11,861 research outputs found

    Impact of noise on domain growth in electroconvection

    Full text link
    The growth and ordering of striped domains has recently received renewed attention due in part to experimental studies in diblock copolymers and electroconvection. One surprising result has been the relative slow dynamics associated with the growth of striped domains. One potential source of the slow dynamics is the pinning of defects in the periodic potential of the stripes. Of interest is whether or not external noise will have a significant impact on the domain ordering, perhaps by reducing the pinning and increasing the rate of ordering. In contrast, we present experiments using electroconvection in which we show that a particular type of external noise decreases the rate of domain ordering

    Generalized Stacking Fault Energy Surfaces and Dislocation Properties of Silicon: A First-Principles Theoretical Study

    Full text link
    The generalized stacking fault (GSF) energy surfaces have received considerable attention due to their close relation to the mechanical properties of solids. We present a detailed study of the GSF energy surfaces of silicon within the framework of density functional theory. We have calculated the GSF energy surfaces for the shuffle and glide set of the (111) plane, and that of the (100) plane of silicon, paying particular attention to the effects of the relaxation of atomic coordinates. Based on the calculated GSF energy surfaces and the Peierls-Nabarro model, we obtain estimates for the dislocation profiles, core energies, Peierls energies, and the corresponding stresses for various planar dislocations of silicon.Comment: 9 figures (not included; send requests to [email protected]

    Industry Clusters and Food Value Chains: Can the Literature on Local Collective Failure be used as a Guide for Assessing and Overcoming Value Chain Failure?

    Full text link
    In this paper the literature on industry clusters as a response to local collective failure is reviewed as a way of enhancing knowledge about how failure of food value chains to perform efficiently can be analysed and overcome. The conclusion is that there is much in the local collective failure literature that assists in an understanding of, and is consistent with, the concepts of value chain failure, value chain externalities and value chain goods. Four potential areas for enhancing the analysis of value chains by accessing this literature are noted: defining the boundary between chain failure and local collective failure; improving joint action among parties interested in overcoming chain failure; augmenting the processes of knowledge creation and application in value chains; and improving the governance of value chains. The key point is that the ability of local collective or value chain partners to produce chain goods and internalise positive chain externalities depends directly on the nature and intent of the joint action by the partners: will they cooperate or not, and, if they do cooperate, how and to what extent will they do so? These issues of coordination of economic activity and the nature of the relationships between partners go to the heart of governance within both local communities and value chains

    Linear Chains of Styrene and Methyl-Styrene Molecules and their Heterojunctions on Silicon: Theory and Experiment

    Full text link
    We report on the synthesis, STM imaging and theoretical studies of the structure, electronic structure and transport properties of linear chains of styrene and methyl-styrene molecules and their heterojunctions on hydrogen-terminated dimerized silicon (001) surfaces. The theory presented here accounts for the essential features of the experimental STM data including the nature of the corrugation observed along the molecular chains and the pronounced changes in the contrast between the styrene and methyl-styrene parts of the molecular chains that are observed as the applied bias is varied. The observed evolution with applied bias of the STM profiles near the ends of the molecular chains is also explained. Calculations are also presented of electron transport along styrene linear chains adsorbed on the silicon surface at energies in the vicinity of the molecular HOMO and LUMO levels. For short styrene chains this lateral transport is found to be due primarily to direct electron transmission from molecule to molecule rather than through the silicon substrate, especially in the molecular LUMO band. Differences between the calculated position-dependences of the STM current around a junction of styrene and methyl-styrene molecular chains under positive and negative tip bias are related to the nature of lateral electron transmission along the molecular chains and to the formation in the LUMO band of an electronic state localized around the heterojunction.Comment: 17 pages plus 11 figures. To appear in Physical Review

    Spectroscopy on two coupled flux qubits

    Full text link
    We have performed spectroscopy measurements on two coupled flux qubits. The qubits are coupled inductively, which results in a σ1zσ2z\sigma_1^z\sigma_2^z interaction. By applying microwave radiation, we observe resonances due to transitions from the ground state to the first two excited states. From the position of these resonances as a function of the magnetic field applied we observe the coupling of the qubits. The coupling strength agrees well with calculations of the mutual inductance

    Embryo abortion as mechanism of "hormone" thinning of fruit

    Get PDF
    Digitized 2007 AES.Includes bibliographical references (pages 67-79)

    Spectroscopy of a Cooper-Pair box in the Autler-Townes configuration

    Get PDF
    A theoretical spectroscopic analysis of a microwave driven superconducting charge qubit (Cooper-pair box coupled) to an RLC oscillator model is performed. By treating the oscillator as a probe through the backreaction effect of the qubit on the oscillator circuit, we extract frequency splitting features analogous to the Autler-Townes effect from quantum optics, thereby extending the analogies between superconducting and quantum optical phenomenology. These features are found in a frequency band that avoids the need for high frequency measurement systems and therefore may be of use in qubit characterization and coupling schemes. In addition we find this frequency band can be adjusted to suit an experimental frequency regime by changing the oscillator frequency.Comment: 13 pages, 7 figures. v2: Revised version after referee comments. Accepted for publication by Physical Review

    Precision Study of Positronium: Testing Bound State QED Theory

    Full text link
    As an unstable light pure leptonic system, positronium is a very specific probe atom to test bound state QED. In contrast to ordinary QED for free leptons, the bound state QED theory is not so well understood and bound state approaches deserve highly accurate tests. We present a brief overview of precision studies of positronium paying special attention to uncertainties of theory as well as comparison of theory and experiment. We also consider in detail advantages and disadvantages of positronium tests compared to other QED experiments.Comment: A talk presented at Workshop on Positronium Physics (ETH Zurich, May 30-31, 2003

    Detection of nonthermal emission from the bow shock of a massive runaway star

    Get PDF
    The environs of massive, early-type stars have been inspected in recent years in the search for sites where particles can be accelerated up to relativistic energies. Wind regions of massive binaries that collide have already been established as sources of high-energy emission; however, there is a different scenario for massive stars where strong shocks can also be produced: the bow-shaped region of matter piled up by the action of the stellar strong wind of a runaway star interacting with the interstellar medium. We study the bow-shock region produced by a very massive runaway star, BD+43 3654, to look for nonthermal radio emission as evidence of a relativistic particle population. We observed the field of BD+43 3654 at two frequencies, 1.42 and 4.86 GHz, with the Very Large Array (VLA), and obtained a spectral index map of the radio emission. We have detected, for the first time, nonthermal radio emission from the bow shock of a massive runaway star. After analyzing the radiative mechanisms that can be at work, we conclude that the region under study could produce enough relativistic particles whose radiation might be detectable by forthcoming gamma-ray instruments, like CTA North.Comment: Accepted in Astronomy and Astrophysics Letter
    corecore