We investigate global properties of the mappings entering the description of
symmetries of integrable spin and vertex models, by exploiting their nature of
birational transformations of projective spaces. We give an algorithmic
analysis of the structure of invariants of such mappings. We discuss some
characteristic conditions for their (quasi)--integrability, and in particular
its links with their singularities (in the 2--plane). Finally, we describe some
of their properties {\it qua\/} dynamical systems, making contact with
Arnol'd's notion of complexity, and exemplify remarkable behaviours.Comment: Latex file. 17 pages. To appear in CM