50 research outputs found
Cosmic kidney disease: an integrated pan-omic, physiological and morphological study into spaceflight-induced renal dysfunction
Missions into Deep Space are planned this decade. Yet the health consequences of exposure to microgravity and galactic cosmic radiation (GCR) over years-long missions on indispensable visceral organs such as the kidney are largely unexplored. We performed biomolecular (epigenomic, transcriptomic, proteomic, epiproteomic, metabolomic, metagenomic), clinical chemistry (electrolytes, endocrinology, biochemistry) and morphometry (histology, 3D imaging, miRNA-ISH, tissue weights) analyses using samples and datasets available from 11 spaceflight-exposed mouse and 5 human, 1 simulated microgravity rat and 4 simulated GCR-exposed mouse missions. We found that spaceflight induces: 1) renal transporter dephosphorylation which may indicate astronauts’ increased risk of nephrolithiasis is in part a primary renal phenomenon rather than solely a secondary consequence of bone loss; 2) remodelling of the nephron that results in expansion of distal convoluted tubule size but loss of overall tubule density; 3) renal damage and dysfunction when exposed to a Mars roundtrip dose-equivalent of simulated GCR
Analysis of the phenotypes in the Rett Networked Database
Rett spectrum disorder is a progressive neurological disease and the most common genetic cause of intellectual disability in females. MECP2 is the major causative gene. In addition, CDKL5 and FOXG1 mutations have been reported in Rett patients, especially with the atypical presentation. Each gene and different mutations within each gene contribute to variability in clinical presentation, and several groups worldwide performed genotype-phenotype correlation studies using cohorts of patients with classic and atypical forms of Rett spectrum disorder. The Rett Networked Database is a unified registry of clinical and molecular data of Rett patients, and it is currently one of the largest Rett registries worldwide with several hundred records provided by Rett expert clinicians from 13 countries. Collected data revealed that the majority of MECP2-mutated patients present with the classic form, the majority of CDKL5-mutated patients with the early-onset seizure variant, and the majority of FOXG1-mutated patients with the congenital form. A computation of severity scores further revealed significant differences between groups of patients and correlation with mutation types. The highly detailed phenotypic information contained in the Rett Networked Database allows the grouping of patients presenting specific clinical and genetic characteristics for studies by the Rett community and beyond. These data will also serve for the development of clinical trials involving homogeneous groups of patient
Acute Delta Hepatitis in Italy spanning three decades (1991–2019): Evidence for the effectiveness of the hepatitis B vaccination campaign
Updated incidence data of acute Delta virus hepatitis (HDV) are lacking worldwide. Our aim was to evaluate incidence of and risk factors for acute HDV in Italy after the introduction of the compulsory vaccination against hepatitis B virus (HBV) in 1991. Data were obtained from the National Surveillance System of acute viral hepatitis (SEIEVA). Independent predictors of HDV were assessed by logistic-regression analysis. The incidence of acute HDV per 1-million population declined from 3.2 cases in 1987 to 0.04 in 2019, parallel to that of acute HBV per 100,000 from 10.0 to 0.39 cases during the same period. The median age of cases increased from 27 years in the decade 1991-1999 to 44 years in the decade 2010-2019 (p < .001). Over the same period, the male/female ratio decreased from 3.8 to 2.1, the proportion of coinfections increased from 55% to 75% (p = .003) and that of HBsAg positive acute hepatitis tested for by IgM anti-HDV linearly decreased from 50.1% to 34.1% (p < .001). People born abroad accounted for 24.6% of cases in 2004-2010 and 32.1% in 2011-2019. In the period 2010-2019, risky sexual behaviour (O.R. 4.2; 95%CI: 1.4-12.8) was the sole independent predictor of acute HDV; conversely intravenous drug use was no longer associated (O.R. 1.25; 95%CI: 0.15-10.22) with this. In conclusion, HBV vaccination was an effective measure to control acute HDV. Intravenous drug use is no longer an efficient mode of HDV spread. Testing for IgM-anti HDV is a grey area requiring alert. Acute HDV in foreigners should be monitored in the years to come
Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017
Background
The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk–outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk–outcome pairs, and new data on risk exposure levels and risk–outcome associations.
Methods
We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk–outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
Findings
In 2017, 34·1 million (95% uncertainty interval [UI] 33·3–35·0) deaths and 1·21 billion (1·14–1·28) DALYs were attributable to GBD risk factors. Globally, 61·0% (59·6–62·4) of deaths and 48·3% (46·3–50·2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10·4 million (9·39–11·5) deaths and 218 million (198–237) DALYs, followed by smoking (7·10 million [6·83–7·37] deaths and 182 million [173–193] DALYs), high fasting plasma glucose (6·53 million [5·23–8·23] deaths and 171 million [144–201] DALYs), high body-mass index (BMI; 4·72 million [2·99–6·70] deaths and 148 million [98·6–202] DALYs), and short gestation for birthweight (1·43 million [1·36–1·51] deaths and 139 million [131–147] DALYs). In total, risk-attributable DALYs declined by 4·9% (3·3–6·5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23·5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18·6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low.
Interpretation
By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
PENSAMIENTO CRÍTICO EN LA INVESTIGACIÓN CIENTÍFICA Y ACADÉMICA COLECCIÓN CIENTÍFICA EDUCACIÓN, EMPRESA Y SOCIEDAD
PENSAMIENTO CRÍTICO EN LA INVESTIGACIÓN CIENTÍFICA Y ACADÉMICA COLECCIÓN CIENTÍFICA EDUCACIÓN, EMPRESA Y SOCIEDAD Primera Edición 2023 Vol. 21 Editorial EIDEC Sello Editorial EIDEC (978-958-53018) NIT 900583173-1 ISBN: 978-628-95884-1-5 Formato: Digital PDF (Portable Document Format) DOI: https://doi.org/10.34893/e1150-3660-8721-s Publicación: Colombia Fecha Publicación: 13/09/2023 Coordinación Editorial Escuela Internacional de Negocios y Desarrollo Empresarial de Colombia – EIDEC Centro de Investigación Científica, Empresarial y Tecnológica de Colombia – CEINCET Red de Investigación en Educación, Empresa y Sociedad – REDIEES Revisión y pares evaluadores Centro de Investigación Científica, Empresarial y Tecnológica de Colombia – CEINCET Red de Investigación en Educación, Empresa y Sociedad – REDIEE
Cosmic kidney disease: an integrated pan-omic, physiological and morphological study into spaceflight-induced renal dysfunction
Missions into Deep Space are planned this decade. Yet the health consequences of exposure to microgravity and galactic cosmic radiation (GCR) over years-long missions on indispensable visceral organs such as the kidney are largely unexplored. We performed biomolecular (epigenomic, transcriptomic, proteomic, epiproteomic, metabolomic, metagenomic), clinical chemistry (electrolytes, endocrinology, biochemistry) and morphometry (histology, 3D imaging, miRNA-ISH, tissue weights) analyses using samples and datasets available from 11 spaceflight-exposed mouse and 5 human, 1 simulated microgravity rat and 4 simulated GCR-exposed mouse missions. We found that spaceflight induces: 1) renal transporter dephosphorylation which may indicate astronauts' increased risk of nephrolithiasis is in part a primary renal phenomenon rather than solely a secondary consequence of bone loss; 2) remodelling of the nephron that results in expansion of distal convoluted tubule size but loss of overall tubule density; 3) renal damage and dysfunction when exposed to a Mars roundtrip dose-equivalent of simulated GCR
Asymmetric Dimethylarginine Plasma Levels and Endothelial Function in Newly Diagnosed Type 2 Diabetic Patients
Abstract: It is now well established that major risk factors for cardiovascular diseases (CVD) impact upon endothelial function by decreasing nitric oxide (NO) bioavailability. Asymmetric dimethylarginine (ADMA), an endogenous analog of L-arginine, is able to inhibit the activity of endothelial-NO synthase, promoting endothelial dysfunction. Type 2 diabetes (T2D) is characterized by a reduced endothelium-dependent vasodilation and increased ADMA levels and ADMA is strongly associated with micro- and macrovascular diabetic complications. However, there are not a lot of data about the role of ADMA on endothelial function in newly diagnosed T2D patients without cardiovascular (CV) complications. For this aim, we have enrolled forty-five newly diagnosed T2D patients, evaluated by a oral glucose tolerance test, and thirty normal subjects. Endothelium-dependent and-independent vasodilatation was investigated by intra-arterial infusion of increasing doses of acetylcholine (ACh) and sodium nitroprusside. ADMA was measured by high-performance liquid chromatography and insulin resistance (IR) by HOMA. Newly diagnosed T2D patients showed higher ADMA and L-arginine mean values in comparison with normal subjects and a significantly reduced ACh-stimulate
Contact resistance and mobility in back-gate graphene transistors
The metal-graphene contact resistance is one of the major limiting factors toward the technological
exploitation of graphene in electronic devices and sensors. High contact resistance can be detrimental
to device performance and spoil the intrinsic great properties of graphene. In this paper, we fabricate
back-gate graphene field-effect transistors with different geometries to study the contact and channel
resistance as well as the carrier mobility as a function of gate voltage and temperature. We apply the
transfer length method and the y-function method showing that the two approaches can complement
each other to evaluate the contact resistance and prevent artifacts in the estimation of carrier mobility
dependence on the gate-voltage. We find that the gate voltage modulates both the contact and the
channel resistance in a similar way but does not change the carrier mobility. We also show that raising
the temperature lowers the carrier mobility, has a negligible effect on the contact resistance, and can
induce a transition from a semiconducting to a metallic behavior of the graphene sheet resistance,
depending on the applied gate voltage. Finally, we show that eliminating the detrimental effects of the
contact resistance on the transistor channel current almost doubles the carrier field-effect mobility
and that a competitive contact resistance as low as 700 Ω·μm can be achieved by the zig-zag shaping of
the Ni contact
Filière LEA et innovations pédagogiques : théories, pratiques et expériences
International audienc