344 research outputs found
Structure of myelin P2 protein from equine spinal cord
Equine P2 protein has been isolated from horse spinal cord and its structure determined to 2.1 Å. Since equine myelin is a viable alternative to bovine tissue for large-scale preparations, characterization of the proteins from equine spinal cord myelin has been initiated. There is an unusually high amount of P2 protein in equine CNS myelin compared with other species. The structure was determined by molecular replacement and subsequently refined to an R value of 0.187 (<sub>free</sub> = 0.233). The structure contains a molecule of the detergent LDAO and HEPES buffer in the binding cavity and is otherwise analogous to other cellular retinol-binding proteins
Singularity, complexity, and quasi--integrability of rational mappings
We investigate global properties of the mappings entering the description of
symmetries of integrable spin and vertex models, by exploiting their nature of
birational transformations of projective spaces. We give an algorithmic
analysis of the structure of invariants of such mappings. We discuss some
characteristic conditions for their (quasi)--integrability, and in particular
its links with their singularities (in the 2--plane). Finally, we describe some
of their properties {\it qua\/} dynamical systems, making contact with
Arnol'd's notion of complexity, and exemplify remarkable behaviours.Comment: Latex file. 17 pages. To appear in CM
Darboux points and integrability of homogeneous Hamiltonian systems with three and more degrees of freedom
We consider natural complex Hamiltonian systems with degrees of freedom
given by a Hamiltonian function which is a sum of the standard kinetic energy
and a homogeneous polynomial potential of degree . The well known
Morales-Ramis theorem gives the strongest known necessary conditions for the
Liouville integrability of such systems. It states that for each there
exists an explicitly known infinite set \scM_k\subset\Q such that if the
system is integrable, then all eigenvalues of the Hessian matrix V''(\vd)
calculated at a non-zero \vd\in\C^n satisfying V'(\vd)=\vd, belong to
\scM_k. The aim of this paper is, among others, to sharpen this result. Under
certain genericity assumption concerning we prove the following fact. For
each and there exists a finite set \scI_{n,k}\subset\scM_k such that
if the system is integrable, then all eigenvalues of the Hessian matrix
V''(\vd) belong to \scI_{n,k}. We give an algorithm which allows to find
sets \scI_{n,k}. We applied this results for the case and we found
all integrable potentials satisfying the genericity assumption. Among them
several are new and they are integrable in a highly non-trivial way. We found
three potentials for which the additional first integrals are of degree 4 and 6
with respect to the momenta.Comment: 54 pages, 1 figur
The Volume of some Non-spherical Horizons and the AdS/CFT Correspondence
We calculate the volumes of a large class of Einstein manifolds, namely
Sasaki-Einstein manifolds which are the bases of Ricci-flat affine cones
described by polynomial embedding relations in C^n. These volumes are important
because they allow us to extend and test the AdS/CFT correspondence. We use
these volumes to extend the central charge calculation of Gubser (1998) to the
generalized conifolds of Gubser, Shatashvili, and Nekrasov (1999). These
volumes also allow one to quantize precisely the D-brane flux of the AdS
supergravity solution. We end by demonstrating a relationship between the
volumes of these Einstein spaces and the number of holomorphic polynomials
(which correspond to chiral primary operators in the field theory dual) on the
corresponding affine cone.Comment: 25 pp, LaTeX, 1 figure, v2: refs adde
Calabi-Yau Duals of Torus Orientifolds
We study a duality that relates the T^6/Z_2 orientifold with N=2 flux to
standard fluxless Calabi-Yau compactifications of type IIA string theory. Using
the duality map, we show that the Calabi-Yau manifolds that arise are abelian
surface (T^4) fibrations over P^1. We compute a variety of properties of these
threefolds, including Hodge numbers, intersection numbers, discrete isometries,
and H_1(X,Z). In addition, we show that S-duality in the orientifold
description becomes T-duality of the abelian surface fibers in the dual
Calabi-Yau description. The analysis is facilitated by the existence of an
explicit Calabi-Yau metric on an open subset of the geometry that becomes an
arbitrarily good approximation to the actual metric (at most points) in the
limit that the fiber is much smaller than the base.Comment: 39 pages; uses harvmac.tex, amssym.tex; v4: minor correction
D-brane Deconstructions in IIB Orientifolds
With model building applications in mind, we collect and develop basic
techniques to analyze the landscape of D7-branes in type IIB compact Calabi-Yau
orientifolds, in three different pictures: F-theory, the D7 worldvolume theory
and D9-anti-D9 tachyon condensation. A significant complication is that
consistent D7-branes in the presence of O7^- planes are generically singular,
with singularities locally modeled by the Whitney Umbrella. This invalidates
the standard formulae for charges, moduli space and flux lattice dimensions. We
infer the correct formulae by comparison to F-theory and derive them
independently and more generally from the tachyon picture, and relate these
numbers to the closed string massless spectrum of the orientifold
compactification in an interesting way. We furthermore give concrete recipes to
explicitly and systematically construct nontrivial D-brane worldvolume flux
vacua in arbitrary Calabi-Yau orientifolds, illustrate how to read off D-brane
flux content, enhanced gauge groups and charged matter spectra from tachyon
matrices, and demonstrate how brane recombination in general leads to flux
creation, as required by charge conservation and by equivalence of geometric
and gauge theory moduli spaces.Comment: 49 pages, v2: two references adde
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Measurement of Leading Proton and Neutron Production in Deep Inelastic Scattering at HERA
Deep--inelastic scattering events with a leading baryon have been detected by
the H1 experiment at HERA using a forward proton spectrometer and a forward
neutron calorimeter. Semi--inclusive cross sections have been measured in the
kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T
<= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV,
or a neutron with energy E' >= 160 GeV. The measurements are used to test
production models and factorization hypotheses. A Regge model of leading baryon
production which consists of pion, pomeron and secondary reggeon exchanges
gives an acceptable description of both semi-inclusive cross sections in the
region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading
neutron data are used to estimate for the first time the structure function of
the pion at small Bjorken--x.Comment: 30 pages, 9 figures, 2 tables, submitted to Eur. Phys.
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
Survival of, and competition between, oligodendrocytes expressing different alleles of the Plp gene
Mutations in the X-linked Plp gene lead to dysmyelinating phenotypes and oligodendrocyte cell death. Here, we exploit the X inactivation phenomenon to show that a hierarchy exists in the influence of different mutant Plp alleles on oligodendrocyte survival. We used compound heterozygote mice to study the long-term fate of oligodendrocytes expressing either the jimpy or rumpshaker allele against a background of cells expressing a Plp-null allele. Although mutant and null oligodendrocytes were generated in equal numbers, the proportion expressing the mutant allele subsequently declined, but whereas those expressing the rumpshaker allele formed a reduced but stable population, the number of jimpy cells fell progressively. The age of decline in the jimpy cells in different regions of the CNS correlated with the temporal sequence of myelination. In compound heterozygotes expressing rumpshaker and jimpy alleles, oligodendrocytes expressing the former predominated and were more abundant than when the rumpshaker and null alleles were in competition. Thus, oligodendrocyte survival is not determined solely by cell intrinsic factors, such as the conformation of the misfolded PLP, but is influenced by neighboring cells, possibly competing for cell survival factors
- …
