34 research outputs found

    Knowing is half the battle: Assessments of both student perception and performance are necessary to successfully evaluate curricular transformation.

    Get PDF
    Student-centered pedagogies increase learning and retention. Quantifying change in both student learning gains and student perception of their experience allows faculty to evaluate curricular transformation more fully. Student buy-in, particularly how much students value and enjoy the active learning process, has been positively associated with engagement in active learning and increased learning gains. We hypothesize that as the frequency of students who have successfully completed the course increases in the student population, current students may be more likely to buy-in to the curriculum because this common experience could create a sense of community. We measured learning gains and attitudes during the transformation of an introductory biology course at a small, liberal arts college using our novel curriculum, Integrating Biology and Inquiry Skills (IBIS). Students perceived substantial learning gains in response to this curriculum, and concept assessments confirmed these gains. Over time, buy-in increased with each successive cohort, as demonstrated by the results of multiple assessment instruments, and students increasingly attributed specific components of the curriculum to their learning. These findings support our hypothesis and should encourage the adoption of curricular transformation using IBIS or other student-centered approaches

    Radio frequency plasma-induced hydrogen bonding on kaolinite

    No full text
    The radio frequency (RF) plasma-modified surfaces of kaolinite were investigated by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) and deuteration techniques to determine the nature of RF plasma-induced surface functional groups, the altered sites in the lattice, and interaction mechanism between RF plasma and the surface of the kaolinite. It has been concluded that the RF plasma-induced infrared (IR) vibration absorption bands at 2805, 3010, and 3100 cm(-1) are attributable to the stretching vibration of hydrogen-bonded hydroxyl groups, and the band at 1407 cm(-1) is attributable to the bending vibration of (HO-)Al-O or (HO-)Si-O groupings with hydrogen-bonded hydroxyl groups. Structural alteration occurred on both the surface and subsurface region of the kaolinite during RF plasma treatment. Further structural alteration or adjustment was also observed on well-modified and well-deuterated kaolinite. There are two types of OD bands visible in the DRIFT spectra of this kaolinite, one type which decreased rapidly as a function of time in moist air, and the other which remained unchanged during the measurement. Furthermore, the appearance of broad IR bands at 3500-3100 cm(-1) as a result of deuteration is evidence of structural disturbance by RF plasma treatment lattice deuteration. An RF plasma-induced hydrogen bonding model on the surface of the kaolinite is proposed
    corecore