688 research outputs found
Measurement of Permanent Electric Dipole Moments of Charged Hadrons in Storage Rings
Permanent Electric Dipole Moments (EDMs) of elementary particles violate two
fundamental symmetries: time reversal invariance (T) and parity (P). Assuming
the CPT theorem this implies CP-violation. The CP-violation of the Standard
Model is orders of magnitude too small to be observed experimentally in EDMs in
the foreseeable future. It is also way too small to explain the asymmetry in
abundance of matter and anti-matter in our universe. Hence, other mechanisms of
CP violation outside the realm of the Standard Model are searched for and could
result in measurable EDMs.
Up to now most of the EDM measurements were done with neutral particles. With
new techniques it is now possible to perform dedicated EDM experiments with
charged hadrons at storage rings where polarized particles are exposed to an
electric field. If an EDM exists the spin vector will experience a torque
resulting in change of the original spin direction which can be determined with
the help of a polarimeter. Although the principle of the measurement is simple,
the smallness of the expected effect makes this a challenging experiment
requiring new developments in various experimental areas.
Complementary efforts to measure EDMs of proton, deuteron and light nuclei
are pursued at Brookhaven National Laboratory and at Forschungszentrum Juelich
with an ultimate goal to reach a sensitivity of 10^{-29} e cm.Comment: 8 pages, 2 figure
Search for electric dipole moments at storage rings
Permanent electric dipole moments (EDMs) violate parity and time reversal
symmetry. Within the Standard Model (SM) they are many orders of magnitude
below present experimental sensitivity. Many extensions of the SM predict much
larger EDMs, which are therefore an excellent probe for the existence of "new
physics". Until recently it was believed that only electrically neutral systems
could be used for sensitive searches of EDMs. With the introduction of a novel
experimental method, high precision for charged systems will be within reach as
well. The features of this method and its possibilities are discussed.Comment: Proc. EXA2011, 6 pages;
http://www.springerlink.com/content/45l35376832vhrg0
Implications of large dimuon CP asymmetry in B_{d,s} decays on minimal flavor violation with low tan beta
The D0 collaboration has recently announced evidence for a dimuon CP
asymmetry in B_{d,s} decays of order one percent. If confirmed, this asymmetry
requires new physics. We argue that for minimally flavor violating (MFV) new
physics, and at low tan beta=v_u/v_d, there are only two four-quark operators
(Q_{2,3}) that can provide the required CP violating effect. The scale of such
new physics must lie below 260 GeV sqrt{tan beta}. The effect is universal in
the B_s and B_d systems, leading to S_{psi K}~sin(2beta)-0.15 and S_{psi
phi}~0.25. The effects on epsilon_K and on electric dipole moments are
negligible. The most plausible mechanism is tree-level scalar exchange. MFV
supersymmetry with low tan beta will be excluded. Finally, we explain how a
pattern of deviations from the Standard Model predictions for S_{psi phi},
S_{psi K} and epsilon_K can be used to test MFV and, if MFV holds, to probe its
structure in detail.Comment: 11 pages. v2: References adde
MSSM Baryogenesis and Electric Dipole Moments: An Update on the Phenomenology
We explore the implications of electroweak baryogenesis for future searches
for permanent electric dipole moments in the context of the minimal
supersymmetric extension of the Standard Model (MSSM). From a cosmological
standpoint, we point out that regions of parameter space that over-produce
relic lightest supersymmetric particles can be salvaged only by assuming a
dilution of the particle relic density that makes it compatible with the dark
matter density: this dilution must occur after dark matter freeze-out, which
ordinarily takes place after electroweak baryogenesis, implying the same degree
of dilution for the generated baryon number density as well. We expand on
previous studies on the viable MSSM regions for baryogenesis, exploring for the
first time an orthogonal slice of the relevant parameter space, namely the
(tan\beta, m_A) plane, and the case of non-universal relative gaugino-higgsino
CP violating phases. The main result of our study is that in all cases lower
limits on the size of the electric dipole moments exist, and are typically on
the same order, or above, the expected sensitivity of the next generation of
experimental searches, implying that MSSM electroweak baryogenesis will be soon
conclusively tested.Comment: 23 pages, 10 figures, matches version published in JHE
The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010
Recent laboratory and field studies have indicated that glyoxal is a potentially large contributor to secondary organic aerosol mass. We present in situ glyoxal measurements acquired with a recently developed, high sensitivity spectroscopic instrument during the CalNex 2010 field campaign in Pasadena, California. We use three methods to quantify the production and loss of glyoxal in Los Angeles and its contribution to organic aerosol. First, we calculate the difference between steady state sources and sinks of glyoxal at the Pasadena site, assuming that the remainder is available for aerosol uptake. Second, we use the Master Chemical Mechanism to construct a two-dimensional model for gas-phase glyoxal chemistry in Los Angeles, assuming that the difference between the modeled and measured glyoxal concentration is available for aerosol uptake. Third, we examine the nighttime loss of glyoxal in the absence of its photochemical sources and sinks. Using these methods we constrain the glyoxal loss to aerosol to be 0-5 × 10-5 s-1 during clear days and (1 ± 0.3) × 10-5 s-1 at night. Between 07:00-15:00 local time, the diurnally averaged secondary organic aerosol mass increases from 3.2 μg m-3 to a maximum of 8.8 μg m -3. The constraints on the glyoxal budget from this analysis indicate that it contributes 0-0.2 μg m-3 or 0-4% of the secondary organic aerosol mass. Copyright 2011 by the American Geophysical Union
Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling
Large brain size is one of the defining characteristics of modern humans. Seckel syndrome (MIM 210600), a disorder of markedly reduced brain and body size, is associated with defective ATR-dependent DNA damage signaling. Only a single hypomorphic mutation of ATR has been identified in this genetically heterogeneous condition. We now report that mutations in the gene encoding pericentrin (PCNT)--resulting in the loss of pericentrin from the centrosome, where it has key functions anchoring both structural and regulatory proteins--also cause Seckel syndrome. Furthermore, we find that cells of individuals with Seckel syndrome due to mutations in PCNT (PCNT-Seckel) have defects in ATR-dependent checkpoint signaling, providing the first evidence linking a structural centrosomal protein with DNA damage signaling. These findings also suggest that other known microcephaly genes implicated in either DNA repair responses or centrosomal function may act in common developmental pathways determining human brain and body size
CP violation Beyond the MSSM: Baryogenesis and Electric Dipole Moments
We study electroweak baryogenesis and electric dipole moments in the presence
of the two leading-order, non-renormalizable operators in the Higgs sector of
the MSSM. Significant qualitative and quantitative differences from MSSM
baryogenesis arise due to the presence of new CP-violating phases and to the
relaxation of constraints on the supersymmetric spectrum (in particular, both
stops can be light). We find: (1) spontaneous baryogenesis, driven by a change
in the phase of the Higgs vevs across the bubble wall, becomes possible; (2)
the top and stop CP-violating sources can become effective; (3) baryogenesis is
viable in larger parts of parameter space, alleviating the well-known
fine-tuning associated with MSSM baryogenesis. Nevertheless, electric dipole
moments should be measured if experimental sensitivities are improved by about
one order of magnitude.Comment: 33 pages, 6 figure
Single-Scale Natural SUSY
We consider the prospects for natural SUSY models consistent with current
data. Recent constraints make the standard paradigm unnatural so we consider
what could be a minimal extension consistent with what we now know. The most
promising such scenarios extend the MSSM with new tree-level Higgs interactions
that can lift its mass to at least 125 GeV and also allow for flavor-dependent
soft terms so that the third generation squarks are lighter than current bounds
on the first and second generation squarks. We argue that a common feature of
almost all such models is the need for a new scale near 10 TeV, such as a scale
of Higgsing or confinement of a new gauge group. We consider the question
whether such a model can naturally derive from a single mass scale associated
with supersymmetry breaking. Most such models simply postulate new scales,
leaving their proximity to the scale of MSSM soft terms a mystery. This
coincidence problem may be thought of as a mild tuning, analogous to the usual
mu problem. We find that a single mass scale origin is challenging, but suggest
that a more natural origin for such a new dynamical scale is the gravitino
mass, m_{3/2}, in theories where the MSSM soft terms are a loop factor below
m_{3/2}. As an example, we build a variant of the NMSSM where the singlet S is
composite, and the strong dynamics leading to compositeness is triggered by
masses of order m_{3/2} for some fields. Our focus is the Higgs sector, but our
model is compatible with a light stop (with the other generation squarks heavy,
or with R-parity violation or another mechanism to hide them from current
searches). All the interesting low-energy mass scales, including linear terms
for S playing a key role in EWSB, arise dynamically from the single scale
m_{3/2}. However, numerical coefficients from RG effects and wavefunction
factors in an extra dimension complicate the otherwise simple story.Comment: 32 pages, 3 figures; version accepted by JHE
Neutron Electric Dipole Moment Constraint on Scale of Minimal Left-Right Symmetric Model
Using an effective theory approach, we calculate the neutron electric dipole
moment (nEDM) in the minimal left-right symmetric model with both explicit and
spontaneous CP violations. We integrate out heavy particles to obtain
flavor-neutral CP-violating effective Lagrangian. We run the Wilson
coefficients from the electroweak scale to the hadronic scale using one-loop
renormalization group equations. Using the state-of-the-art hadronic matrix
elements, we obtain the nEDM as a function of right-handed W-boson mass and
CP-violating parameters. We use the current limit on nEDM combined with the
kaon-decay parameter to provide the most stringent constraint yet on
the left-right symmetric scale TeV.Comment: 20 pages and 8 figure
First-principles design and subsequent synthesis of a material to search for the permanent electric dipole moment of the electron
We describe the first-principles design and subsequent synthesis of a new
material with the specific functionalities required for a solid-state-based
search for the permanent electric dipole moment of the electron. We show
computationally that perovskite-structure europium barium titanate should
exhibit the required large and pressure-dependent ferroelectric polarization,
local magnetic moments, and absence of magnetic ordering even at liquid helium
temperature. Subsequent synthesis and characterization of
EuBaTiO ceramics confirm the predicted desirable
properties.Comment: Nature Materials, in pres
- …
