22 research outputs found
Thermoforming Dual Heater System
A vacuum thermoforming machine works by heating a clamped polymer sheet and then engaging the tooling to form the desired shape when the plastic is at the proper temperature. The current vacuum thermoforming machine in the Trine University Plastics Lab possesses a single topâside heater. With the current setup, thicker materials will be scorched on the materialâs top side and while the bottom side is not heated enough. In order for thicker materials to be used by the machine and heated effectively, a second bottomâside heater is needed. Since an off the shelf solution is not feasible, the second heater must be designed and fabricated. Before fabrication of the secondary thermoforming heater, several analyses were conducted to ensure that the heater would function within the necessary operating parameters. Using thermal simulation software, the designed heater enclosure box was tested to ensure that the correct thermal flow was provided as needed. Material properties were then applied to the CAD files and finite element analysis software was used to ensure that the new heating enclosure and track system would be structurally sound. Although variations of the heating enclosure setup were taken into account as part of these analyses, the results favored mirroring the existing heater layout with some adjustments. Instead of sixteen individual horizontal coils like in the top heater, three coils with three bends each were used. Testing showed that the same watt density could be achieved with only three coils using this design. The new heater was also made thinner in order to allow for more space for the mold. The heater tray was insulated in order to protect the mold which rests underneath and also for safety purposes. By providing Trine University with a second heater, the group hopes to expand the capabilities and learning possibilities that the plastics lab provide
Geologic Carbon Sequestration in the Illinois Basin: Numerical Modeling to Evaluate Potential Impacts
US Department of Energy via the Regional Partnership Program, DE-FC26-05NT42588 and USEPA STAR grant number 488220Ope
RVA. 3-D Visualization and Analysis Software to Support Management of Oil and Gas Resources
A free software application, RVA, has been developed as a plugin to the US DOE-funded ParaView visualization package, to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed as an open-source plugin to the 64 bit Windows version of ParaView 3.14. RVA was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing joint visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed on enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including: sophisticated connectivity analysis, cross sections through simulation results between selected wells, simplified volumetric calculations, global vertical exaggeration adjustments, ingestion of UTChem simulation results, ingestion of Isatis geostatistical framework models, interrogation of joint geologic and reservoir modeling results, joint visualization and analysis of well history files, location-targeted visualization, advanced correlation analysis, visualization of flow paths, and creation of static images and animations highlighting targeted reservoir features.Department of Energy, DOE award number DE-FE0005961Ope
Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration
The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a
joint effort between members of the numerical relativity, analytical relativity
and gravitational-wave data analysis communities. The goal of the NRAR
collaboration is to produce numerical-relativity simulations of compact
binaries and use them to develop accurate analytical templates for the
LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and
extracting astrophysical information from them. We describe the results of the
first stage of the NRAR project, which focused on producing an initial set of
numerical waveforms from binary black holes with moderate mass ratios and
spins, as well as one non-spinning binary configuration which has a mass ratio
of 10. All of the numerical waveforms are analysed in a uniform and consistent
manner, with numerical errors evaluated using an analysis code created by
members of the NRAR collaboration. We compare previously-calibrated,
non-precessing analytical waveforms, notably the effective-one-body (EOB) and
phenomenological template families, to the newly-produced numerical waveforms.
We find that when the binary's total mass is ~100-200 solar masses, current EOB
and phenomenological models of spinning, non-precessing binary waveforms have
overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary
numerical waveforms with mass ratios <= 4, when maximizing over binary
parameters. This implies that the loss of event rate due to modelling error is
below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to
five non-spinning waveforms with mass ratio smaller than 6 have overlaps above
99.7% with the numerical waveform with a mass ratio of 10, without even
maximizing on the binary parameters.Comment: 51 pages, 10 figures; published versio
Human Immunodeficiency Virus Envelope Protein Gp120 Induces Proliferation but Not Apoptosis in Osteoblasts at Physiologic Concentrations
Patients with HIV infection have decreased numbers of osteoblasts, decreased bone mineral density and increased risk of fracture compared to uninfected patients; however, the molecular mechanisms behind these associations remain unclear. We questioned whether Gp120, a component of the envelope protein of HIV capable of inducing apoptosis in many cell types, is able to induce cell death in bone-forming osteoblasts. We show that treatment of immortalized osteoblast-like cells and primary human osteoblasts with exogenous Gp120 in vitro at physiologic concentrations does not result in apoptosis. Instead, in the osteoblast-like U2OS cell line, cells expressing CXCR4, a receptor for Gp120, had increased proliferation when treated with Gp120 compared to control (P<0.05), which was inhibited by pretreatment with a CXCR4 inhibitor and a G-protein inhibitor. This suggests that Gp120 is not an inducer of apoptosis in human osteoblasts and likely does not directly contribute to osteoporosis in infected patients by this mechanism
Evaluating the Effect of Hyporheic Exchange on Intake Temperatures of Open-loop Geothermal Wells in Glacigenic Outwash Aquifers
Subsurface heat flow was simulated to study the effect of hyporheic exchange on groundwater intake temperatures of open-loop geothermal wells in glacigenic-outwash aquifers in the North American midcontinent. The model represents an aquifer kilometers wide, on the order of 100m thick, and directly connected to a perennial river. The aquifer has bimodal hydraulic conductivity with a geometric mean on the order of 100m/day, an effective thermal conductivity of 2.33W/mK, and specific heats on the order of 106J/(m^3 K) for water and 103J/kgK for solids. The aquifer is initially set to a temperature of 12.85 °C and the river is fixed to 26.85 °C. Results show that the ambient zone of hyporheic thermal influence spans the entire depth of the aquifer and extends laterally for approximately a half a kilometer from the river. Temperatures within this zone decrease, as a linear approximation, at about 1 °C per 50 m distance from the river. Aquifer heterogeneity strongly influences the extent of and the temperatures within the hyporheic zone. A well pumping at 500 m^3/day had intake temperatures as much as 2 °C greater than ambient levels and, depending on location, slightly extended the range of the river\u27s thermal influence. However, this increase of intake temperature was not instantaneous, drifting upward on the order of 1 °C per century before achieving thermal equilibrium. A realistic distribution of 25 wells pumping at variable rates extended the range of thermal influence to a kilometer, produced intake temperatures as much as 16 °C greater than ambient levels, and increased spatial variability in aquifer temperatures
Acute Wheel-Running Increases Markers of Stress and Aversion-Related Signaling in the Basolateral Amygdala of Male Rats
Physical activity (PA) is a non-invasive, cost-effective means of reducing chronic disease. Most US citizens fail to meet PA guidelines, and individuals experiencing chronic stress are less likely to be physically active. To better understand the barriers to maintaining active lifestyles, we sought to determine the extent to which short- versus long-term PA increases stress- and aversion-related markers in wild-type (WT) and low voluntary running (LVR) rats, a unique genetic model of low physical activity motivation. Here, we tested the effects of 1 and 4 weeks of voluntary wheel-running on physiological, behavioral, and molecular measures of stress and Hypothalamic Pituitary Adrenal (HPA)-axis responsiveness (corticosterone levels, adrenal wet weights, and fecal boli counts). We further determined measures of aversion-related signaling (kappa opioid receptor, dynorphin, and corticotropin releasing hormone mRNA expression) in the basolateral amygdala (BLA), a brain region well characterized for its role in anxiety and aversion. Compared to sedentary values, 1, but not 4 weeks of voluntary wheel-running increased adrenal wet weights and plasma corticosterone levels, suggesting that HPA responsiveness normalizes following long-term PA. BLA mRNA expression of prodynorphin (Pdyn) was significantly elevated in WT and LVR rats following 1 week of wheel-running compared to sedentary levels, suggesting that aversion-related signaling is elevated following short- but not long-term wheel-running. In all, it appears that the stress effects of acute PA may increase molecular markers associated with aversion in the BLA, and that LVR rats may be more sensitive to these effects, providing a potential neural mechanism for their low PA motivation
Dune-slope activity due to frost and wind throughout the north polar erg, Mars
Supplementary images and analysis descriptions
Dorsal root ganglion stimulation yielded higher treatment success rate for complex regional pain syndrome and causalgia at 3 and 12 months: a randomized comparative trial
Animal and human studies indicate that electrical stimulation of dorsal root ganglion (DRG) neurons may modulate neuropathic pain signals. ACCURATE, a pivotal, prospective, multicenter, randomized comparative effectiveness trial, was conducted in 152 subjects diagnosed with complex regional pain syndrome or causalgia in the lower extremities. Subjects received neurostimulation of the DRG or dorsal column (spinal cord stimulation, SCS). The primary end point was a composite of safety and efficacy at 3 months, and subjects were assessed through 12 months for long-term outcomes and adverse events. The predefined primary composite end point of treatment success was met for subjects with a permanent implant who reported 50% or greater decrease in visual analog scale score from preimplant baseline and who did not report any stimulation-related neurological deficits. No subjects reported stimulation-related neurological deficits. The percentage of subjects receiving â„50% pain relief and treatment success was greater in the DRG arm (81.2%) than in the SCS arm (55.7%, P < 0.001) at 3 months. Device-related and serious adverse events were not different between the 2 groups. Dorsal root ganglion stimulation also demonstrated greater improvements in quality of life and psychological disposition. Finally, subjects using DRG stimulation reported less postural variation in paresthesia (P < 0.001) and reduced extraneous stimulation in nonpainful areas (P = 0.014), indicating DRG stimulation provided more targeted therapy to painful parts of the lower extremities. As the largest prospective, randomized comparative effectiveness trial to date, the results show that DRG stimulation provided a higher rate of treatment success with less postural variation in paresthesia intensity compared to SCS