288 research outputs found
The role of density and relatedness in wild juvenile Atlantic salmon growth
Growth is a key life-history trait in fish that is influenced by both abiotic (such as temperature and water chemistry) and biotic factors (such as density and food availability). Investigating how growth performance is influenced by such factors in the wild is important for understanding how population processes influence animals in natural environments and for predicting the response to conservation and management strategies that manipulate these conditions. The theory of kin selection predicts that significant growth and survival benefits are conferred upon animals associating with close relatives. However, resource competition may be more intense among close relatives, and little is known about the trade-off between these two processes under different ecological conditions. Here, we examine the correlation between naturally occurring densities and kin-biased growth rate using a species where kin recognition has a strong impact on behaviour in laboratory studies, but where, paradoxically, field investigations have failed to document predicted kin-biased growth or survival. Intra- and inter-family differences in growth rate of juvenile Atlantic salmon Salmo salar were studied to examine how relatedness (groups of full-sibling fish and groups of mixed-sibling fish) and sibling group (family/genotype) affect salmon parr growth, and the correlation of growth rate under a range of naturally occurring densities. Parentage and relatedness of neighbouring fish were assigned using microsatellite and passive integrated transponder tags, which allowed the growth estimation of individual fish. The results show that growth rate was significantly influenced by both sibling group (family of origin) and also by an interaction between relatedness and density. The latter finding indicates that at higher densities, full-sibling groups achieved higher growth rates in comparison to mixed-sibling groups. Thus, the growth benefits of associating with relatives are not conferred under all ecological conditions, but it becomes most apparent at high density when resource competition is greatest
Recommended from our members
Acoustic resonance for contactless ultrasonic cavitation in alloy melts
Contactless ultrasound is a novel, easily implemented, technique for the Ultrasonic Treatment (UST) of liquid metals. Instead of using a vibrating sonotrode probe inside the melt, which leads to contamination, we consider a high AC frequency electromagnetic coil placed close to the metal free surface. The coil induces a rapidly changing Lorentz force, which in turn excites sound waves. To reach the necessary pressure amplitude for cavitation with the minimum electrical energy use, it was found necessary to achieve acoustic resonance in the liquid volume, by finely tuning the coil AC supply frequency. The appearance of cavitation was then detected experimentally with an externally placed ultrasonic microphone and confirmed by the reduction in grain size of the solidified metal. To predict the appearance of various resonant modes numerically, the exact dimensions of the melt volume, the holding crucible, surrounding structures and their sound properties are required. As cavitation progresses the speed of sound in the melt changes, which in practice means resonance becomes intermittent. Given the complexity of the situation, two competing numerical models are used to compute the soundfield. A high order time-domain method focusing on a particular forcing frequency and a Helmholtz frequency domain method scanning the full frequency range of the power supply. A good agreement is achieved between the two methods and experiments which means the optimal setup for the process can be predicted with some accuracy
Quantum field theory of metallic spin glasses
We introduce an effective field theory for the vicinity of a zero temperature
quantum transition between a metallic spin glass (``spin density glass'') and a
metallic quantum paramagnet. Following a mean field analysis, we perform a
perturbative renormalization-group study and find that the critical properties
are dominated by static disorder-induced fluctuations, and that dynamic
quantum-mechanical effects are dangerously irrelevant. A Gaussian fixed point
is stable for a finite range of couplings for spatial dimensionality ,
but disorder effects always lead to runaway flows to strong coupling for . Scaling hypotheses for a {\em static\/} strong-coupling critical field
theory are proposed. The non-linear susceptibility has an anomalously weak
singularity at such a critical point. Although motivated by a perturbative
study of metallic spin glasses, the scaling hypotheses are more general, and
could apply to other quantum spin glass to paramagnet transitions.Comment: 16 pages, REVTEX 3.0, 2 postscript figures; version contains
reference to related work in cond-mat/950412
Equidistribution of zeros of holomorphic sections in the non compact setting
We consider N-tensor powers of a positive Hermitian line bundle L over a
non-compact complex manifold X. In the compact case, B. Shiffman and S.
Zelditch proved that the zeros of random sections become asymptotically
uniformly distributed with respect to the natural measure coming from the
curvature of L, as N tends to infinity. Under certain boundedness assumptions
on the curvature of the canonical line bundle of X and on the Chern form of L
we prove a non-compact version of this result. We give various applications,
including the limiting distribution of zeros of cusp forms with respect to the
principal congruence subgroups of SL2(Z) and to the hyperbolic measure, the
higher dimensional case of arithmetic quotients and the case of orthogonal
polynomials with weights at infinity. We also give estimates for the speed of
convergence of the currents of integration on the zero-divisors.Comment: 25 pages; v.2 is a final update to agree with the published pape
Motion of influential players can support cooperation in Prisoner's Dilemma
We study a spatial Prisoner's dilemma game with two types (A and B) of
players located on a square lattice. Players following either cooperator or
defector strategies play Prisoner's Dilemma games with their 24 nearest
neighbors. The players are allowed to adopt one of their neighbor's strategy
with a probability dependent on the payoff difference and type of the given
neighbor. Players A and B have different efficiency in the transfer of their
own strategy therefore the strategy adoption probability is reduced by a
multiplicative factor (w < 1) from the players of type B. We report that the
motion of the influential payers (type A) can improve remarkably the
maintenance of cooperation even for their low densities.Comment: 7 pages, 7 figure
Low Q^2 Jet Production at HERA and Virtual Photon Structure
The transition between photoproduction and deep-inelastic scattering is
investigated in jet production at the HERA ep collider, using data collected by
the H1 experiment. Measurements of the differential inclusive jet
cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the
transverse energy and the pseudorapidity of the jets in the virtual
photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3
< y < 0.6. The interpretation of the results in terms of the structure of the
virtual photon is discussed. The data are best described by QCD calculations
which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure
Hadron Production in Diffractive Deep-Inelastic Scattering
Characteristics of hadron production in diffractive deep-inelastic
positron-proton scattering are studied using data collected in 1994 by the H1
experiment at HERA. The following distributions are measured in the
centre-of-mass frame of the photon dissociation system: the hadronic energy
flow, the Feynman-x (x_F) variable for charged particles, the squared
transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a
function of x_F. These distributions are compared with results in the gamma^* p
centre-of-mass frame from inclusive deep-inelastic scattering in the
fixed-target experiment EMC, and also with the predictions of several Monte
Carlo calculations. The data are consistent with a picture in which the
partonic structure of the diffractive exchange is dominated at low Q^2 by hard
gluons.Comment: 16 pages, 6 figures, submitted to Phys. Lett.
Measurement of D* Meson Cross Sections at HERA and Determination of the Gluon Density in the Proton using NLO QCD
With the H1 detector at the ep collider HERA, D* meson production cross
sections have been measured in deep inelastic scattering with four-momentum
transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88
GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe
the differential cross sections within theoretical and experimental
uncertainties. Using these calculations, the NLO gluon momentum distribution in
the proton, x_g g(x_g), has been extracted in the momentum fraction range
7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon
momentum fraction x_g has been obtained from the measured kinematics of the
scattered electron and the D* meson in the final state. The results compare
well with the gluon distribution obtained from the analysis of scaling
violations of the proton structure function F_2.Comment: 27 pages, 9 figures, 2 tables, submitted to Nucl. Phys.
- …