion. The mechanism of excitation is based on the parallel
pumping of vortex motion by the rf orthoradial field generated by the injected
current. Theoretical analysis shows that experimental results can be
interpreted as the manifestation of parametric amplification when rf current is
small, and of parametric instability when rf current is above a certain
threshold. By taking into account the energy nonlinearities, we succeed to
describe the amplitude saturation of vortex oscillations as well as the
coexistence of stable regimes.Comment: Submitted to Phys. Rev. Let
Impact of Resiliency and Self-Care Training on Student Nurses
The nursing workforce is currently facing a predicted shortage which has been further exacerbated by the impact of the novel coronavirus pandemic. Factors such as increased patient load and acuity, poor staffing conditions, violence in the healthcare system, burnout, and poor mental health among nurses contribute to the complex situation. There is immense need to prepare the next generation to prevent high turnover and low retention rates within the nursing profession.
The purpose of this project was to create and implement a training program to improve the knowledge and application of resiliency and self-care tactics among nursing students at a community college in Upstate New York. This Doctor of Nursing (DNP) project utilized information gathered from a vast literature review as well as personal reflections from current nurses to construct the ten-week resiliency and self-care training program. This topic was chosen because despite the evidence-based support of resiliency training programs for current nurses, there is minimal research regarding the execution of such programs among the nursing students.
The voluntary resiliency and self-care training program was offered to nursing students via virtual format over a ten-week timeframe. This quality initiative was completed by five nursing students from February 2023 to May 2023. Students participated in weekly, twenty-minute sessions which included topics such as an overview of stressors, burnout, mental exhaustion, journaling, personal goal setting, coping mechanisms, reflection, self-care methods, mindfulness, and mentoring. Activities included in the sessions included educational lectures, group discussions, meditation, interactive quizzes, videos, and activities such as case studies and personal reflection.
To measure outcomes, two evidence-based scales were used to assess levels of resiliency as well as stress utilizing the Connor-Davidson Resilience Scale (CD-RISC) and Perceived Stress Scale (PSS), respectively. The scales were administered at regular intervals pre- and post-intervention. The primary project outcomes were decreased levels of perceived stress and increased levels of resiliency. The clinical significance of this quality improvement initiative was a simple, low-cost intervention to improve the resiliency and perceived stress levels of nursing students to promote self-care and coping mechanisms to not only use while in school, but also to continue to implement throughout their nursing careers
- …