26 research outputs found

    Role of microRNAs in the pathogenesis of chronic obstructive pulmonary disease (COPD)

    Get PDF

    Airway surface dehydration aggravates cigarette smoke-induced hallmarks of COPD in mice

    Get PDF
    Introduction: Airway surface dehydration, caused by an imbalance between secretion and absorption of ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs mucociliary clearance. Recent evidence suggests that this mechanism may be implicated in chronic obstructive pulmonary disease (COPD). However, the role of airway surface dehydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown. Objective: We aimed to investigate in vivo the effect of airway surface dehydration on several CS-induced hallmarks of COPD in mice with airway-specific overexpression of the β-subunit of the epithelial Na+ channel (βENaC). Methods: βENaC-Tg mice and wild-type (WT) littermates were exposed to air or CS for 4 or 8 weeks. Pathological hallmarks of COPD, including goblet cell metaplasia, mucin expression, pulmonary inflammation, lymphoid follicles, emphysema and airway wall remodelling were determined and lung function was measured. Results: Airway surface dehydration in βENaC-Tg mice aggravated CS-induced airway inflammation, mucin expression and destruction of alveolar walls and accelerated the formation of pulmonary lymphoid follicles. Moreover, lung function measurements demonstrated an increased compliance and total lung capacity and a lower resistance and hysteresis in βENaC-Tg mice, compared to WT mice. CS exposure further altered lung function measurements. Conclusions: We conclude that airway surface dehydration is a risk factor that aggravates CS-induced hallmarks of COPD

    The effect of cigarette smoke exposure on the development of inflammation in lungs, gut and joints of TNFΔARE mice

    Get PDF
    The inflammatory cytokine TNF-alpha is a central mediator in many immune-mediated diseases, such as Crohn's disease (CD), spondyloarthritis (SpA) and chronic obstructive pulmonary disease (COPD). Epidemiologic studies have shown that cigarette smoking (CS) is a prominent common risk factor in these TNF-dependent diseases. We exposed TNF Delta ARE mice; in which a systemic TNF-alpha overexpression leads to the development of inflammation; to 2 or 4 weeks of air or CS. We investigated the effect of deregulated TNF expression on CS-induced pulmonary inflammation and the effect of CS exposure on the initiation and progression of gut and joint inflammation. Upon 2 weeks of CS exposure, inflammation in lungs of TNF Delta ARE mice was significantly aggravated. However, upon 4 weeks of CS-exposure, this aggravation was no longer observed. TNF Delta ARE mice have no increases in CD4+ and CD8+ T cells and a diminished neutrophil response in the lungs after 4 weeks of CS exposure. In the gut and joints of TNF Delta ARE mice, 2 or 4 weeks of CS exposure did not modulate the development of inflammation. In conclusion, CS exposure does not modulate gut and joint inflammation in TNF Delta ARE mice. The lung responses towards CS in TNF Delta ARE mice however depend on the duration of CS exposure

    MicroRNA profiling reveals a role for microRNA-218-5p in the pathogenesis of chronic obstructive pulmonary disease

    No full text
    RATIONALE: Since aberrant expression of microRNAs (miRNAs) can have a detrimental role in disease pathogenesis, we aimed to identify dysregulated miRNAs in lung tissue of patients with COPD. METHODS: We performed miRNA and mRNA profiling - using high throughput stem-loop RT-qPCR and mRNA microarray, respectively - on lung tissue of 30 patients (screening cohort) encompassing 8 never smokers, 10 smokers without airflow limitation and 12 smokers with COPD. Differential expression of microRNA-218-5p (miR-218-5p) was validated by RT-qPCR in an independent cohort of 71 patients, an in vivo murine model of COPD, and primary human bronchial epithelial cells (HBECs). Localization of miR-218-5p was assessed by in situ hybridization. In vitro and in vivo perturbation of miR-218-5p combined with RNA sequencing and gene set enrichment analysis was used to elucidate its functional role in COPD pathogenesis. MEASUREMENTS AND MAIN RESULTS: Several miRNAs were differentially expressed among the different patient groups. Interestingly, miR-218-5p was significantly down-regulated in both smokers without airflow limitation and in patients with COPD, compared to never smokers. Decreased pulmonary expression of miR-218-5p was validated in an independent validation cohort, in cigarette smoke-exposed mice and in HBECs. Importantly, expression of miR-218-5p strongly correlated with airway obstruction. Furthermore, cellular localization of miR-218-5p in human and murine lung revealed highest expression of miR-218-5p in the bronchial airway epithelium. Perturbation experiments with a miR-218-5p mimic or inhibitor demonstrated a protective role of miR-218-5p in cigarette smoke-induced inflammation and COPD. CONCLUSIONS: We highlight a role for miR-218-5p in the pathogenesis of COPD

    Asthma inflammatory phenotypes show differential microRNA expression in sputum

    No full text
    Background: Asthma is classified according to severity and inflammatory phenotype and is likely to be distinguished by specific microRNA (miRNA) expression profiles. Objective: We sought to associate miRNA expression in sputum supernatants with the inflammatory cell profile and disease severity in asthmatic patients. Methods: We investigated miRNA expression in sputum supernatants of 10 healthy subjects, 17 patients with mild-to-moderate asthma, and 9 patients with severe asthma using high-throughput, stem-loop, reverse transcriptase quantitative real-time PCR miRNA expression profiling (screening cohort, n = 36). Differentially expressed miRNAs were validated in an independent cohort (n = 60; 10 healthy subjects and 50 asthmatic patients). Cellular miRNA origin was examined by using in situ hybridization and reverse transcriptase quantitative real-time PCR. The functional role of miRNAs was assessed by using in silico analysis and in vitro transfecting miRNA mimics in human bronchial epithelial cells. Results: In 2 independent cohorts expression of miR-629-3p, miR-223-3p, and miR-142-3p was significantly upregulated in sputum of patients with severe asthma compared with that in healthy control subjects and was highest in patients with neutrophilic asthma. Expression of the 3 miRNAs was associated with sputum neutrophilia, and miR-223-3p and miR-142-3p expression was associated also with airway obstruction (FEV1/forced vital capacity). Expression of miR-629-3p was localized in the bronchial epithelium, whereas miR-223-3p and miR-142-3p were expressed in neutrophils, monocytes, and macrophages. Transfecting human bronchial epithelial cells with miR-629-3p mimic induced epithelial IL-8 mRNA and protein expression. IL-1 beta and IL-8 protein levels were significantly increased in sputum of patients with severe asthma and were positively associated with sputum neutrophilia. Conclusions: Expression of miR-223-3p, miR-142-3p, and miR-629-3p is increased in sputum of patients with severe asthma and is linked to neutrophilic airway inflammation, suggesting that these miRNAs contribute to this asthma inflammatory phenotype

    Cigarette smoke-induced mucin expression is increased in βENaC-Tg mice.

    No full text
    <p>mRNA expression of Muc5ac <b>(A)</b> and Muc5b <b>(B)</b> in total lung tissue upon 4 weeks of air or CS exposure. mRNA expression data were normalized for 3 reference genes (Hprt1, Gapdh, Tfrc). n = 6/group. *p<0.05, **p<0.01, ***p<0.001.</p
    corecore