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11.1 Definition 

 

According to the Global Initiative for Obstructive Lung diseases (GOLD), Chronic Obstructive Pulmonary 

Disease (COPD) is defined as: 

 

“ a common preventable and treatable disease that is characterized by persistent respiratory symptoms 

and airflow limitation that is due to airway and/or alveolar abnormalities usually caused by significant 

exposure to noxious particles or gases” 1. 

 

Common: Despite the fact that the term COPD doesn’t sound familiar to the lay public, COPD (GOLD 

stage II-IV) has a high worldwide prevalence of 9-10% among adults aged 40 years and older 2. 

Important differences in prevalence have been noted between countries ranging from 4-22% 3. Most 

likely, this prevalence is an underestimation 4. 

Preventable: COPD is often caused by repeated inhalation of noxious particles or gases (e.g. cigarette 

smoke). Preventive measures to avoid such exposures can block the onset or slow down the 

progression of COPD 5,6.  

Treatable: The treatment of COPD is largely symptom driven, only smoking cessation is able to slow 

down the accelerated decline in lung function 7. At present, the disease cannot be cured since no drugs 

can considerably halt disease progression or mortality 8.  

Persistent airflow limitation: Patients with COPD typically present with persistent not-fully reversible 

airflow limitation which is measured by a standardized lung function test, i.e. spirometry. Generally, a 

ratio of post-bronchodilator Forced Expiratory Volume in 1 second (FEV1) to Forced Vital Capacity (FVC) 

below 0.70 identifies airflow limitation. 

Airway and/or alveolar abnormalities: Inhalation of harmful particles or gases induces an abnormal 

inflammatory reaction in airways and lungs of patients with COPD, resulting in pathological changes 

(see 1.4) 9.     

Noxious particles or gases: Mainly cigarette smoking is an initiating factor for COPD, but not exclusively. 

Other important causes are occupational exposure to harmful dusts and gases, and exposure to in- 

and outdoor pollution 6,10.   
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11.2 Burden 

 

Several factors contribute to the high burden of COPD as COPD is a prevalent disease that has major 

implications on the patient’s life and is associated with considerable costs for the society.  Worldwide, 

COPD ranks as the 4th leading cause of death after ischemic heart diseases, stroke and lower respiratory 

infections 11,12. In Europe, COPD was reported to cause the death of 150,000 people in 2010 (Figure 1) 
13.  

 

Figure 1. The burden of COPD in older adults in Europe in 2010. #: Global Initiative for Chronic Obstructive Lung 
Disease stages II–IV. An additional 17 million adults aged ≥40 years had stage I chronic obstructive pulmonary 
disease (COPD). Figure adapted from the European Lung White Book, Respiratory Health and Disease in Europe 
13.  

The worldwide prevalence of COPD (stage II-IV) in adults older than 40 is 9-10% 2,3. In the Rotterdam 

study and another population study in the Netherlands, the overall prevalence of COPD increased with 

age, was higher in men and higher in ever-smokers compared to non-smokers 14,15. Also, the mortality 

increased with COPD severity and was substantially higher in COPD patients compared to non-COPD 

patients of the same age, accentuating the burden of the disease 15.  

 

COPD has a significant impact on the daily life of persons confronted with this disease. Impaired 

exercise performance and the presence of daily symptoms, commonly combined with anxiety, 

depression and the resulting social isolation contribute to the morbidity 5. 

 

COPD is a growing burden on healthcare systems as well. Across the globe, the mean annual direct 

medical cost for COPD per patient varied from 431 to 34,101 USD 16. Additionally, indirect costs of the 

disease such as lost or impaired productivity at work have a detrimental impact on the national income 
5,16.  
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11.3 Clinical features and risk factors 

 

COPD is a progressive disease that causes lung function decline. Patients typically present with 

symptoms such as coughing, sputum production and dyspnea. These symptoms vary over time and 

are worse in the morning 17. The earliest, but non alarming, symptom is coughing. Mostly, the patients 

seek medical help when experiencing (exertional) dyspnea since this causes disability and anxiety 1. 

This breathlessness during activity is persistent and worsens over time and is commonly accompanied 

in severe ill patients by fatigue and weight loss 1. To assess dyspnea, the modified British Medical 

Research Counsil (mMRC) Questionnaire was developed 18. Beyond assessing dyspnea, a more 

comprehensive questionnaire such as the COPD Assessment Test (CAT) which measures the 

symptomatic impact of COPD is recommended 19,20. Regular sputum production during ≥ 3 months in 

two consecutive years is the classical definition of chronic bronchitis, however this does not reflect 

disease severity 1,21.  

 

Diagnosis is confirmed based on patient’s history, presence of characteristic symptoms and 

standardized lung-function measurements that reveal a not-fully-reversible airflow limitation 

(FEV1/FVC < 0.70). FEV1 is the maximum volume of air exhaled in the first second of a forced expiration 

started from a full inspiration. FVC is the maximum volume of air exhaled with maximally forced effort 

started from a maximal inspiration. Both parameters are measured during spirometry. Spirometry is 

assessed in comparison with reference values based on age, height, sex and race. Currently,  

spirometry is the cornerstone for COPD diagnosis, staging, response to therapy and follow-up 9. It 

outputs a reproducible and objective measurement which is also noninvasive. Classification of COPD 

severity in GOLD stages (1-4) is based on post-bronchodilator FEV1 (Figure 3). However, the degree of 

airflow limitation in COPD is only loosely related to disease severity 5.  

 

Exacerbations and comorbidities contribute to the overall severity in individual patients. 

Exacerbations, acute worsening of respiratory symptoms that is beyond the normal day-to-day 

variation and that may warrant a change in regular medication, influence the progression of COPD and 

are the main cause of morbidity/mortality, particularly in those patients requiring hospitalization. An 

initial exacerbation increases the susceptibility to a new exacerbation 22. The most frequent causes of 

exacerbations are viral (in 15-25% of all infective exacerbations) or bacterial infections, or both and 

account for 60-80% of all exacerbations 2.  

 

COPD involves a complex pathogenesis that not only affects the lungs but is also often associated with 

other chronic comorbidities. Therefore patients do not always die from respiratory causes. Comorbid 
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diseases that may accompany COPD encompass lung cancer, cardiovascular disease, osteoporosis, 

metabolic syndrome, skeletal muscle weakness, diabetes, anxiety, depression and cognitive 

dysfunction 23. The presence of comorbidities is only poorly related to the severity of airflow 

obstruction 24. However, in patients with COPD, the presence of comorbidities increases the risk of 

hospitalization and mortality independently 25. Therefore, they do require specific treatment. 

 

COPD results from the interplay between genetic susceptibility and environmental stimuli 2. The most 

important and best studied risk factor is cigarette smoking. The amount and duration of cigarette 

smoking contributes to the severity. Generally, multiple exposures over decades are needed to 

accelerate the decline in FEV1 and to consequently develop COPD. Importantly, it is estimated that only 

15-20% of smokers develop COPD, suggesting variability in the susceptibility to cigarette smoke (CS) 5. 

Nevertheless, this may be an underestimation since far more than 15% of smokers have some amount 

of respiratory impairment/symptoms, yet do not fall within the COPD classification 26.  

Genetic and epigenetic factors have been put forward to be responsible for this difference in 

susceptibility. Genetic factors that influence disease susceptibility are alpha1-antitrypsin deficiency (1-

3% of COPD patients) and gene polymorphisms 27-29. Smoking also induces reversible and irreversible 

epigenetic changes 30-34 (see 1.5). 

In addition, a subpopulation of patients with COPD have never smoked 35, meaning that other factors 

such as occupational exposure to harmful gases, dusts, particulate matter, exposure to in- and outdoor 

pollution, poor socio-economic status, asthma and ageing can increase the risk or contribute to the 

development of COPD 5,6,36,37. Recently, it was postulated that different trajectories of lung function 

exist, all resulting in COPD diagnosis. About one half of the patients have an accelerated decline in lung 

function while the other half has a normal lung function decline, starting from an already impaired 

lung function at the age of 20-40 years 38. Processes that affect lung growth or development reduce 

the maximal attained lung function capacity, putting these individuals at risk for COPD 38. These 

processes encompass events occurring during gestation, birth and childhood such as intrauterine 

growth retardation, maternal smoking during pregnancy, history of pulmonary tuberculosis and early 

life exposures to infectious and non-infectious agents 35,39-45.  

The overall course and changes in FEV1 over lifetime were already clearly presented in the well-known 

Fletcher and Peto curve 46. Current insights have additionally accentuated the importance of impaired 

lung development at an early age. Various parameters such as inter-person variations in  susceptibility, 

differences in level of decline in lung function and an impaired attainment of the normal spirometric 

plateau contribute to the onset of COPD (Figure 2). 
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Figure 2: Adapted Fletcher and Peto Curve. The course of FEV1 over time in smokers with or without airflow 
limitation. Both processes affecting lung development early in life as an accelerated lung function decline due to 
susceptibility to smoking put persons at risk for developing COPD. 
Adapted from Brusselle GG., N Engl J Med 2009;361(27):2664-2665 47. 
FEV1: forced expiratory volume in 1 second; COPD: chronic obstructive pulmonary disease 
 

The degree of airflow limitation is assessed by spirometry, based on post-bronchodilator FEV1 and 

according to the GOLD criteria 48. However, there is only a weak correlation between FEV1 and the 

experienced symptoms and health status impairment 49. For this reason, COPD assessment also 

considers, besides the level of airflow limitation, the impact on the patient’s health status, presence 

of comorbidities and estimates the risk of future events such as exacerbations, hospital admissions or 

mortality 9. A new approach has been proposed which revises the original ABCD assessment tool of the 

GOLD update in 2011 9. This assessment tool separates the level of airflow limitation from the patient’s 

perceived symptoms and exacerbation history and is illustrated in Figure 3. A patient is then classified 

with a GOLD grade number (1-4) and a letter (A-D) which will aid in (pharmaco) therapeutic decision 

making 1. 
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Figure 3 . The refined ABCD assessment tool. Figure adapted from 1. This tool separates the level of airflow 
limitation (spirometry) from the patient’s perceived symptoms (questionnaire: mMRC or CAT) and exacerbation 
history, resulting in a classification with a GOLD grade number (1-4) and a letter (A-D). 
FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity; GOLD: global initiative for obstructive lung 
diseases; CAT: COPD assessment test; COPD: chronic obstructive pulmonary disease; mMRC: modified British 
Medical Research Counsil 
 

 

  

GOLD classification FEV1 (% 
predicted)

mild GOLD 1 ≥ 80
moderate GOLD 2 50-79

severe GOLD 3 30-49
very severe GOLD 4 < 30

Post-bronchodilator
FEV1/FVC < 0,7

Exacerbation
history

≥ 2 or ≥ 1
Leading to
hospital admission

0 or 1
Not leading to
hospital admission

Assessment of 
Symptoms/risk of
exacerbations

A

C

B

D

mMRC 0-1
CAT < 10

mMRC ≥ 2
CAT ≥ 10

Symptoms

Spirometrically
confirmed
diagnosis

Assessment of 
airflow limitation
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11.4 Pathology  

 

The pattern of pathological changes depends on the underlying disease processes (chronic bronchitis, 

obstructive bronchiolitis, emphysema) complemented with individual susceptibility and disease 

severity 2.  

Inhalation of harmful particles (e.g. CS) or gases causes an exaggerated chronic inflammatory response 

in patients with COPD. This chronic inflammatory state gives rise to the airflow limitation that is 

characteristic for COPD. The pathology is caused by a mixture of small airway disease (e.g. obstructive 

bronchiolitis) and parenchymal destruction (emphysema) (Figure 4). Their relative contribution varies 

from person to person and over time 1. Intriguingly, in COPD patients, the inflammation persists 

following smoking cessation 50-52. 

In the central airways (> 2mm in internal diameter), CS induces abnormalities in the airway epithelium 

including goblet cell metaplasia, enlarged mucous glands, airway epithelial cell hyperplasia, ciliary 

dysfunction and thickening of the bronchial walls 53. Increased numbers of inflammatory cells infiltrate 

and populate the (sub)epithelial area 21. All these features contribute to the pathological diagnosis of 

chronic bronchitis which is mainly recognized by symptoms as coughing and sputum production. Yet, 

not all patients with chronic bronchitis develop airflow limitation 54. 

The small conducting airways (< 2mm in internal diameter) are considered the major site of obstruction 

in patients with COPD 55. Persistently inhaled toxic particulates deposit in this region, initiating a 

chronic inflammatory immune cell infiltration besides repair and remodeling processes 56,57. As a 

consequence, the airway wall is thickened (remodeling) by airway smooth muscle hypertrophy and 

fibrotic processes, narrowing the airway and thus increasing the resistance (obstructive bronchiolitis) 
56. Infiltration of neutrophils, macrophages, B and T lymphocytes is observed in these small airways, 

which further increases as COPD progresses 58. Lymphocytes aggregated into lymphoid follicles are 

mainly present in the later stages of COPD 54,58.  

In the alveoli of patients with emphysema, the lung parenchyma is progressively destroyed and 

airspaces enlarged. The centrilobular pattern of emphysematous destruction (predominantly in the 

upper zones) results from dilatation and destruction of the terminal and respiratory bronchioles and 

is most closely associated with cigarette smoking 54. The panacinar (destruction of the whole acinus) 

pattern is more common in the lower lobes and is associated with α1 antitrypsin deficiency 54. Of 

interest, it is observed by CT imaging that the widespread loss of terminal bronchioles preceeds the 

onset of emphysematous destruction 56,59.  

Early changes in the pulmonary vasculature comprise thickening of the intima and endothelial 

dysfunction 60-62. In a later phase, other pathological transformations are observed in patients with 
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COPD such as hypertrophy of vascular smooth muscles, deposition of collagen (remodeling), 

destruction of the pulmonary capillary bed and development of pulmonary hypertension 63.   

The histological visible thickened airway wall (remodeling) and the loss of elastic recoil (emphysema) 

of the parenchyma contribute to the decreased FEV1 and hyperinflation 2. 

 

 

Figure 4. Lung histology on hematoxylin and eosin staining of (A, C) a never-smoker and (B,D) a patient with 
COPD.  
(A,B) airways and (C,D) parenchyma. (B) airway remodeling and (D) emphysema with infiltration of 
inflammatory cells with macrophages (MF) constituting the predominant cell type. Less frequent are the 
neutrophils (Ne) and smaller cells are indicative for lymphocytes. Also 1 eosinophil (Eo) could be observed.  
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11.5 Complexity of COPD 
 

COPD is a complex and heterogeneous disease since it encompasses more than only airflow limitation. 

COPD is complex since its pathology cannot be attributed to 1 single determinant or cause. Secondly, 

COPD is a heterogeneous disease meaning that different patients can have different (extra)pulmonary 

manifestations of the disease which can vary over time, still all patients are classified as ‘COPD patients’ 
64. Therefore, the use of multidimensional assessment indices such as the BODE (body mass index, 

FEV1, dyspnea and exercise capacity) index 65, ADO (age, dyspnea, FEV1) index 66 and DOSE (dyspnea, 

FEV1, smoking status and frequency of exacerbations) index 67 are more accurate to capture the 

complexity of COPD. The BODE index gives a better prediction of survival than any single component 

it comprises 65.  

To understand the pathogenesis of COPD, we will focus on 4 different, but interrelated levels of the 

complexity of COPD (Figure 5). The main goal of studying the pathogenesis of COPD is to understand 

the underlying disease process but also to identify novel molecular drivers of disease in an attempt to 

discover useful biomarkers for diagnosis and therapy. 

 
Figure 5. Diagram illustrating the different levels of complexity of COPD.  
Adapted from Agusti A. and Vestbo J. 68.  
GWAS: genome wide association study 
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1.5.1 Environmental level 
A whole plethora of factors affect the initiation and/or course of COPD which are often related to life-

style and thus, can be avoided or changed. Exposure of the lungs to CS and in- or outdoor pollution 

causes an exaggerated inflammatory response in the lungs of patients with COPD. Therefore, urgent 

measures are needed including anti-tobacco campaigns, prohibition of indoor use of biomass fuels and 

strict rules concerning lower vehicle and factory emissions in residential areas, ensuring the reduction 

of risk factors for the development of airway diseases.  

Regarding the activity level, patients with COPD are often extremely inactive. The fitness of the patient, 

as measured by the 6-min walking distance (6MWD), is a good predictor of mortality 23. Hence, it is 

advisable to stimulate patients with COPD to be more active 69. Moreover, some degree of 

malnutrition is common in about a third of patients with COPD and may be severe in advanced COPD 
70. In a review summarizing 17 studies investigating the effect of nutritional supplementation, they 

found growing evidence that supplementation had a positive effect on body weight, muscle strength, 

performance of the 6MWD and quality of life, especially in malnourished patients 70. Patients with 

COPD are also considered at risk for vitamin D deficiency due to faster skin ageing (from smoking), 

possible treatment with corticosteroids, less outdoor activity and less food intake 71. Vitamin D 

deficiency has negative consequences throughout the body, including the immune system 72 and has 

been linked to many chronic illnesses. In COPD, the level of vitamin D is associated with disease severity 

(as measured by FEV1) and consequently, vitamin D supplementation is warranted, especially in 

patients with severe COPD 71,73. Further, high-fiber diets have been linked to reductions in lung function 

decline, COPD incidence and respiratory mortality by attenuating the innate immune-mediated 

systemic and pulmonary inflammation 74. Viral and bacterial infections are the predominant cause of 

exacerbations and are estimated to actively contribute to the pathogenesis of COPD 75,76.  

 

1.5.2 Biological level 
A good functioning innate defense machinery encompasses adequate mucociliary clearance, an intact 

epithelial barrier, humoral factors and immune cells initiating an appropriate immune response, 

followed by removal and resolution of the inflammation. Inflammation is present in the lungs, 

especially the small airways, of all people who smoke. However, in patients with COPD, the response 

to chronic CS exposure leads to an amplified inflammatory response, impairment of defense 

mechanisms, tissue destruction and disruption of repair. In general, these inflammatory and structural 

airway changes aggravate with disease severity and persist even after smoking cessation 50,51,77.  

Aside from nicotine, lipopolysaccharide (LPS), heavy metals and carcinogens, CS contains a whole 

mixture of oxidants 78. Exposure to CS constituents causes an immediate pulmonary inflammatory 

reaction within minutes to hours 79 by activating several pattern recognition receptors (PRRs). PRRs 
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constitutively expressed on airway epithelial cells, alveolar macrophages and dendritic cells can be 

activated directly by substances present in CS and infectious agents via pathogen-associated molecular 

patterns (PAMPs) or indirectly by the damage that is induced to the airway epithelium by CS, giving 

rise to the release of damage-associated molecular patterns (DAMPs) 80-82. Generally, this leads to a 

non-specific innate immune response with the release of pro-inflammatory cytokines and chemokines, 

reactive oxygen species and proteolytic enzymes 82. The CS-induced release of pro-inflammatory 

cytokines and chemokines initiates the recruitment of neutrophils, macrophages and dendritic cells. 

As an example, interleukin-8 (IL-8), whose levels are increased in bronchial epithelium, sputum and 

plasma of patients with COPD compared to controls, plays a pivotal role in the activation and 

chemotaxis of neutrophils 83-85. In addition, Chemokine (C-C motif) ligand 20 (CCL20), produced by the 

inflamed bronchial epithelium and increased in airways of patients with COPD, functions as one of the 

most potent recruiters of immature DCs via interaction with C-C Motif Chemokine Receptor 6 (CCR6) 
86,87.  

Increased numbers of neutrophils and macrophages cause lung destruction by releasing oxygen 

radicals and proteolytic enzymes such as neutrophil elastase and matrix metalloproteinase (MMP)-12. 

If these proteolytic enzymes and oxidative stress are not sufficiently counterbalanced with anti-

proteases and anti-oxidants, the net result is further damage 2. Also, inflammatory cells may change 

their phenotype in a later phase of disease. For instance, macrophages may switch towards an M2 

phenotype, potentially limiting the inflammation and propagating fibrosis with less antibacterial 

capacity 88. Recently, interest is raised in innate lymphoid cells (ILC) for their role in the pathogenesis 

of lung diseases. In lungs of COPD patients compared to controls, a tendency towards more natural 

cytotoxicity receptor-negative ILC3s was reported 89.  

Immature dendritic cells (DCs), specialized antigen-presenting cells that link the innate with the 

adaptive immune response, are recruited towards the airway epithelium, take up the antigen, migrate 

to the draining lymph nodes and present the antigen to naïve T lymphocytes via expression of the 

major-histocompatibility-complex (MHC) proteins 87,90. MHC class I-restricted DCs present antigens to 

CD8+ T lymphocytes, whereas MHC class II-restricted DCs drive the differentiation of naïve CD4+ T 

helper (Th) lymphocytes towards Th 1, 2, 17 or regulatory T (Treg) lymphocytes 82.  

In stable COPD, mostly Th1 and Th17 lymphocytes are accumulating 91. When activated, antigen-

specific CD8+ T lymphocytes secrete proteolytic enzymes such as perforin and granzymes 92. Th1 cells 

migrate to the site of injury and govern the adaptive immune response primarily by interferon-γ 

release with subsequent activation of other immune cells such as priming macrophages for efficient 

killing 93. However, this mechanism is hampered in COPD 93. Pro-inflammatory Th17 cells produce IL-

17A and IL-17F which mediate defense against extracellular pathogens, aid in lymphoid follicle 

formation and promote neutrophil and macrophage accumulation at the site of injury 94-96. Th17 cells 
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are also involved in the development of autoimmunity and elevated expression of IL-17A is 

demonstrated in (end-stage) COPD 96-99. As a counterbalance, Treg cells dampen the inflammatory 

reaction by interacting with DCs and T lymphocytes or by producing the anti-inflammatory IL-10 100. 

Contradictorily, the number of Treg cells is increased or decreased in COPD, depending on the 

anatomical location or methodology used. In addition, B cell numbers are increased in patients with 

COPD 58. Different B cell subsets are identified such as plasma cells (antigen-specific production of 

antibodies) and memory B cells 101. As the disease progresses towards its severe state, an aggregation 

of B, T cells and follicular DCs into lymphoid follicles is frequently observed near the airways and in the 

parenchyma 58,101 (Figure 6). 

 
 
Figure 6. Innate and adaptive immune reaction following cigarette smoke exposure in the pathogenesis of 
COPD. Cigarette smoke causes damage to the airway epithelium and leads to recruitment of innate immune cells 
such as macrophages and neutrophils towards the epithelium. Following activation, DCs migrate to the lymph 
nodes and initiate adaptive B and T cell immune responses. Chronic inflammation gives rise to destruction of 
alveolar walls, enhanced mucus secretion, remodeling processes and formation of lymphoid follicles. 
DC: dendritic cell 
 

Apart from this immunologic reaction, several other endogenous processes may underlie the 

pathogenesis of COPD (Figure 7). The pathogenesis of COPD is centered around an excess of oxidative 

stress, from both endogenous or exogenous origin, contributing to many of the pathogenic events 

such as the imbalance between proteases and anti-proteases, propagation of the inflammation leading 
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to tissue destruction, fibrosis  and remodeling 102,103. Nuclear factor erythroid 2–related factor 2 (Nrf2) 

is an antioxidant transcription factor that is implicated in both the initiation and in the progression of 

the CS-induced injury. Nrf2 controls more than 100 genes involved in antioxidant defenses, 

detoxification and cellular physiology 104, is a known key player in the susceptibility to emphysema and 

is decreased in lungs of patients with COPD, probably through reduced histone deacetylase 2 (HDAC2) 

activity resulting in increased acetylation of Nrf2 105-107. Mice lacking Nrf2 show increased susceptibility 

to lung inflammation, alveolar cell apoptosis and emphysema following CS exposure 106,108.  

Some evidence suggests shared features between pulmonary emphysema and lung ageing 109,110. Cell 

senescence, a non-proliferative state in which cells are metabolically active but apoptosis-resistant, 

can be caused by cigarette smoke and oxidative stress 111. Intriguingly, several animal models of ageing 

have concomitant emphysema 112,113. To maintain lung integrity, alveolar cell apoptosis and matrix 

destruction is compensated by cell renewal and repair mechanisms. The inflammation induced by 

chronic CS exposure is amplified in COPD by limited alveolar repair and enhanced apoptosis 80. Skeletal 

muscle wasting and decreased physical activity, major comorbidities of COPD, have been linked to both 

apoptosis and less vascular regeneration 114,115. In addition, phagocytosis of apoptotic cells and bacteria  

by alveolar macrophages is impaired in COPD which can contribute to chronic bacterial colonization 

and to acute infectious exacerbations 116-118. Dysregulated repair mechanisms involve abnormal 

transforming growth factor (TGF)-β signaling, leading to fibrosis and remodeling. Destruction of the 

extracellular matrix accelerates the development of emphysema.  

Due to less oxygen perfusion, some regions in the lungs become hypoxic. In hypoxic conditions, HIF-

1α is transcribed which activates transcription of other pro-inflammatory genes and which prolongs 

the life-span of neutrophils, enhancing the breakdown of extracellular matrix 119. When mice were 

instilled with LPS and elastase, pulmonary microbiota were found to promote pulmonary inflammation 

through stimulation of IL-17A production, providing evidence for a host-microbiome cross-talk 120. In 

patients with COPD GOLD IV, the diversity of the lung microbiome declined versus controls and was 

associated with emphysematous destruction, remodeling and infiltration by CD4+ T cells 121. 

Furthermore, dynamic changes have been observed in lung microbiota following exacerbations or 

pharmacological treatment 122. Sputum IL-8 levels, alongside other serum and sputum biomarkers, 

correlated with the structure and diversity of the lung microbiome.  

In those patients who develop COPD, the inflammatory response fails to resolve after quitting smoking. 

Several mechanisms that have been mentioned earlier might contribute to the perpetuation of the 

inflammation including impaired clearance, chronic colonization and infection of the lower airways, 

oxidative stress, autoimmunity, impaired and excessive innate immune responses, tissue hypoxia, 

airway wall remodeling, lung ageing, genetic susceptibility and epigenetic changes 82,123. 
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Figure 7. Mechanisms underlying the pathogenesis of COPD. Host factors form the basis for susceptibility to 
environmental triggers such as cigarette smoke. The relentless lung injury due to oxidative stress, alongside the 
impairment of protective and repair responses from the lung, ultimately lead to prolonged inflammation and the 
development of COPD. 
 

1.5.3    Genetic level 
An altered (epi)genome could be responsible for different disease susceptibility and can hence be of 

interest for evaluating persons at risk. Twin studies provided help in estimating the genetic 

component, as opposed to the impact of the environment, in the risk of developing COPD 124. Gene 

polymorphisms are allelic variations or point mutations in the DNA, including single-nucleotide 

polymorphisms (SNPs). Over the past years, several gene polymorphisms have been reported to be 

linked with COPD susceptibility such as microsomal epoxide hydrolase, heme oxygenase-1, a 

disintegrin and metalloproteinase 33 (ADAM33) and tumor necrosis factor α (TNFα), although 

consistent data are still lacking, especially when studying a different ethnic origin 27,29,124,125. The first 

established polymorphism related to COPD susceptibility was the Z allele of the alpha1-antitrypsin 

gene, encoded by the highly polymorphic SERPINA1, resulting in different levels of α1-antitrypsin. 

Carrying two copies of the susceptibility allele was suggested as a genetic risk factor, severely 

predisposing smoking subjects of developing early-onset emphysema 126. 
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The Rotterdam study, an ongoing prospective cohort study enrolling persons aged 45 years or more, 

is a member of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 

consortium 127, which was initiated to facilitate genome-wide association studies (GWAS), meta-

analyses and replication studies. GWAS are based on genotyping epidemiological cohorts with high 

density SNP arrays. Thus far, GWAS have identified thousands of genetic loci that contribute to the 

susceptibility for a variety of diseases 128-130. For COPD, GWAS and genome-wide joint meta-analyses 

have identified genetic loci associated with lung function and emphysema distribution 131-139. Meta-

analyses of GWAS for airway obstruction, in which the Rotterdam study collaborated, confirmed an 

association with the nicotinic acetylcholine receptor, subunits alpha 5 and alpha 3 (CHRNA5/3), located 

in the intriguing region on chromosome 15q25.1, and with 5-hydroxytryptamine receptor 4 (HTR4) 
138,140. However, our lab could not demonstrate the involvement of 5-HT4 receptor, HTR4, in bronchial 

hyper responsiveness to serotonin in CS-exposed mice 141. A genetic variant in the CHRNA3/5 region, 

also containing the IREB2 gene which may confer COPD susceptibility, has been associated with 

smoking intensity and smoking addiction, although the association with smoking behavior remains 

controversial 142. By integrating the largest published GWAS on FEV1 and FEV1/FVC with a lung tissue 

expression quantitative trait loci (eQTL) study, tissue-specific genes were identified that are involved 

in developmental (e.g. HHIP) and inflammatory pathways, thereby pinpointing genes that were more 

likely to be responsible for the GWAS signal 143.  

Despite the elucidating effect of GWAS where genetic determinants of human complex diseases were 

uncovered, a substantial proportion remains unexplained. It is therefore of interest to explore how 

non-genetic variations, including epigenetic factors, can influence disease etiology 144. The epigenome 

is dynamic and changes in response to the environment, diet, disease and ageing 145. The three main 

classes of epigenetic marks – defined as mechanisms other than changes in the underlying DNA 

sequence that cause changes in gene expression – are DNA methylation, modification of histone tails 

and non-coding RNAs. Several studies demonstrate a clear association between exposure to CS and 

changes in epigenetic marks, although proving causality remains uncertain. In children, a global 

reduction in DNA methylation was linked to in utero CS exposure 146. In human airway epithelial cells, 

CS condensate (CSC) time- and dose-dependently induced changes in histone modifications 147. In lung 

tissue of patients with increasing severity of COPD, graded reduction in HDAC2 expression was 

reported combined with an increase in IL-8 mRNA and histone-4 acetylation at the Nuclear Factor κB 

(NFκB) binding site of the IL-8 promoter, shifting the balance towards histone acetylation 33,148. An 

imbalance between histone deacetylation and acetylation in favor of acetylation may contribute to the 

persistent inflammation present in smokers susceptible to developing COPD 148. In human bronchial 

epithelium and in lungs of mice and rats exposed to CS, a predominant down-regulation of the majority 

of microRNAs (miRNAs) was observed following CS exposure 149-151. By combining expression data from 
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messenger RNA (mRNA) and miRNA in lung tissue of smokers with and without airflow limitation, TGF-

β, Wnt and focal adhesion pathways were identified as potential pathways in which miRNAs may be 

relevant to the pathogenesis of COPD 152. Moreover, in lungs or sputum of patients with COPD, miRNA 

expression was significantly altered 152-155.  We will further discuss the role of miRNAs in chapter 2. 

Also, a long non-coding RNA (lncRNA) called SCAL1 was up-regulated upon CS extract exposure in vitro 
156. In addition, several long non-coding RNAs were differentially expressed in lung tissue of smokers 

with COPD versus never-smokers and smokers without airflow limitation 157. 

Dynamic changes in the transcriptome can reveal biological pathways that are associated with disease 

activity or with smoking. A clear smoking signature has been reported in non-tumorous lung tissue 158 

and in lung cancer tissue 159-161. In non-tumorous lung, the gene expression signature consistently 

segregated never- from current-smokers. The majority of altered genes reverted following smoking 

cessation, whereas a minority of genes did not return to baseline levels such as SERPIND1. These slowly 

reversible genes may be of importance in understanding the initial and persistent processes leading to 

lung diseases 158. Transcriptome analysis in lungs of smokers or COPD patients revealed major altered 

processes between COPD and control smokers such as signal transduction, receptor function, growth 

factor, adhesion and cytoskeleton and metabolism 162 while another study provides evidence for genes 

involved in tissue remodeling and repair 163. Interestingly, active smoking substantially altered the 

pulmonary gene expression in COPD in comparison with smokers and never-smokers 148. COPD 

pathology can be distinguished between the bronchiolitis and the emphysema phenotype, although 

both often co-exist in the same patient. Transcriptome analysis comparing the differential gene 

expression between ex-smoking patients with bronchiolitis and emphysema revealed an enrichment 

in B-cell related genes in emphysema 164.  

The airway epithelium is important in the first encounter with pathogens and inhaled particles. It is 

therefore not surprising that smoking-induced gene expression changes are reflected in the ‘normal’ 

airway epithelium as in the airway epithelium of patients with COPD 149,165-171. Also here, reversible and 

permanent gene expression alterations have been noted 172. Intriguingly, the smoking-induced 

alterations in airway gene expression are already reflected in the epithelium from nose and mouth, 

including genes related to detoxification, oxidative stress, and wound healing 173,174. Further, treatment 

with inhaled corticosteroids (ICS) dynamically affected airway gene expression 175. Similarly, other 

transcriptome studies demonstrate significant gene modulation by smoking in other cell types such as 

alveolar macrophages 176 and lymphocytes 177. 

Yet, a complex disease is never the consequence of 1 single gene but merely a reflection of various 

perturbations in inter- and intracellular networks, all contributing to the observed phenotype 178,179. 

(Epi)genetic research aims to identify the responsible gene/molecular pathway for the development 

of COPD, however the results are not straightforward. 162,165,180. There is limited overlap between 
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studies which can be explained by differences in patient selection criteria, patient characteristics, 

sample acquisition, detection platform used, heterogeneity in lung tissue pathology and data analysis. 

Although proving causality and understanding the underlying regulatory mechanism remains a 

challenge, these insights from GWAS and transcriptome analyses have broad and promising 

implications for screening and treatment. 

 

1.5.4    Clinical level 
It is increasingly recognized that COPD is not only limited to the pulmonary compartment. Other 

diseases often coexist with COPD (i.e. comorbidities) independent of the severity of COPD 2. Systemic 

inflammation is the mainstay of most manifestations. Increased concentrations of cytokines (TNF-α, 

IL-6), acute phase proteins, chemokines and adipokines in the circulation may lead to cachexia and 

skeletal muscle weakness 23. As COPD progresses, exercise capacity decreases due to ventilatory 

limitation. Impaired exercise capacity negatively impacts bone density besides other risk factors 

responsible for the high prevalence of osteoporosis in COPD such as aging, smoking, malnutrition, low 

body-mass index (BMI) and vitamin D deficiency 181. In addition, inflammatory mediators in the 

circulation stimulate osteoclasts, reinforcing the development of osteoporosis in COPD patients 23.  

Besides sharing risk factors such as smoking and ageing, COPD and cardiovascular disease are each 

associated with an increased systemic inflammation, oxidative stress and sedentarism. Damage to the 

endothelium, vascular remodeling, elevated plasma fibrinogen levels and an increase in pro-coagulant 

activity are central to the pathogenesis of the associated cardiovascular events. Patients with COPD 

are particularly susceptible to vascular events after an exacerbation, when systemic inflammation is 

more present 182.  

COPD and lung cancer are closely related diseases, occurring as co-morbidities at a higher rate than if 

they were independently triggered by smoking. Chronic exposure to pro-inflammatory cytokines and 

increased oxidative stress may accelerate the growth of lung cancer 183.  

The causes of anemia in patients with COPD are probably multifactorial and include nutritional deficits, 

carboxyhemoglobin effects of cigarette smoking but most importantly, the chronic inflammatory 

nature of COPD 184. In patients with COPD, there is an increased prevalence of diabetes and metabolic 

syndrome, possibly mediated by the augmented plasma concentrations of inflammatory markers 23.  

For sure, these (often multiple) comorbidities have a major impact on the patient’s quality of life and 

survival. Thus, treatment of these comorbidities is a key element in the management of COPD and may 

have a beneficial effect in COPD 9,23.  

In patients with COPD, different underlying mechanisms are responsible for the diversity in pulmonary 

pathology. Therefore, a subdivision of COPD patients in COPD phenotypes (e.g. chronic bronchitis, 
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never-smoker with COPD, α1-antitrypsin deficiency, emphysema, frequent exacerbator,..) is justified 
185-188 and a personalized or precision medicine is warranted 68.  
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11.6 Treatment options in COPD 

 

In developed countries where cigarette smoking generally comprises the main risk factor for 

developing COPD, the key therapeutic intervention is smoking cessation. For this, pharmacological 

support (bupropion, varenicline and nortryptyline) or nicotine replacement therapy in combination 

with professional counseling can provide help. Recently, the advent of e-cigarettes has opened new 

perspectives, however, the efficacy and safety of e-cigarettes is uncertain and will be investigated 

further 189.  

 

The current pharmacological therapy of COPD is largely symptom-driven and takes the risk for future 

exacerbations into account. For the past couple of decades, inhaled medication is the backbone of 

COPD management. The GOLD guidelines recommend the use of long-acting bronchodilators (Long-

acting β2-agonists (LABAs) and/or Long-acting muscarinic antagonists (LAMAs)) as first-line 

maintenance therapy (Figure 8). In mild COPD, monotherapy with a bronchodilator is first choice. 

When symptom relief appears not to be sufficient, combination therapy with both LAMA and LABA 

provides additional benefit (additive effect) with lower risk of side-effects and a greater stabilization 

of airway tone 64. Both LAMA and LABA facilitate bronchodilation by inducing smooth muscle relaxation 

through binding to different receptors. They significantly improve lung function, dyspnea, health status 

and reduce exacerbation rates. Short acting bronchodilators can be inhaled for quick symptom relief 
1.  

For patients with moderate to severe COPD and recurrent exacerbations, first choice remains 

combination therapy with both LAMA and LABA. If not sufficient, second choice is the combination of 

a bronchodilator with ICS. However, ICS use can cause side-effects such as oral candidiasis, skin 

bruising, higher risk for pneumonia and reduction of bone density 64,190-192. Evidence exists for a 

superiority of LABA/LAMA (e.g. indacaterol/glycopyrrolate) over LABA/ICS, which was studied across 

different severities of exacerbations 193. Yet, LABA/ICS therapy may be first choice in patients with a 

history suggestive of asthma-COPD overlap and/or high blood eosinophils 194-196. 

Mucolytic and antioxidant agents can improve health status and may reduce exacerbations 197.  

Recently, anti-inflammatory agents were added to the therapeutic scheme of the pulmonologists. 

Patients with severe to very severe COPD, chronic bronchitis and a history of exacerbations, the 

phosphodiesterase-4 (PDE4) inhibitor roflumilast can be given orally since this molecule reduces the 

exacerbation rate, probably through inhibition of cellular trafficking and cytokine and chemokine 

release from immune cells 198-201. PDE4 is the predominant phosphodiesterase expressed in 

neutrophils, T cells and macrophages. Nonetheless, orally administered PDE4 inhibitors have 

numerous side-effects. PDE3 inhibitors relax airway smooth muscles. The development of inhaled dual 
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PDE3/PDE4 inhibitors that combine bronchodilation and anti-inflammatory activity shows great 

potential in treating patients with COPD 202,203. 

To reduce the exacerbation rate, especially in older patients and ex-smokers, long-term use of 

macrolide antibiotics such as azithromycin and erythromycin is recommended. Macrolides have 

immunomodulatory and antibacterial effects. The beneficial effects are possibly due to an 

improvement in phagocytosis by alveolar macrophages, an inhibition of IL-17 production by T 

lymphocytes and an inhibition of the release of chemokine (C-X-C motif) ligand (CXCL)-8 and 

Granulocyte-macrophage colony-stimulating factor (GM-CSF) by epithelial cells 204. However, 

treatment with azithromycin is associated with an increase in the incidence of bacterial resistance and 

hearing problems.  

 

 

Figure 8. Pharmacological treatment algorithms by GOLD Grade. Boxes and arrows in orange indicate 
preferred treatment strategy. Figure adapted from 1. 
LAMA: Long-acting muscarinic antagonist; LABA: Long-acting β2-agonist; ICS: inhaled corticosteroids; FEV1: 
forced expiratory volume in 1 second 

 

Since COPD is often associated with co-morbidities with systemic inflammation as the underlying 

driver, the use of the anti-inflammatory anti-TNFα antibody (infliximab) in the setting of COPD was 

thought to be promising. Unfortunately, clinical trials with infliximab showed no benefit and even 

raised major safety concerns 205. Further, statins (3-hydroxy-3-methylglutaryl coenzyme A reductase 
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inhibitors), a class of drugs used to treat hypercholesterolemia and to prevent cardiovascular event, 

may reduce morbidity and mortality in COPD patients but does not affect the risk of exacerbations 206. 

More specifically, long-term statin use is associated with a beneficial effect on all-cause mortality in 

COPD patients with a high level of systemic inflammation, as measured by high-sensitivity C-reactive 

protein levels above 3mg/L 207. In COPD patients with coexistent heart failure or post-myocardial 

infarction, cardioselective β-blockers may be indicated 208. 

 
 Figure 9. Treatment options in COPD 
NFκB: Nuclear factor κB; CASP1: Caspase-1; IL-1β: interleukin-1β; IL-1RI: interleukin-1 receptor type I; HDAC2: 
Histone deacetylase 2; PDE3/4: phosphodiesterase-3/4; ICS: inhaled corticosteroids; TNF: tumor necrosis factor; 
MAPK: Mitogen-activated protein kinase; PI3K: Phosphoinositide 3-kinase; NRF2: Nuclear factor erythroid 2–
related factor 2; TGF-β: Transforming growth factor β; PPARγ: peroxisome proliferator-activated receptor-γ 
 
 
In the future, development of medication targeting crucial drivers of disease should be promoted. 

Since COPD is a heterogeneous disease with differing underlying immunopathological processes, a 

targeted or precision medicine is warranted (Figure 9). Several barriers to the development of an 

effective anti-inflammatory treatment of COPD need to be overcome 8. First, it remains uncertain 

which are the main underlying inflammatory drivers of disease. Second, ICS can’t be used as a golden 

standard to compare with new treatments, as is the case in asthma. Third, clinical trials to assess the 

efficacy and safety of medication in patients with COPD are very time-consuming. Fourth, the 

treatment of COPD requires a targeted precision medicine that integrates the biological endotype and 
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the clinical phenotype in order to maximize the benefit-versus-risk ratio . Fifth, suitable biomarkers to 

follow-up the therapeutic response are still lacking. 

Numerous small molecules (most chemical drugs with low molecular weight) or biologics (larger and 

more heterogeneous such as antibodies) are under investigation for COPD with a disease-modifying  

purpose. Since levels of IL-1β are increased in the lung and sputum of patients with COPD, targeting 

the inflammasome (necessary for the activation of IL-1β and IL-18) seems interesting 209-211. Therefore, 

blocking of IL-1β, IL-18 and its receptors IL-1RI, IL-18R and caspase-1 is being evaluated, as is the 

inhibition of NFκB, a crucial protein complex central in propagating inflammation and the immune 

response upon stimuli 8,212. Further, restoring α1-antitrypsin activity can be introduced in the current 

therapy 213,214 and several monoclonal antibodies are under investigation: anti-IL-17 or anti-IL-17R, 

anti-IL-5 (reslizumab, mepolizumab) or anti-IL-5R (benralizumab), anti-IL-13 (lebrikizumab), anti-B cell 

therapies such as anti-CD20 (rituximab), anti-CD22 and anti-BAFF 212,215. Unfortunately, targeting 

leukotriene B4, IL-1β (canakinumab), IL-1RI (MEDI8968) and neutrophil elastase failed to show efficacy 

in patients with COPD 8,215,216. A monoclonal antibody against IL-8 (ABX-IL8) was only slightly effective 

at reducing the severity of dyspnea. Another neutrophil targeting approach by antagonizing the CXCR2 

receptor showed significant improvement on FEV1 and reduction in sputum neutrophil count in a phase 

II study. However, a too drastic reduction in absolute neutrophil count led to discontinuation of this 

study by some participants. Whilst effective in patients with rheumatoid arthritis, the antibody against 

IL-6R (tocilizumab) has not been tested in COPD 216. Although a very promising molecule, Sulforaphane, 

an NRF2 activator, did not stimulate the expression of NRF2 target genes nor had an effect on 

inflammatory markers in patients with COPD 217. Kinase inhibitors such as inhibitors of Mitogen-

activated protein kinase (MAPK) and Phosphoinositide 3-kinase (PI3K) are being evaluated in clinical 

trials 212. Thus far, an epidermal growth factor kinase inhibitor was poorly tolerated and did not exhibit 

efficacy in decreasing epithelial mucin stores 218. Although there is no evidence that fibrosis can be 

reversed in COPD, anti-fibrotic strategies include anti-TGF-β1, endothelin receptor antagonists and 

peroxisome proliferator-activated receptor-γ (PPARγ) activators. Other interesting challenges are the 

evaluation of non-antibiotic macrolides, the identification of nonsteroidal glucocorticoid receptor 

agonists, the reversal of corticoid resistance, the use of stem cells and the combat against accelerated 

ageing 8,212,219.   

Special attention is also being focused on enhancing patient compliance by combining 3 substances 

(e.g. LAMA, LABA and ICS) in 1 inhaler device (i.e. triple therapy) and by favoring inhaled (local effect) 

and once-daily medication 220. In addition, alternative formulations to minimize the interaction 

between molecules and newly developed delivery technologies are being tested 212. Bi-functional (or 

dual pharmacophore) muscarinic β2-agonist (MABA) agents have been developed. This is a novel 
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approach to “dual” bronchodilator therapy by combining muscarinic antagonism and β2-agonism in a 

single molecule 221. 

Non-pharmacological treatment for all COPD patients includes smoking cessation, but also reduction 

of all personal exposures to harmful particles or gases, influenza vaccination, stimulation of a healthy 

life-style encompassing a healthy diet and physical activity training. Pneumococcal vaccination is only 

recommended in patients > 65 years of age or younger persons with significant comorbid conditions 
222. Patients presenting with symptoms and risk for exacerbations (group B,C and D) should follow a 

pulmonary rehabilitation program 223. In patients with stable very severe COPD, oxygen therapy can 

be given and interventional therapy such as bronchoscopy, lung volume reduction surgery or lung 

transplantation can be considered 1. 
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CHAPTER 2: microRNAs 
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22.1 Introduction 

 

On top of the information obtained from the human genome sequence and associated diseases, there 

is another interesting layer of information contained in tissue-specific epigenomic marks. It is well 

understood that epigenetic modifications, such as DNA methylation and posttranslational 

modifications of the various histone tails, are essential for normal development 224,225. Characterization 

of how these epigenetic processes contribute to human biology and disease is an interesting field.  

Interestingly, the earlier called ‘junk DNA’ constitutes practically 98 percent of the 3 billion base pairs 

in the human genome, yet they do not code for proteins. Scientists used to believe that DNA sequences 

not coding for proteins were simply a waste of space, but these sequences may actually play a 

significant role in disease progression, as 50 to 75% of them are transcribed into RNA similar to their 

protein-coding neighbors, named non-coding RNAs (ncRNAs) 226,227. ncRNAs represent an ever-growing 

and ubiquitous class of regulatory RNAs that are principally involved in control of many cellular 

processes such as development and cell cycle regulation. In fact, the number of ncRNAs in a species 

reflects the organism complexity in contrast to the number of coding genes which remains relatively 

unaltered across different species (Figure 10) 228.  

 
Figure 10. The non-coding portion of the genome reflects organism complexity (adapted from228). 

coding DNA non-coding DNA

organism 
complexity



 
 

33 
 

Mechanisms of their function are not yet comprehensively understood. However, it is now clear that 

they also play considerable roles in pathology 155,228,229. 

miRNAs constitute a large class of highly conserved small non-coding RNAs that have emerged as key 

post-transcriptional regulators of gene expression. miRNAs control a wide spectrum of biological 

functions, primarily to maintain and to protect the organ tissues. However, when dysregulated, their 

impact in diseases should not be underestimated, since one single miRNA can interfere with multiple 

targets within several biological pathways 230,231.  

 

miRNA nomenclature is built on a few principles: miRNAs are named using the ‘miR’ prefix and a 

sequentially assigned number. Identical miRNAs across different species are numbered equally and a 

reference to the species is built in the miRNA name (e.g. hsa for human, mmu for mouse). The mature 

miRNA sequences are designated ‘miR’, whereas the precursor hairpin sequences are labeled ‘mir’. 

The suffixes -3 and -5p refer to the arm from which the mature miRNA originates. Highly related miRNA 

sequences, only differing in 1 or 2 nucleotides, are given lettered suffixes, such as miR-135a and miR-

135b, both members of the miR-135 family. Distinct hairpin loci that give rise to the same mature 

miRNA have a numbered suffix, such as mir-218-1 and mir-218-2.  
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22.2 miRNA biogenesis  
 

MicroRNAs are small non-coding RNAs of 19-23 nucleotides long. The genes from where they are 

transcribed are mainly located in introns of non-coding or coding genes but some miRNAs are encoded 

by exonic regions as well 232-234. Some miRNA genes are organized in clusters in the genome and are 

hence often co-transcribed, linking their genomic localization with a similar functional role 235,236.  

The biogenesis of miRNAs is a multi-step and tightly regulated process that starts in the nucleus. Most 

miRNAs follow the canonical biogenesis pathway while only a minority of miRNAs are generated 

through alternative processing.  

In the canonical miRNA biogenesis (Figure 11), the miRNA genes are transcribed by RNA polymerase II 

into a primary miRNA transcript (pri-miRNA). Subsequently, this transcript is cleaved into a 60-70 

nucleotide long hairpin structure by the combined action of the Microprocessor constituting the 

enzymes Drosha and its cofactor DiGeorge Syndrome Critical Region 8 (DGCR8) 237. Drosha is the 

subunit that cuts the strand through recognition of the key features of the pri-miRNA, more specifically 

the basal junction. DGCR8 recognizes the apical motif and enhances the accuracy and efficiency of the 

processing 233. The resulting precursor miRNA (pre-miRNA) is then transported to the cytoplasm by 

means of exportin-5, associated with Ran GTP, a GTPase that moves RNA through the nuclear pore 234.  

In the cytoplasm, the pre-miRNA is further processed by a complex containing Dicer and 

transactivation-responsive RNA-binding protein (TRBP) into an asymmetrical miRNA duplex (miR-

3p/miR-5p), corresponding to the two sides of the stem. This duplex associates with an Argonaute 

(AGO) protein within the precursor RNA-induced silencing complex (pre-RISC). Release of the 

passenger strand after its cleavage converts pre-RISC to RISC: only one single stranded guide RNA will 

be retained in the mature RISC 235. The choice of the strand is not strict and depends usually on the 

thermodynamic stability with a preference for the least thermodynamic stable 5’ end, but strand fate 

can also be determined by the nucleotide sequence, tissue type or environmental conditions resulting 

in incorporation of the other strand as well 238-240.  

Loaded in the RISC, the now mature miRNA guides the RISC to its target mRNA resulting in inhibition 

of protein translation and/or mRNA degradation 241. miRNA-silenced mRNA is then directed to 

processing bodies (P-bodies), i.e. discrete and highly dynamic cytoplasmic foci that are enriched in 

proteins involved in mRNA catabolism and translational repression 242,243. Remarkably, under certain 

conditions or in specific cells, the mRNA is released from these P-bodies and recruited to polysomes 
243. 
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Figure 11. canonical miRNA biogenesis. Schematic representation of microRNA transcription by RNA 
polymerase, nuclear processing by the microprocessor complex comprising Drosha and DGCR8 and nuclear 
export by exportin-5. The microRNA biogenesis is then pursued in the cytoplasm by Dicer-mediated processing 
and RISC loading, after which the mature microRNA strand is guided to its target mRNA, predominantly resulting 
in inhibition of translation and/or mRNA degradation. 
RNA Pol II: RNA polymerase II; DGCR8: DiGeorge Syndrome Critical Region 8; TRBP: transactivation-responsive 
RNA-binding protein; RISC: RNA-induced silencing complex; 3’UTR: untranslated region 
 
Alternatively, besides the generation of the canonical mature miRNA sequence, as described by these 

different biogenesis mechanisms, a single miRNA gene can give rise to multiple transcripts, the so 

called isomiRs 244. Additionally, miRNA precursors can be potential disease markers as well. Of interest, 

the measured amount of the precursor doesn’t necessarily correlate with the amount of mature 

miRNA 245. 

Importantly, interference is possible at different levels throughout the entire miRNA biogenesis 

pathway (transcription, processing, RNA editing, AGO loading, RNA decay), affecting miRNA expression 

and function 233. Genetic and epigenetic alterations can result in aberrant expression of miRNAs, a 

mechanism that is frequently encountered during cancer and disease 246. Transcription factors such as 

p53 or MYC can positively or negatively affect miRNA expression by interfering with RNA Polymerase 

II 233,247. Interference with the expression or the function of Drosha or Dicer is also frequently reported. 

In response to DNA damage, p53 promotes Drosha-mediated processing of certain miRNAs that are 

involved in regulating cell cycle or cell proliferation 247. Dicer sumoylation is described in macrophages 
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of smokers 248 but also other mechanisms can affect Dicer expression such as hypoxia-inducible 

epigenetic regulation of Dicer expression 249 or another miRNA such as let-7, miR-630 or miR-103/107 

that lowers the expression of its target DICER1 250-252. Of note, it is also suggested that restricted Dicer 

cleavage could contribute to the tissue- or cell-specific expression of miRNAs 253.  

When the mature miRNA is present in the cytoplasm, different mechanisms can affect the mature 

miRNA level as well. One such mechanism is the transport of the mature miRNA back to the nucleus, 

(e.g. by Exportin 1 or Importin 8) giving rise to nuclear miRNAs 254. Also, RNA-binding proteins 233,255 

and the sequestration of miRNAs by endogenous sponges such as competing endogenous RNAs 

(ceRNAs) can alter mature miRNA levels 256,257.  

Cell communication can occur through cell contact, soluble mediators and exosomes, defined as small 

cell-derived vesicles whose cargo contains stable small RNAs including miRNA 258. As such, miRNAs are 

stably present in plasma and other body fluids 259. Active processing and secretion of mature miRNAs 

to neighboring cells in exosomes (40nm-100nm) or microvesicles (100nm-1μm) contributes to 

intercellular communication and target regulation in distant recipient cells, directing biological 

processes under normal physiological as well as under pathological conditions. Although not quite 

similar regarding their characteristics and biogenesis, exosomes and microvesicles are often grouped 

as extracellular vesicles. These extracellular vesicles have been demonstrated to be involved in 

activation or suppression of immune responses, in tissue repair, but also in tumor biology 260. Aberrant 

presence or expression of these miRNAs in body fluids, bound to proteins or within microvesicles or 

exosomes, can be used as a predictive or diagnostic marker of disease 261. Moreover, targeting these 

extracellular vesicles, as well as utilizing them as therapeutic drug delivery vehicle or therapeutic agent 

may open new avenues in – but not only – miRNA therapy. 
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22.3 Target regulation by miRNAs 
 

More than 60% of the human protein-coding genes contain at least one conserved miRNA-binding site 
262. Considering that also non-conserved sites exist, most protein-coding genes might be controlled by 

miRNAs. 

The mechanisms by which a miRNA regulates its mRNA target, depend on the specific AGO protein in 

which the miRNA is loaded and the extent of complementarity between the miRNA and mRNA 235,263. 

First, AGO proteins constitute an essential component of the miRISC. They enhance the speed of target 

finding, especially when no mismatch is present in the seed sequence, while protecting the guide from 

degradation and ensuring a stable binding 264. While miRNAs function as the guide, AGO proteins 

function as effectors by recruiting factors that induce translational repression, mRNA deadenylation 

and mRNA decay 233. Second, the vast majority of miRNAs form partial duplexes with the 3’untranslated 

region (UTR) of the target. Generally, a miRNA can associate with 4 types of canonical sites located in 

the 3’UTR of its target gene, a 6mer, 7mer-1A, 7mer-m8 and 8mer site (Figure 12) 235,265. Perfect pairing 

is pursued between nucleotides 2 and 7 at the 5’ end of the miRNA (‘the seed’) and  the target site.  

 
Figure 12. Different types of canonical miRNA target sites 265. The vast majority of microRNAs form partial 
duplexes with microRNA recognition elements within the 3’UTR of the target mRNA transcript. Based on the 
characteristics of the base pairing between the microRNA seed and the target, 4 types of miRNA target sites can 
be distinguished.  
 
Flexibility to this global ‘seed’-rule has been described repeatedly 243,266,267. Imperfect base pairing with 

the seed can be compensated by extensive 3’ end pairing or base pairing to nucleotides 13-16 of the 

miRNA. ‘Centred sites’ where the middle sequence of the miRNA forms base pairs with the target are 
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also reported 268. Factors contributing to miRNA-target binding are proximity to sites for co-expressed 

miRNAs or an AU-rich nucleotide area near the site. Other important requisites that mediate miRNA-

target efficiency are presence of in vivo concentrations of miRNA and target, positioning away from 

the center of long UTRs or orienting within the 3’UTR at least 15 nucleotides away from the stop codon 

or the poly(A) tail 243,269. In general, the repression of a miRNA target is less efficient when the seed has 

only a 6mer site match compared to a 8mer site. Furthermore, additional base pairing adds to the 

stability of the binding 265. For effective repression, multiple sites for the same or for different co-

operating miRNAs are required (synergistic effect) 243. 

Interestingly, one target often contains multiple miRNA binding sites so that many miRNAs are able to 

regulate the expression of that target. On the other hand, a single miRNA can regulate several mRNA 

targets 262. First, the cellular concentration of the miRNA dictates the protein output of its target. 

Second, miRNAs rather fine-tune protein expression levels or establish a threshold which potentially 

leads to substantial biological consequences 265. Third, although a miRNA is able to repress hundreds 

of proteins, only a few of these proteins may be critical for a particular biological process 270.  

Although their primary mode of action is inhibition of translation and mRNA degradation, a few groups 

have also reported that miRNAs can induce mRNA or protein expression 271,272. Cell cycle phase, stress 

conditions or SNPs in miRNA genes or miRNA response elements (MREs) can alter the functionality of 

miRNAs. As an example, miR369-3 oscillates between repression and activation in coordination with 

the cell cycle. In G1/G0 arrest, it directs association of proteins with the AU-rich elements (AREs) in TNF-

α to activate translation 273. Adding a level of complexity, targets can reciprocally control the level and 

function of miRNAs as well 274.  

In addition, crosstalk between miRNAs and other ncRNAs has been described repeatedly with 

competition for the same substrate, shared effector proteins and cross-regulation of each other 275-277, 

as well as miRNAs affecting the epigenetic state 278,279. RNA-binding proteins can cooperate with 

miRNAs in the down-regulation of the shared target or protect the target from miRNA binding 255. For 

miRNAs present in the nucleus, there is a lack of clarity regarding their function. Studies have suggested 

functions such as regulating gene and non-coding RNA expression 272,280,281, controlling the biogenesis 

of other miRNAs 282, affecting chromatin state and fine-tuning the expression of mRNA expression in 

the cytoplasm 254,283-285. 

Another interesting fact that needs further investigation is the fate of miRNAs following mRNA 

targeting. It has been shown that miRNAs can be recycled after target recognition and thus can 

participate in multiple rounds of targeting. During this process, the 3’end of the miRNA can be 

modified, accelerating the rate of miRNA decay 286.  
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22.4 miRNAs and the immune system 
 

miRNAs are intricately connected to most biological processes including normal homeostasis and 

inflammation in a tissue specific and even time-specific manner 287. Early evidence for their wide-

spread regulatory role comes from loss of Drosha, Dgcr8, Dicer or miRNA-associated Argonaute protein 

studies which resulted in severe developmental defects or even early death 288-290. Targeting or 

deletion of Dicer in specific cell-types provided more information on the, often vital, role of miRNAs in 

cell development and function 252,291,292. Through lung-specific, targeted deletion of Dicer, a global 

reduction in miRNA processing resulted in abnormal embryonic lung development, manifested by 

apoptosis and abnormal airway branching 293. 

 
miRNAs are involved in the tight regulation of components of Toll-like receptor (TLR) signaling and in 

innate immune pathways, therefore being well placed to function as adequate immunomodulators 294. 

TLRs are a family of PRRs that play an essential role in innate immunity. Both TLRs and miRNAs are 

restrictedly expressed in particular immune cells and epithelial cells, which enables miRNAs to control 

these cells’ reaction to infection or injury, to dampen excessive inflammation and to allow the cells to 

return to homeostasis. An interesting perspective is that relatively few conserved miRNA binding sites 

are confirmed on common TLR signaling mediators, enabling a selected group of miRNAs to target 

these mediators upon TLR activation, thereby avoiding excessive pro-inflammatory responses. In 

return, TLR activation itself can give rise to a sequential early or late induction, or decrease, in miRNA 

levels that then controls the strength and the longevity of the inflammatory response 295. Both miR-

155 and miR-146a, 2 important regulators of inflammation, are induced upon TLR4 stimulation with 

LPS in monocytes. However, miR-146a functions as a brake on the inflammatory response by 

negatively regulating NFκB signaling through targeting of both IRAK1 and TRAF6, while miR-155 

enhances the inflammation 295-297. miR-21 is induced following TLR activation of macrophages and acts 

as a molecular switch between the pro-inflammatory (NFκB) and the anti-inflammatory response (IL-

10) via its target programmed cell death 4 (PDCD4), resulting in positively influencing IL-10 while 

negatively regulating NFκB 298,299.  

Myeloid-specific miR-223 negatively regulates myeloid progenitor proliferation and granulocyte 

differentiation and activation 300. MiR-223 mutant mice develop lung pathology with an exaggerated 

tissue destruction and a pro-inflammatory phenotype following LPS injection 301,302.  

At steady state, miRNAs influence immune cell development and function, and balance hematopoietic 

output by negatively regulating key immune development genes alongside important nodes in the 

regulatory circuit 303,304. An integral role for miRNAs in the adaptive immune response is extensively 

studied 298. As an example, miR-150 and its target c-Myb are critical for the transition from pro- to pre-
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B cell, with a high expression of miR-150 in mature B and T cells but not in their progenitors, whereas 

c-Myb is highly expressed in lymphocyte progenitors and down-regulated on maturation 270,291. 

Further, both B and T cells rely on miR-155 for adaptive immune responses 305. For instance, absence 

of miR-155 in B cells resulted in an attenuated production of IgG1 antibodies 306. Besides a regulatory 

role in T cell differentiation and function, miRNAs are also required for the maintenance of the naïve 

T cell state 307. miR-155 promotes T-cell mediated inflammation through the regulation of both Th1 

and Th17 responses while miR-146a seemes to have an intrinsic impact on the function of Treg cells 
307. Besides exceptionally high levels in Treg cells, the expression of miR-146a, a negative regulator of 

the immune response and widely expressed across the hematopoietic system, generally increases with 

maturation and activation 297. A microRNA profiling study focusing on Treg cells, revealed that miR-

199a-5p was repressed in Treg cells of patients with COPD compared to controls. Additional in vitro 

experiments showed an involvement of miR-199a-5p in TGF-β signaling, suggesting an influence of this 

miRNA on the TGF-β-induced Treg differentiation and the modulation of the adaptive immune balance 

towards Th1 and Th17 responses 308. In addition, DCs from bic/miR-155-deficient mice fail to present 

antigen to T cells following endotoxin challenge 309.  

Although the cell builds in a plethora of protective measurements, dysregulation of one or more crucial 

miRNAs can lead to an aberrant cell development or immune function 303 and can facilitate 

development of disease 310-312.  
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22.5 miRNAs and smoking  
 
Cigarette smoking is the predominant risk factor for developing COPD in the western world. CS clearly 

reduced the overall miRNA profile in murine lungs as well as in human airway epithelial cells and 

alveolar macrophages 149,150,313. Among the subset of decreased miRNAs in lungs of CS-exposed mice, 

many had functions in stress response, cell proliferation and apoptosis 150. miR-218, which was strongly 

down-regulated in airway epithelium of smokers, contributed to the induction of a number of smoking-

related genes 149. In human alveolar macrophages, the decrease in miRNA abundance was related to 

the number of pack years smoked, hereby establishing a link with cumulative smoking history 313. Of 

note, alterations in miRNA levels are an early event following CS exposure 314.   

The effect of long-term smoking on the miRNA profile in plasma was also assessed. Of the differentially 

expressed miRNAs, 43 of 44 miRNAs were higher expressed in plasma of smokers compared to never-

smokers. Notably, 24 of the 44 differentially expressed miRNAs were previously reported as potential 

biomarkers of diseases, suggesting that smoking history should be taken into account when assessing 

disease risk in blood. In return, smoking cessation restored the plasma microRNome to resemble that 

of never-smokers 315. 

When mice deficient or heterozygous for the Arylhydrocarbonreceptor (Ahr), a suppressor of 

inflammation, oxidative stress and apoptosis in response to constituents in CS, were exposed to CS, 

more miRNAs were up-regulated in lung tissue of  Ahr−/− mice compared to Ahr+/− mice including miR-

96 316. Moreover, miR-101 and miR-144, 2 miRNAs induced upon cigarette smoke extract (CSE) 

exposure in vitro, targeted the cystic fibrosis transmembrane conductance regulator, a chloride 

channel important for epithelial fluid homeostasis 317. 

The mechanism by which CS alters miRNA levels remains to be elucidated and many hypotheses have 

been put forward. First, CS is highly toxic and contains free radicals and oxidative compounds that 

cause oxidative stress and are mutagenic, thereby establishing a pivotal connection between CS and 

carcinogenesis. In addition, genes for miRNAs often lie in ‘fragile sites’ in the genome. Second, CS might 

be linked to an altered epigenetic state that consequently affects miRNA gene transcription. As an 

example, miR-218 and its host gene Slit Homolog 2 (SLIT2) are down-regulated in the bronchial 

epithelium of smokers compared to never-smokers, probably via promoter hypermethylation. Third, 

CS can affect the global processing of miRNAs by post-translationally modifying the processing 

enzymes such as Dicer 248 or by affecting the stability of the RISC complex 318. Fourth, CS is suggested 

to increase miRNA degradation or target miRNAs to stress granules or P-bodies.  

An interesting question is whether CS can influence miRNA function in the brain and can alter the 

neurobehavioral circuitry. It has previously been reported that the dopamine D1 receptor gene (DRD1) 

is associated with nicotine dependence and additionally that two alleles (A and G) of polymorphism 
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rs686 in the 3’UTR of DRD1 gave rise to a differentially expressed dopamine receptor in the brain, 

thereby mediating dopamine action. Polymorphism rs686A of DRD1 was complementary to the seed 

sequence of miR-504 and differential targeting by miR-504 may explain nicotine dependence 319. 
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22.6 miRNAs in COPD 
 

miRNA research in COPD has opened new avenues for a better understanding of COPD pathogenesis. 

It is increasingly recognized that miRNAs, besides other factors, are entangled in many biological 

pathways such as repair and inflammation that are important in COPD pathogenesis, as well as in COPD 

pathology such as emphysema. Altered miRNA expression has been observed in human lungs of 

patients with COPD compared to control smokers as well as in other compartments. Further, in vitro 

or in vivo mechanistic studies highlight the impact of several miRNAs in the pathogenesis of COPD. 

 

 
Figure 13. Overview of microRNA dysregulation in COPD patients compared to control. Differentially expressed 
microRNAs are represented according to compartment, anatomical location or disease phenotype. The arrow ↑ 
indicates that this microRNA is up-regulated in patients with COPD compared to controls. 
PBMC: peripheral blood mononuclear cells 
 
In order to elucidate the pathogenesis of COPD, mRNA and miRNA profiles were studied in lung tissue, 

revealing 70 differentially expressed miRNAs between smokers with or without airflow limitation of 

which miR-223, miR-1274a and miR-144 showed the strongest up-regulation and miR-923, miR-937 

and miR-422a the strongest down-regulation in COPD patients 152. In another study, miRNAs were 

detected in lung tissue and in blood of patients with COPD. Intriguingly, miR-203 was lower expressed 

in lung tissue while higher expressed in blood of COPD patients compared to never-smokers (Figure 

13) 320. Moreover, in the cell fraction of bronchoalveolar lavage (BAL) from 87 patients with either 
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adenocarcinoma or COPD or both, 66 miRNAs were differentially expressed. In COPD patients, the miR-

132-212 cluster was up-regulated and was negatively correlated with α1-antitrypsin mRNA 321. Further, 

in blood samples of smokers with COPD compared to controls, 56 miRNAs were differentially 

expressed. Besides others, the expression of miR-3202, miR-26a-5p, miR-451b and miR-149-3p was 

significantly reduced in smokers with or without COPD compared to never-smokers. miR-149-3p was 

shown to regulate the TLR4/NFκB pathway in murine monocytic THP-1 cells 322. Next, in serum of COPD 

patients and controls, 72 miRNAs were examined by RT-qPCR array. Although the rather small pool of 

miRNAs investigated, 5 miRNAs were found to be significantly dysregulated with miR-20a, miR-28-3p, 

miR-34c-5p and miR-100 being down-regulated and miR-7 being up-regulated in COPD compared to 

controls 323. In plasma, 9 miRNAs were significantly lower expressed between current smokers with 

and without airflow limitation as detected by low-density array screening of which miR-106b was 

further validated by RT-qPCR 324. In peripheral blood mononuclear cells from COPD patients versus 

smokers without airflow limitation, 8 miRNAs were up-regulated (e.g. miR-24-3p, miR-93-5p, miR-320a 

and miR-320b) and 3 miRNAs were down-regulated (e.g. miR-1273g-3p) of which 5 were validated. 

Regulatory network analysis on integrated miRNA and mRNA expression data revealed NOD and TLR 

as most enriched pathways 325.  

Our research group showed that let-7c and miR-125b were robustly decreased in  sputum supernatant 

of smokers with COPD compared to never-smokers. In addition, let-7c was associated with FEV1/FVC 

and inversely correlated to its predicted target, the soluble TNF Receptor II 153. Using another non-

invasive method such as exhaled breath condensate, miRNA expression was quantified in patients 

with asthma and COPD compared to healthy controls. miR-21 and miR-328 were significantly lower 

expressed in COPD compared to controls 326. 

Several miRNAs may be involved in the pathogenesis of emphysema. Interestingly, Christenson and 

colleagues integrated miRNA and mRNA data from lung tissue of patients with COPD GOLD IV versus 

controls at eight different locations of varying degree of emphysema. Expression levels of 63 

microRNAs were altered with regional emphysema, including miR-638, miR-30c, and miR-181d. Genes 

correlated with these miRNAs were enriched in pathways associated with emphysema 

pathophysiology such as oxidative stress and accelerated aging 327. Moreover, miR-34c, miR-34b, miR-

149, miR-133a and miR-133b were significantly down-regulated in lungs from patients with moderate 

compared to mild emphysema. These authors reported the strongest correlation of miR-34c with its 

target SERPINE1, a protease inhibitor, which highlighted the disturbed protease/anti-protease balance, 

important in emphysema  328.   
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 Up-regulation of miR-199a-5p and miR-34a was noted in lungs 

of COPD patients compared to never-smokers alongside a lower 

expression of vascular endothelial growth factor (VEGF) and 

hypoxia inducible factor (HIF-1α). The proposed mechanism 

involved an increase in p53 expression in answer to the burden 

of oxidative stress (Figure 14). P53 then enhanced the 

transcription of miR-34a which mediated the increase in miR-

199a-5p, possibly through AKT inactivation. Consecutively, 

increased levels of miR-199a-5p targeted HIF-1α which could 

result in lung cell apoptosis and emphysema through lower 

VEGF expression 329 since VEGF receptor signaling is required for 

maintenance of the alveolar structures, as shown in a rat model 

by blocking VEGF receptor signaling 330.  

Figure 14. proposed mechanism in lungs of COPD patients involving miR-34a and miR-199a-5p. Adapted from 
Mizuno S. et al. Chest 2012; 143 (3):663-672 329. 
 
Differentially expressed miRNAs in lung tissue of smokers with or without airflow limitation revealed 

biological pathways that are relevant for the pathogenesis of COPD such as TGF-β signaling, Wnt and 

focal adhesion pathways. As an example, miR-15b, up-regulated in patients with COPD compared to 

control smokers and expressed in bronchial epithelium and alveolar type II cells, altered TGF-β 

signaling by affecting the levels of SMAD7, SMURF2 and decorin 152. In TGF-β-responsive airway smooth 

muscle cells, miR-145 negatively regulated pro-inflammatory cytokine release in COPD by targeting 

SMAD3 331.  

Skeletal muscle weakness is a predictor of mortality in patients with moderate to severe COPD. 

Detection of muscle-specific miRNAs (myomiRs) in plasma of stable COPD patients revealed elevated 

levels of these myomiRs as a result of increased muscle wasting and turnover 332. In contrast, in 

diaphragm muscle biopsies from sedentary persons with or without airflow limitation, lower 

expression of myomiRs was detected in patients with COPD, besides an up-regulation of HDAC4 and 

the muscle-related transcription factor MEF2C 333.  

 

More information regarding miRNAs in COPD has been published in some excellent reviews  155,312,334-

338. 
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22.7 miRNA therapy 
 

In every cell, a highly complicated web of interactions exists between DNA, RNA and proteins. Over 

the last couple of decades, researchers have taken the challenge to identify important interacting 

‘nodes’. One of these breakthroughs was the discovery of the RNA interference mechanism where 

double-stranded RNA triggers suppression of gene activity in a homology-dependent manner by 

Andrew Fire and Craig Mello. Their work was rewarded with the Nobel Prize in 2006.  Soon after, 

another principle of gene regulation was revealed by small non-coding RNAs, including miRNAs, that 

added to the complexity. Dysregulation of miRNAs in disease and infection meant that these could be 

manipulated, making them a very appealing target or therapeutic (Figure 15).  

 
Figure 15. Therapy modalities for targeting miRNAs in human disease. To develop a microRNA therapeutic, the 
first step is to identify a microRNA candidate, relevant to the disease of interest. Depending on the altered 
expression profile in disease, restoring microRNA levels should be aimed for. This can be achieved through 
different replacement or sequestration technologies which bears many challenges. If promising, preclinical 
testing and careful evaluations through the different stages of clinical trials finally bring the microRNA 
therapeutic to the market. 
 
Interestingly, miRNAs have several assets for being ideal as a therapy or therapeutic target. First, 

miRNAs are small in size and have a conserved sequence. Second, targeting a single miRNA can affect 

multiple pathways, which is preferable above a mixture of components. However, besides the 
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advantages of miRNA-based therapeutics, miRNA therapy bears some challenges as well. Modulation 

of the miRNA expression can be beneficial in one tissue while harmful in the other, stressing the need 

for targeted delivery. In addition, the small sequence of a miRNA is subject to nuclease degradation, 

requiring extra modifications or formulations. These chemical modifications, conjugations to carrier 

molecules or formulations, intend to ameliorate tissue uptake, to delay plasma clearance and to 

enhance the efficacy 339. To effectively deliver the cargo from the endosome to the cytoplasm, and 

thus induce endosomal escape, several strategies can be relied on such as proton sponge effect, 

membrane fusion, pore formation and membrane disruption 340. Another important issue is the toxicity 

risk as a result of off-target effects or such as potent immune activation or other unintended effects of 

miRNA mimics or antagomiRs 341. Also, over- or under-dosing can adversely lead to hyper- or hypo-

activation.  

Various approaches are developed to re-establish appropriate miRNA levels. miRNA mimics or miRNA 

expression vectors can be administered to replenish the level of a specific miRNA, as well as drugs that 

enhance miRNA transcription and processing. Despite the excellent cell entry capacities of viral 

vectors, they can induce immune activation. Therefore, non-viral vectors with minimal toxicity and 

immunogenicity are being developed. Efficient delivery of miRNA mimics can be achieved by 

introducing chemical modifications to a synthetic RNA duplex (e.g. 2’F- or 2’OMe-modification, 

conjugation to cholesterol, methylation of the passenger strand, introduction of mismatches,..) to 

enhance the stability and cellular uptake, but also to favor RISC loading of the guide or antisense strand 

over the passenger strand 342. Another solution is the encapsulation of the miRNA mimic into carrier 

systems such as liposomes and nanoparticles with differing charge, composition, addition of specific 

antibodies for targeted delivery or conjugates in order to protect the mimic and to allow endosomal 

escape 343. Different nanoparticle technologies have already been designed. Intravenous injection of 

lipid-polymer nanocomposites have been reported for their successful and specific uptake in lung 

endothelium 344. However, safe transportation and delivery of miRNA mimics to the lungs via inhalation 

and targeted delivery to the cell of interest remains a major challenge. Polymeric nanoparticles based 

on polyethyleneimine were successful in complexing the miRNA mimic and delivering an actively 

functioning miRNA to human F508del CFTR bronchial epithelial cells (CFBE41o-cells) in vitro 345. Also, 

various in vitro experiments indicate that bio-inspired nanocomposites consisting of a pulmonary 

surfactant outer shell and a siRNA- or miRNA-loaded hydrogel core may be a promising candidate for 

inhalation therapy 346. However, both nanoparticle formulations still need to prove their value in in 

vivo experiments.  

On the other hand, the expression of a specific miRNA can be lowered by adding miRNA antagonists 

such as locked nucleic acid (LNA) anti-miRs, antagomiRs or miRNA sponges (competitive inhibitors of 

miRNA function). Also here, different modifications and (targeted) carrier systems can increase 
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stability, delivery and specificity for a certain environment. In the so-called first generation of single-

stranded antisense oligonucleotides (ASOs), the phosphate backbone was substituted by a 

phosphorothioate backbone which improved solubility and membrane penetration, although their 

efficacy was poor. In the second generation ASOs, additional modifications were introduced to the 

ribose sugars (2’-O-Methyl, 2’-methoxy-ethyl, 2’-Fluoro) resulting in greater nuclease resistance and 

ameliorated binding affinities. The next generation was developed to increase the binding affinities 

(LNA, peptide nucleic acids and morpholinos). Addition of specific conjugates such as N-

Acetylgalactosamine (GalNAc) ligands can further enhance potency for targets in hepatocytes. 

Targeting entire miRNA families can be accomplished by miRNA sponges and short seed-targeting LNAs 
347. Based on complementarity, these molecules sequester the endogenous miRNA, thereby preventing 

its function 343. All these former mentioned modifications have significantly improved potency but in 

vivo delivery of nucleic acid based therapeutics still remains a major hurdle. To overcome the delivery 

problem, small molecules that target miRNA processing are under investigation. As an example, 

streptomycin functions as a miR-21 inhibitor by binding to the terminal loop region of pre-miR-21 

which blocks Dicer processing. Inforna is a platform that assists in sequence-based prediction and 

design of small molecules targeting RNA 348.  

At present, miRNAs are generally more used as biomarkers/diagnostics in clinical settings than as a 

therapeutic. However, the number of miRNA therapeutics is rising and only a small number of miRNA 

therapeutics have moved from bench to bedside 349. Miravirsen (Santaris Pharma), a 15-nucleotide 

phosphorothioate DNA-LNA mixmer which sequesters mature miR-122, was the first successful 

miRNA-based therapy for treating hepatitis C virus (HCV) infections 350. miR-122 is a highly conserved, 

liver-specific miRNA that positively regulates HCV replication by binding to the 5’UTR of HCV mRNA, 

resulting in protection of viral RNA from degradation 351. However, miR-122 is also involved in lipid 

metabolism and acts as a tumor suppressor 352. Until now (additional phase II clinical trials with long-

term follow-up and multidrug combinations are ongoing), Miravirsen was well tolerated and short-

term use provided long-lasting antiviral activity with only limited evidence of viral resistance. Recently, 

RG-101 (Regulus Therapeutics), another anti-miR-122 reached phase II clinical trials for chronic HCV 

infections 353. RG-101 has a different chemistry GalNAC-conjugated antimiR-122 oligonucleotide) than 

Miravirsen to enhance uptake by the hepatocytes and to increase its potency. However, after 

treatment of patients with a combination of RG-101 and a direct-acting antiviral, the trial was put on 

hold due to a second case of jaundice. Apart from these cases, no important adverse effects have been 

reported yet in several animal studies 339,354,355 and clinical trials. Nonetheless, long-term anti-miR-122 

therapy might be inadvisable due to its tumor suppressor function, as mir-122 KO mice develop 

hepatocellular carcinoma 356.  
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In several animal models of non-small-cell lung carcinoma (NSCLC), delivery of miRNA mimics or 

antagomiRs showed promising effects on tumor outcome and safety 357,358. MRX34 (Mirna 

Therapeutics), a miR-34 mimic encapsulated in a lipid carrier acquiring a positive charge under low pH 

conditions, has entered a multicenter phase I trial in patients with NSCLC or other tumors. Although 

the initial results were promising, some immune-related toxicities were observed, terminating the trial 

until the cause has been identified. Another mimic for miR-16 enrolled phase I clinical trials for 

mesothelioma and NSCLC, delivered in an EnGenIC Delivery Vehicle nanocell (also called TargomiR). 

These are bacterium-derived particles coated on the surface with epidermal growth factor receptor 

(EGFR)-specific antibodies for targeted delivery 343.  

Furthermore, a multi-target anti-miRNA antisense oligodeoxyribonucleotide (MTg-AMO) approach has 

been designed to target miR-21, miR-155 and miR-17-5p in cancer, resulting in increased inhibition of 

cancer growth 359.  

Promising candidates in COPD pathogenesis, provided that targeted delivery can be achieved, could 

be mimics for let-7 family members, miR-146a, miR-34 family members, miR-218, and antagomiRs for 

miR-21, miR-155, miR-15b and miR-135b. In this dissertation, we focus on miR-218-5p which will be 

further discussed in part II (Research work, chapter 5).  
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CHAPTER 3: Translational research in COPD: materials 
and methods 
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33.1 Rationale 
 

Translational research is an integrated approach with as ultimate goal translating findings from basic 

research to the clinic (‘from bench to bedside’) (Figure 16).  

An illustrative example of a translational approach is the research into the role of miR-122 in hepatitis. Basic 

researchers found that miR-122 was highly up-regulated in hepatitis compared to control liver and tested the 

therapeutic potential of an anti-miR-122 in in vitro and in vivo experimental models (bench). The success story 

was picked up by industry and miravirsen was developed by Santaris Pharma. Miravirsen is now vigorously tested 

in clinical trials, hopefully ending as a clinically approved therapeutic product that fights hepatitis (bedside). 

Basic research aims to elucidate a basic research question such as the role of miRNAs in COPD. 

Therefore, a wide range of in vitro and in vivo tools, which will be discussed in detail in this chapter, 

are used. Knowledge obtained by basic research will then be validated on ex vivo human lung tissue 

from patients and in that way translated to the human situation, as a first step towards clinical 

research. Clinical research investigates the safety and effectiveness of medication, biomarkers, 

treatment regimens etc., intended for use in humans. 

Another aspect of translational research is that findings from the clinic at the patient level can be 

investigated in large population studies. As such, the contribution of, for instance, co-morbidities and 

treatments on COPD outcomes can be investigated at the population level (Figure 16). 

 

                     
Figure 16. Translational research (both intersections). Translational research focuses on the integrated approach 
where laboratory research findings from in vitro cell culture systems or in vivo animal models are translated into 
patient-oriented therapy development (clinical research). The therapeutic interventions in the clinical research 
can then give rise to new insights regarding therapy and disease conditions in large population studies. 
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Clinical
research

Population
research



 
 

53 
 

33.2 In vitro culture of normal human bronchial epithelial (NHBE) cells 
 

Airway epithelial cells are important cell types in the encounter with inhaled toxic substances and 

initiation of inflammatory signaling. Stimulation of these cells with CS(E) or other substances can 

provide important information on the inflammatory reaction in vitro.  

Submerged primary NHBE cells (supplied by Lonza, Figure 17) are cultured using Bronchial Epithelial 

Growth Medium (BEGM), supplemented with necessary additives (BEGM SingleQuots kit, Lonza), 

according to the manufacturers’ instructions. Cells are grown in cell culture flasks and plates with 

NunclonTM delta coating. Experiments are conducted at passage 2 and 3. Cell survival is evaluated with 

flow cytometry and Trypan blue, and a lactate dehydrogenase (LDH) test (Figure 18) provides 

information regarding cellular damage when the cells are stimulated with a compound such as CSE. 

Cells are harvested by trypsinization or directly lyzed in Qiazol solution (Qiagen) for RNA extraction. 

Cell supernatant is stored for protein analysis by enzyme-linked immunosorbent assay (ELISA). 

 

 

Figure 17. Normal human bronchial epithelial cells. Submerged 
culture of primary NHBE cells grown in a 6-well plate after 
passage 2 that were untreated (air-exposed and not 
transfected). 
 
 
 
 
 
 

 
   
 

Figure 18. Lactate dehydrogenase (LDH) test. Example of a 
colorimetric assay were the release of the enzyme lactate 
dehydrogenase activity is measured as an indicator for cellular 
damage in NHBE cell supernatant of cells exposed to increasing 
doses of cigarette smoke extract ranging from 1% to 100%. For 
the high control, cell lysis was induced with Triton-X.  
 

 

 

However, one single cell type cannot reflect the complex reactional cascade following a stimulus in the 

human body which consists of a crosstalk between different cell types and organs. To overcome this 

limitation, experimental animal models are used.  
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33.3 Murine model of COPD 
 

Our lab has developed a CS-induced mouse model 360 that mimics most of the pathological features of 

COPD. In this dissertation, mice are exposed to 1 week (acute), 4 weeks (subacute) and 24 weeks 

(chronic) of CS. The acute and subacute exposures are ideal to investigate the CS-induced 

inflammation. Instead, the chronic CS exposure is required for investigating the hallmarks of COPD 

pathology such as emphysema, airway remodeling and presence of lymphoid follicles.  

Mice are in several aspects suited for research since they are cheap, easy to breed and their anatomy, 

biology and immune system is extensively studied 361. In addition, we use the C57BL/6 mouse strain 

which is moderately sensitive to CS and of which a multitude of knock-in and knock-out models exist 
362,363. However, certain differences must be taken into account when translating research findings 

from mice to humans 364.  

For example, the protein-coding regions of mouse and human genomes are on average 85% identical. 

Some genes are 99% identical while others are only 60% identical. Many regions are evolutionarily 

conserved because they are required for essential functions. In contrast, the non-coding regions are 

much less similar (only 50% or less). However, miRNAs form an exception since these small RNAs are 

highly conserved between species, making translations from miRNA research in mice relevant in 

humans. Nonetheless, the 3’UTRs and MREs in some target genes are known to differ between humans 

and mice 365. 

Thus, this CS-induced mouse model enables us to answer specific (miRNA-related) research questions 

in the pathogenesis of COPD.  

3.3.1 Protocol of smoke exposure 

Male C57BL/6 mice, purchased from Charles River (L'Arbresle Cedex, France), are housed under a 12h 

light-dark cycle in autoclaved cages and bedding, with unlimited access to water and food. Using a 

smoking apparatus and a smoke chamber, groups of C57BL/6 mice are exposed whole body to the 

tobacco smoke of five 3R4F reference cigarettes (without filter, University of Kentucky, Lexington, KY), 

4 times a day with 30 minutes smoke-free intervals. The mice are exposed for 5 days per week, for 1 

week, for 4 weeks or 24 weeks. An optimal smoke-to-air ratio of 1:6 is maintained and control groups 

are exposed to air.  

Twenty-four hours after the last exposure, the mice are weighted and sacrificed with an overdose of 

pentobarbital. Next, (lung) tissue and BAL is collected.  

The ethics committee for animal experimentation of the faculty of Medicine and Health Sciences 

(Ghent University) approved all in vivo manipulations.  
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3.3.2 Harvesting BAL and lung tissue 

By performing BAL, immune cells are retrieved, giving an insight 

into the cellular content within alveolar spaces and airways. Total 

cell counting on BAL cells is performed using a Bürker chamber and 

differential cell counts are obtained through stained cytospins 

(May-Grünwald-Giemsa staining) (Figure 19) and flow cytometry 

(see 3.6.5). Figure 19. Cytospin of BAL fluid (a. macrophage; b. 

neutrophil; c. lymphocyte) 

After rinsing the pulmonary and systemic circulation, lung tissue is collected. First, the left lung is 

fixated and paraffin embedded. Next, slices of the left lung are used for immunohistochemistry (see 

3.6.3) or in situ hybridization (ISH) (see 3.6.4).  Second, a single cell suspension is made from the largest 

lobe of the right lung. These cells are then labeled for flow cytometry. Finally, the rest of the right lung 

is used for RNA extraction and subsequent RT-qPCR (see 3.6.1) (Figure 20).  

 

 

Figure 20. Overview of murine lung tissue sample collection and analysis. The day after the last smoke or air 
exposure, murine lung tissue is collected. Further treatment with enzymes for digestion or fixative allows flow 
cytometric analysis and microscopic evaluation of stained lung slices, respectively. The rest of the lung is stored 
for later analyses such as RT-qPCR. 

ab
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33.4 Human lung tissue 

 

To validate our findings from the in vitro and murine experiments, our lab collects ex vivo lung tissue 

from patients with COPD or controls to investigate gene and protein expression.  

Specifically, lung tissue is obtained from patients undergoing lobectomy or pneumectomy for mostly 

lung tumors. Patients are defined as having COPD when the post-bronchodilator FEV1/FVC ratio is 

below 0.70. All patients with COPD have stable disease since patients with recent respiratory tract 

infections and exacerbations are excluded. Other exclusion criteria are receiving chemotherapy, 

radiotherapy or diagnosis of asthma and mesothelioma. Patients are considered ex-smokers when 

they quitted smoking for more than 1 year. Our study is approved by the medical ethics committee of 

the Ghent University Hospital and only subjects that provide written informed consent are included.  

Lung tissue is chosen by the pathologist as far from the lesion as possible. To obtain maximal 

information from this tissue, a part is sampled for immunohistochemistry (see 3.6.3) and ISH (see 

3.6.4), and a part is sampled for RNA extraction (and subsequent RT-qPCR) (see 3.6.1).  
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33.5 miRNA research 
 

3.5.1 miRNA detection and quantification 

miRNA research starts with the detection of (mature and/or precursor) miRNAs 366. To ensure large-

scale parallel detection of mature and/or precursor miRNA in collected cells or tissues, the chosen 

platform (Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) 367, (microarray) 

hybridization 368 or next generation sequencing (NGS) 369) will depend on the research question and 

experimental set-up 370. Different platforms have been tested in terms of reproducibility, sensitivity, 

specificity, accuracy and concordance of differential expression in the miRQC study 371. Overall, 

substantial interplatform differences were noted (Table 1).  

Firstly, microarray platforms allow detection of miRNA expression by hybridization of the miRNAs in a 

sample with pre-designed labeled probes, complementary to the miRNA sequences. Microarrays 

rather serve to report a relative change in expression such as in a diseased versus a non-diseased state, 

or to determine the presence of a certain miRNA, followed by a validation, usually by RT-qPCR. 

Microarray platforms can vary in surface chemistry, probe design, labeling techniques and input 

sample requirements. Microarrays are usually designed to detect the canonical miRNA. The probe 

design (variability in melting temperatures) and detection stringency largely define how well a 

distinction can be made between family members and isoforms 372. A limitation of the technique is 

that a false negative result remains possible when the hybridization signal doesn’t exceed the 

background noise 373. It is also important to consider that some microarray platforms do not include 

precursor probe sets or that the detection of miRNA precursors can interfere with the detection of 

mature miRNAs 372. In addition, preferential hybridization of certain sequences remains an issue. 

Secondly, to detect relative abundancies of mature miRNAs with great sensitivity, especially for a low 

amount of input RNA, qPCR platforms generally perform better (see 3.6.1) 374. Briefly, RT-qPCR is a 

technique used to detect, in this case, specific miRNAs in a sample. Therefore, RNA is reverse 

transcribed into complement DNA (cDNA) which will then undergo a sequence-specific amplification. 

Subsequently, the amplified product is detected and quantified. This technology can also be applied to 

pre-miRNA and pri-miRNA profiling. To generate cDNA, a unique sequence-specific primer can be used 

or a universal tailing primer. Although faster and easier to use, the latter can induce false positive 

results. To enable a simple RT step with higher sensitivity, a mixture of sequence-specific stem-loop 

primers was introduced by Applied Biosystems. qPCR efficiency can be affected by sample 

concentration, degradation or nonspecific amplification products, and presence of PCR inhibitors or 

enhancers. Ideally, the efficiency is 100%, corresponding to a doubling of the PCR product during each 

cycle. 
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Thirdly, to discover new miRNAs and to detect isoforms, small RNA sequencing is the platform of 

choice, as probe-based methodologies can only detect previously known sequences 372. As miRNAs are 

directly sequenced, sequence variations or information on posttranscriptional RNA editing becomes 

available as well. Another advantage is that precursors, as well as primary and mature miRNAs can be 

identified in a high-throughput mode by NGS. However, NGS is rather laborious and expensive, and 

technical bias can be introduced during ligation and amplification. Also, handling sequencing data 

requires several analysis steps (read mapping, counts computation, counts normalization and 

differential expression analysis) and bears substantial bioinformatic challenges 375. Challenges in 

analyzing RNA-seq data are often introduced by low sample sizes (due to the high cost) and based on 

the direction of the differential expression, presence of outliers and the degree of overdispersion. 

Awareness of these characteristics will result in a balanced and informed choice of the test used for 

differential expression analysis such as DESeq and edgeR 376. Nevertheless, each platform has its 

strengths and weaknesses 377.  

 

 qPCR Microarray Sequencing 

Time (including data 
analysis) 

< 6 hours ± 2 days < 1 weeks 

Sample input (total RNA) 50-500 ng 100-1000ng 500-5000ng 

Estimated cost ++ + ++(+) 

Dynamic range 6 orders of 
magnitude 

4 orders of 
magnitude 

5 or more orders 
of magnitude 

Infrastructure and 
technical requirements 

+ ++ +++ 

 

Table 1. Platform comparison for microRNA profiling 245,370,371 

 

Although fairly time-consuming, northern blotting enables visualization of the mature as well as the 

precursor miRNA. Both radioactive and non-radioactive labeled miRNA probes can be used. However, 

cross-reactivity between related sequences can occur due to lower specificity. Practically, northern 

blotting is used to provide evidence of the sequestration of the miRNA by an anti-miR. Another 

technically challenging tool to visualize tissue- or cell-specific miRNA expression patterns in 

cryosections or paraffin-embedded tissue is ISH (see 3.6.4) 366,378.  

 

Since 2002, miRBase is the reference database for miRNA annotation. Importantly, miRNA annotation 

has evolved over time, due to revisiting insights in miRNA biology followed by adaptations in miRBase. 

As a result, the same miRNAs were sometimes named differently throughout many publications over 

the last decade. To avoid misinterpreting research results, miRBase tracker has been developed, an 
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online database (http://mellfire.ugent.be/public/miRBaseTracker/) that enables finding historical and 

current miRNA annotations 379. Most research nowadays still centers on the canonical miRNA with a 

well-defined annotation in miRBase and clear-cut detection assays. However, much information might 

be missed because in several diseases the biogenesis might favor a certain isomiR over the canonical 

miRNA. Importantly, miRNA profiling results can be drastically affected by small sequence variations 

in miRNAs. Further, the stability of the miRNA can be altered by modifications, protein complex 

formation and by exposure to nucleases. 

 

3.5.2 miRNA target genes  

The initial step in keeping track of the biological relevance of miRNAs, is identification of the target 

genes. Target prediction databases facilitate the search for likely miRNA targets based on sequence 

complementarity (sometimes allowing seed G-U wobbles and mismatches), thermodynamics, absence 

of complicated secondary structures, evolutionary conservation, location in 3’UTR, local A-U content 

and experimental validation. Mostly, a combination of factors is taken into account. Examples of target 

prediction sites are miRDB and Targetscan. A few years back, the miRNA body map, a free accessible 

web-based tool (http://mellfire.ugent.be/public/body_map/), was designed to facilitate the selection 

of tissue-specific miRNA targets by integrating data from 8 target prediction databases (thereby 

augmenting the specificity), data from corresponding miRNA and mRNA gene expression, and 

mechanistic models for gene network regulation 302. An extra asset to miRNA target predictions are 

databases that show an update of validated target genes, such as miRWalk and miRTarBase 380. With 

their slightly distinct sequence, isomiRs can affect other targets, requiring target prediction databases 

based on the isomiR/miRNA sequence and specific isomiR detection assays 244,381.  

Second, it is important that both the miRNA and its target must be co-expressed under the same 

conditions in the cell type or tissue of interest, making the in silico predictions physiologically relevant. 

Third, to find out whether a certain gene of interest is subject to miRNA regulation, wet-lab methods 

are developed to ascertain biological miRNA binding such as a luciferase reporter assay, a miRNAome-

wide 3’UTR miRNA library screen or the introduction of a Target Site Blocker (Exiqon) or a Target 

Protector (Qiagen). These techniques ensure validation of the miRNA-target interaction, although 

often not under physiological circumstances. Alternatively, identification of miRNA-bound targets in a 

cell- and context-dependent way can be obtained by biochemical pulldown assays such as high-

throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP). HITS-CLIP 

enables identification of RNAs in RISC after immunoprecipitation of participating proteins, usually 

AGO2, and subsequent sequencing of the miRNA and the fragments of the target sites derived from 

the mRNAs 382. Another method, cross-linking ligation and sequencing of hybrids (CLASH), generates 
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cross-linked miRNA-target site chimeras, followed by sequencing. Minor drawbacks are the relatively 

low efficiency of hybrid capture and the inability to provide quantitative information concerning the 

strength of the interactions 266. Recently, a new approach has been developed, i.e. miR-CLIP. This is a 

biochemically pulldown assay of a specific miRNA and associated mRNA targets followed by 

sequencing. Additionally, the miR-CLIP capture technique can also identify novel miRNA-lncRNA 

interactions 383. The recently updated databases miRTarBase and starBase have a repository of CLIP-

seq data involving miRNAs 380,384. On the other hand, an experimental approach has been developed 

starting from a specific mRNA. This approach detects the attached miRNAs using a capture affinity 

assay involving a biotinylated DNA antisense oligonucleotide, antisense to the full length of the mRNA 
385. 

Fourth, although technically challenging and time-consuming, is the identification of physiologically 

active miRNA regulatory elements (MREs) to really show that this MRE contributes to the phenotype. 

Site-specific miRNA-MRE interactions can be demonstrated in vivo or in vitro using the transcription 

activator-like effector nuclease (TALEN) or clustered regularly interspaced short palindromic repeat 

(CRISPR)/Cas9 technology which can help in discriminating between direct or indirect miRNA-mediated 

regulation 386. 

 

3.5.3 miRNA function 

To elucidate the function of a miRNA, several strategies for gain- and loss-of-function studies have 

been developed. Functional validation of miRNAs can be performed by overexpressing or inhibiting 

the miRNA in vitro or in vivo (see 3.6.6). Genetically modified mice can exhibit inducible or constitutive 

overexpression of a miRNA, or are deficient for a certain miRNA. To affect most miRNAs, conditional 

deletion of Dicer (or another miRNA processing enzyme) leads to an overall down-regulation of miRNA 

expression. 

For specific miRNA inhibition, miRNA sponges, miRNA erasers or chemically modified anti-miRNAs can 

be used. Overexpressing miRNAs can be addressed by a viral vector, a plasmid containing a constitutive 

promoter to overexpress a pri-miRNA or a chemically synthesized precursor. To increase (targeted) 

delivery and stability, the miRNA mimic is often encapsulated. In case of in vitro transfections, these 

experiments should ideally be performed in the cell type of interest. Detection of the in vivo 

distribution of an anti-miR or mimic can be performed through ISH, northern blotting or radioactive 

labeling. To find key regulatory miRNAs in a disease-specific context, genome-wide functional screens 

were developed using miRNA mimics or inhibitors 387. Detection of candidate target mRNA or protein, 

for instance after miRNA perturbation, can be obtained by gene expression microarray (see 3.6.1) or 

stable isotope labeling using amino acids in cell culture (SILAC), respectively.   
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As such, interesting insights can be obtained by combining the differential miRNA expression with gene 

expression (e.g. gene set enrichment analysis, see 3.6.2) or protein expression data. The resulting 

change in phenotype, perturbation of pathways or the shift in the transcriptome or proteome can then 

be attributed to the direct or indirect effect of the miRNA. Overall, gain- and loss-of-function studies 

are an interesting tool to shed light on the biological function of the miRNA, although often supra-

physiological levels are reached.  
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33.6 Experimental techniques used in this dissertation 
 

3.6.1 Measurement of mRNA and miRNA expression 

Currently, qPCR is considered the gold standard for single gene expression measurement.  

The workflow of RT-qPCR in this thesis is described briefly. RNA from lung tissue or cells is extracted 

using the miRNeasy Mini kit (Qiagen) and cDNA is prepared using the miScript II RT kit (Qiagen) 

according to the manufacturer’s instructions (Figure 21). The expression of the gene of interest is 

detected using TaqMan Gene Expression assays (Applied Biosystems). All reactions are set up in 

duplicate and a 2-step PCR approach was used. The amplification conditions are 10 minutes at 95°C 

and 50 cycles of 95°C for 10 seconds followed by 15 seconds at 60°C, using the LightCycler 96 system 

(Roche). A standard curve derived from serial dilutions of pooled samples is generated and the 

expression of the gene of interest is normalized to at least 3 stably expressed reference genes 388. 

 

Figure 21. workflow of RT-qPCR. Starting material for RT-qPCR is good quality RNA, either from lung tissue or 
cells, that is converted into cDNA, followed by qPCR and data analysis. QC: quality control; cDNA: complement 
DNA; RT-qPCR: reverse transcription-quantitative polymerase chain reaction 

 

Gene expression profiling enables simultaneous comparison of expression levels of many genes 

between two or more sample types. Whole transcriptome or large-scale gene expression profiling can 

be performed with NGS, RT-qPCR or microarray. Currently, RNA sequencing is the method of choice. 

In this dissertation, mRNA expression is quantified using a microarray and NGS. On human lung, mRNA 

is quantified by applying a custom microarray based on the Agilent Sureprint 8x60K platform. The RNA 

is labeled using the Agilent's Low Input Quick Amp Labeling Kit and hybridized to the custom array. 

After scanning, the raw intensities are background corrected and quantile normalized using the limma 

package in R. On RNA from transfected NHBE cells, we performed RNA sequencing. For this, RNA 
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libraries are prepared using the TruSeq stranded mRNA library prep kit (Illumina) according to the 

manufacturer’s instructions. Next, amplified cDNA libraries are sequenced (single end 75 bp reads) on 

a NextSeq 500 instrument (Illumina) generating an average of 20 million reads per sample. Reads are 

then mapped and gene expression is quantified using the RNA Express app (Illumina Basespace). 

Differentially expressed genes are identified using DESeq2 in R. Among the negative binomial tests, 

DESeq generally is a conservative test method, even in the presence of outliers, except when sample 

sizes are extremely small 376. 

 

For miRNA detection, there are two priming methods used among commercially available qPCR-based 

platforms. Some use unique, sequence-specific RT primers (e.g. TaqMan, Applied Biosystems) while 

others make cDNA using universal tailing primers (e.g. miScript, Qiagen). The miScript system adds a 

poly-A tail to all miRNAs, followed by reverse transcription and addition of an adapter to the 3’ end. 

Amplification of specific miRNAs occurs by using a forward primer specific to the miRNA, and a reverse 

(universal) primer complementary to the 3’ adapter. For detection, SYBR Green can be used which 

binds to double-stranded DNA. The TaqMan system is more specific since a miRNA-specific stem-loop 

reverse transcription is followed by qPCR with 2 specific primers for each miRNA complemented with 

a TaqMan probe. The TaqMan probe which bears a reporter and a quencher dye hybridizes to the 

miRNA sequence. Amplification of the target sequence separates the fluorophore from a quencher 

fluorophore, generating the fluorescent detection signal.  

A major challenge in miRNA research is proper normalization. Ideally, standard reference miRNA genes 

should be used 388. Since none are available, stably expressed (mi)RNAs must be found in the tissue or 

cells of interest. Most researchers use genes for small RNAs that might not be transcribed by the same 

RNA polymerase as the miRNA precursors, and are thus less representative of general miRNA 

regulation. Another proper normalization method can be chosen based on the mean expression of 

miRNAs in each or all samples when many miRNA expression profiles are generated 389,390. The 

workflow of miRNA detection with RT-qPCR is similar to detecting gene expression (Figure 21). 

Enrichment for small RNAs is preferable since most of the RNA consists of ribosomal RNA. Also here, 

an effort should be done for proper data reporting according to the MIQE guidelines 391. 

 

The miRNA profiling mentioned in this dissertation is based on the RT-qPCR technology using stem-

loop primers and a pre-amplification of the cDNA 374,392. A volcano plot or a heatmap are visually 

attractive tools to present miRNA (or mRNA, lncRNA,…) profiling data (Figure 22). 
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Figure 22. Volcano plot (A) and heatmap (B). (A) In the volcano plot, the data are represented as dots with in 
the X-axis, the fold change (log2) and in the Y-axis, the –log 10 value of the significance level. This means that the 
most interesting dots (significant and differentially expressed between the 2 conditions) lay in the red squares, 
above the 0.05 significance level (horizontal line). (B) In the heatmap, a clear clustering of patient samples can 
be observed. Each rows represents a gene and each column indicates a patient sample. Blue color indicates a 
reduced expression while the red color indicates a higher expression. 
 
3.6.2 Gene set enrichment analysis (GSEA)  

GSEA is an interesting bioinformatics tool to investigate functional enrichment of mRNA expression 

data. This tool can be used to infer putative biological pathways or functions for an identified miRNA 

through a guilt-by-association approach. Therefore, mRNA microarray expression data were used to 

create a list of spearman rank correlation coefficients for each mRNA with the miRNA of interest, 

generating a ranked list of mRNAs based on the correlation coefficient. (However, mRNA data can also 

be ranked via fold change, etcetera.) Genes that share a common biological function (Gene Ontology 

– Biological Process gene sets, downloaded from the Molecular Signatures Database v4.0, Broad 

Institute) or that are entangled within the same biological pathways (Kyoto Encyclopedia of Genes and 

Genomes (KEGG) gene sets) are grouped in gene sets. By correlating miRNA expression data with 

transcriptome data, positive or negative enrichment (if the majority of genes from a gene set appear 

on the top or on the bottom of the ranked list, respectively) can be detected for certain pathways or 

biological processes, suggesting a high likelihood of the miRNA being involved in these pathways or 

processes, built on the guilt-by-association principle 393. Thus, the goal of GSEA is to determine whether 

a set of genes involved in a given pathway or biological process is found at the top or bottom of the 

ranked list of mRNA expression data, indicating a putative association, rather than being distributed 

randomly across the list. This results in an enrichment score, which reflects the degree to which a gene 
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set is overrepresented at the top or the bottom of a ranked list of genes. The leading edge subset of 

genes from this gene set are the genes that contribute most to the enrichment (Figure 23).  

 

Figure 23. Principle of GSEA.  A) Gene expression data set of 8 samples (in columns). The genes within this data 
set are shown in the rows. Red indicates higher expression and blue indicates lower expression. These genes will 
then be ranked according to the correlation with, for instance, the expression of a miRNA within the same 
samples. B) negative enrichment for the gene set ‘immune response’ is observed, with the red lines 
corresponding to genes within this gene set. Biological interpretation of this result means that there is 
enrichment of immune response genes that are negatively correlated to the miRNA expression in these samples. 
For instance, a lower expression of the miRNA is correlated with a higher expression of genes involved in the 
immune response. 
 
3.6.3 Measurement of protein expression 

ELISA enables quantification of protein levels in lung tissue, BAL or cell supernatant and is based on 

the detection of an antigen by an antibody followed by an enzyme-induced colorimetric reaction. 

Commercially available kits are used in this thesis and ELISAs are performed according to the 

manufacturer’s instructions.  

For tissue- or cell-specific information on protein expression in lungs, immunohistochemistry is an ideal 

technique. Starting from formalin fixated paraffin embedded (FFPE) tissue or cryosections, the tissue 

is pretreated and incubated with an antigen-specific antibody, finally resulting in a staining reaction 

complemented with a background staining and compared to an isotype control. 
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3.6.4 in situ hybridization (ISH) 

Recent advances in ISH allow sensitive detection of miRNAs in heterogeneous tissues, defining cellular 

miRNA localization 394,395.  

To guarantee RNase free conditions, all glassware must be baked for minimum 8h at 180°C, all other 

materials cleaned with RNase ZAP (Ambion, Life technologies) and all solutions must be RNAse free.  

For miRNA detection in FFPE tissue, 6μm thick lung tissue is attached to slides and dried on a heating 

plate. After deparaffinization, lung tissue is pretreated with proteinase K (allowing access of the 

detection probe) and hybridized with a 5’ and 3’ digoxigenin (DIG)-labeled miRCURY LNA Detection 

probe (Exiqon). Multiple washes according to a stringency gradient at hybridization temperature 

ensures removal of not adhered excess probe. Detection of the probe can be achieved in different 

ways leading to a different staining color. First, miRNA detection can be carried out with sheep anti-

DIG-Alkaline phosphatase (AP) using Nitro-blue tetrazolium chloride/5-bromo-4-chloro-3'-

indolyphosphate p-toluidine salt (NBT/BCIP) as a substrate leading to a blue color. Nuclear fast red 

serves as counterstaining which stains the nuclei red. Second, miRNA detection can be carried out with 

a goat anti-DIG antibody followed by incubation with anti-goat-Horseradish peroxidase (HRP), using 

3,3'-diaminobenzidine (DAB) as a substrate leading to a brown color. Hematoxylin serves then as 

counterstaining which stains the tissue purple. When an antibody conjugated to HRP is used, an 

endogenous peroxidase removal step is added to the pretreatment. Omitting of the probe or an LNA 

scrambled probe serves as negative control and the LNA U6 small nuclear RNA probe serves as positive 

control (staining of the nuclei)(Figure 24).  
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Figure 24. in situ hybridization for (A) miR-21-5p, (B-C) miR-135b-5p, (D) miR-218-5p, (E) scrambled probe 
(negative control), (F) U6 snRNA (positive control). B,D and E were stained with NBT/BCIP whereas A, C and F 
were stained with DAB. A-C, E-F represents staining on murine lung tissue while D represents staining on human 
lung tissue. 

3.6.5 Flow cytometry 

Flow cytometry is used to enumerate or sort different cell populations present in a single cell 

suspension. This technique makes separation of different cells possible based on cell-specific 

characteristics (size, granularity, antigens). Cells are labeled with (a combination of) antibodies, specific 

for antigens of interest, attached to different fluorophores. The fluidics system of the flow cytometer 

transports these cells in a stream to the lasers. The fluorophore on cells positive for this antigen absorb 

the light emitted by the lasers, transmit a fluorescent signal which is then measured by the detectors 

of the flow cytometer. Each fluorophore has a characteristic peak excitation and emission wavelength. 

Acquisition of these data allows quantification and identification of cells according to a gating strategy, 

using the FlowJo software (Tree Star Inc.).  

 

3.6.5 In vitro and in vivo perturbation of miRNA levels 

In this dissertation, a double stranded and chemically modified miRNA mimic is transfected in vitro to 

submerged NHBE cells using Lipofectamine RNAiMAX in comparison to a scrambled control, mock 

(only transfection reagents) and medium according to the manufacturer’s instructions. Transfection 

efficiency as well as cell survival is assessed (Figure 25). Serum- and antibiotics-free conditions are 

maintained during transfection.  

Intriguingly, investigating the influence of cell confluence on miRNA expression, the Mendell group 

showed that miRNA biogenesis is globally activated with increasing cellular density, leading to a 

stronger repression of target mRNAs 396.  

 

Figure 25. Evaluation of survival and transfection efficiency using flow cytometry. Trypsinized NHBE cells 
transfected with a Cy3-labeled scrambled sequence were analyzed by flow cytometry. 4’,6-diamidino-2-
phenylindole (DAPI) is a blue fluorescent nucleic acid stain that binds to double stranded DNA of dead cells and 

SSC-A FSC-A Cy3
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is used as a viability marker. Viability was over 90%. After gating for the living cells, the transfection efficiency 
was evaluated. Uptake of the Cy3-labeled scrambled oligonucleotide (blue line) was compared with non-
transfected cells (red line) and transfection efficiency was over 90%. 
 
miRNA inhibition is also established in vivo by intranasal administration of an LNA-modified anti-

miRNA probe to air- or CS-exposed mice, compared to a scrambled probe and PBS (solvent). A dose of 

10mg/kg is administered twice during the 5 day exposure period. Cell populations in BAL and lung can 

then be investigated, as well as gene and protein expression. 
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RRESEARCH OBJECTIVES 

 

COPD is hallmarked by an exaggerated inflammatory response in the lungs following inhalation of 

noxious particles or gases of which CS is the most important inciting agent. In this thesis, we focus on 

small regulatory RNA molecules, miRNAs, that recently emerged as important post-transcriptional 

gene regulators and that are implicated in many inflammatory signaling cascades. However, little is 

known about their impact in the disease COPD. The ultimate goal of this thesis is to put forward one 

or more miRNAs that can serve as a possible therapeutic target for this devastating disease. 

Research question 1: which miRNAs are differentially expressed upon CS exposure and in COPD? 

First, we aimed to identify aberrantly expressed miRNAs in lungs of COPD patients and in lungs and 

BAL supernatant of CS-exposed mice by performing miRNA profiling. Moreover, miRNAs are often 

highly conserved, enabling us to use a translational approach.  

By concentrating on 2 respiratory relevant compartments (BAL and lung) in mice in association with 

data on inflammatory cell subsets, we highlight some miRNAs that may be of importance in the CS-

induced inflammation and likely also in COPD. 

Research question 2: what is the expression profile, localization and functional role of miR-218-5p in 

CS-induced inflammation and the pathogenesis of COPD? 

Starting from the miRNA profiling data, we decided to focus on miR-218-5p. For this particular miRNA, 

we thoroughly investigated its expression profile, localization and functional role in the context of CS-

induced inflammation and COPD.  

miR-218-5p shows a high expression level in lung tissue compared to other tissue types. However, a 

reduced expression of this miRNA is often observed in disease. We hypothesized that miR-218-5p 

could be involved in the CS-induced inflammatory response in the lungs and in the pathogenesis of 

COPD. Therefore, we investigated the functional role of miR-218-5p in COPD in vitro and in vivo.  
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CHAPTER 5: microRNA profiling reveals a role for 
microRNA-218-5p in the pathogenesis of COPD 
 

 

 

 

 

 

Dysregulation of microRNAs (miRNAs), critical post-transcriptional negative regulators of gene 

expression, contributes to disease pathogenesis. The role of miRNAs, and more specifically of miR-218-

5p, in the pathogenesis of COPD is still unknown. Therefore, we aimed to thoroughly unravel the 

expression pattern, the localization and the functional role of miR-218-5p in this disease. We reached 

this purpose by analyzing different patient cohorts and murine samples, by including in vitro expression 

and transfection data and by performing an in vivo perturbation experiment, all this complemented 

with in silico bio-informatics analyses.  
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AABSTRACT 

 

Rationale: Since aberrant expression of microRNAs (miRNAs) can have a detrimental role in disease 

pathogenesis, we aimed to identify dysregulated miRNAs in lung tissue of patients with COPD.  

Methods: We performed miRNA and mRNA profiling – using high throughput stem-loop RT-qPCR and 

mRNA microarray, respectively – on lung tissue of 30 patients (screening cohort) encompassing 8 never 

smokers, 10 smokers without airflow limitation and 12 smokers with COPD. Differential expression of 

microRNA-218-5p (miR-218-5p) was validated by RT-qPCR in an independent cohort of 71 patients, an 

in vivo murine model of COPD, and primary human bronchial epithelial cells (HBECs). Localization of 

miR-218-5p was assessed by in situ hybridization. In vitro and in vivo perturbation of miR-218-5p 

combined with RNA sequencing and gene set enrichment analysis was used to elucidate its functional 

role in COPD pathogenesis. 

Measurements and main results: Several miRNAs were differentially expressed among the different 

patient groups. Interestingly, miR-218-5p was significantly down-regulated in both smokers without 

airflow limitation and in patients with COPD, compared to never smokers. Decreased pulmonary 

expression of miR-218-5p was validated in an independent validation cohort, in cigarette smoke-

exposed mice and in HBECs. Importantly, expression of miR-218-5p strongly correlated with airway 

obstruction. Furthermore, cellular localization of miR-218-5p in human and murine lung revealed 

highest expression of miR-218-5p in the bronchial airway epithelium. Perturbation experiments with a 

miR-218-5p mimic or inhibitor demonstrated a protective role of miR-218-5p in cigarette smoke-

induced inflammation and COPD.   

Conclusions: We highlight a role for miR-218-5p in the pathogenesis of COPD.  
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IINTRODUCTION 

 

Chronic obstructive pulmonary disease (COPD) is defined by a progressive airflow limitation due to an 

abnormal inflammatory response of the lung to noxious particles and gases 57. The pathology of COPD 

is often associated with comorbidities, making COPD a major cause of morbidity and mortality 

worldwide 398. Cigarette smoking is by far the most common risk factor for COPD, besides other risk 

factors such as genetic susceptibility and inhalation of occupational dusts, chemicals and pollutants 6. 

Several genes involved in inflammation, tissue repair, proliferation and apoptosis are dysregulated in 

COPD 162,163.  Gene expression can be affected by epigenetic modulators such as microRNAs (miRNAs). 

miRNAs are small non-coding RNAs that negatively regulate their target messenger RNA (mRNA) by 

binding predominantly to the 3’ untranslated region (3’UTR) with their short (6-8 nt) recognition 

sequence (the ‘seed’), resulting in mRNA degradation or inhibition of translation. In that way, miRNAs 

are able to fine-tune protein output in a cell-type dependent manner. Considering the fact that one 

single miRNA can control up to hundreds of target genes, miRNAs may be involved in diverse biological 

pathways 230,262,265. Besides their role in development and maintenance under normal conditions, 

dysregulation of miRNAs might affect the onset or progression of several diseases, including COPD. 

miRNAs have been investigated in association with COPD or smoking. Our lab has reported differential 

miRNA expression in induced sputum supernatant of smokers with COPD compared to smokers 

without airflow limitation and never smokers 153. Down-regulation of let-7c was inversely correlated 

with soluble TNFR-II, a receptor implicated in COPD pathogenesis. In human bronchial airway 

epithelium, miRNA expression was affected by smoking with the majority of miRNAs being down-

regulated in current smokers 149.  miRNA expression was also altered in lung tissue of patients with 

COPD and smokers, with the majority of miRNAs being upregulated in COPD 152.  

Here, we aimed for a comprehensive (RT-qPCR based) approach to quantify miRNA expression in the 

context of COPD on a large and well-characterized patient cohort across different patient groups. 

Therefore, we first performed miRNA and mRNA profiling on lung tissue of 30 patients (screening 

cohort) consisting of smokers with COPD, smokers without airflow limitation and never smokers. Based 

on the results of the miRNA profiling and previous reports in literature, we further investigated and 

validated the expression and localization of microRNA-218-5p (miR-218-5p) in human lung tissue as 

well as in lungs of mice that were exposed to air or cigarette smoke (CS) for 4 or 24 weeks. In vitro and 

in vivo perturbation of miR-218-5p and gene set enrichment analysis (GSEA) improved our 

understanding of the potential involvement of miR-218-5p in the response to CS and in COPD.  
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MMATERIALS AND METHODS 

Human lung tissue study population 

In total, 101 patients participated in this study. Lung resection specimens were obtained from these 

101 patients, of which 87 were from surgery for solitary pulmonary tumors (Ghent University Hospital, 

Ghent, Belgium) and 14 were from explant lungs of end-stage COPD patients undergoing lung 

transplantation (University Hospital Gasthuisberg, Leuven, Belgium). The initial screening cohort of 30 

patients was divided into 3 subgroups: 8 never smokers, 10 current smokers without airflow limitation 

and 12 current smokers with COPD (GOLD stage II) (Table 1). In the validation cohort of 71 patients, 

we included also ex- smokers without COPD and ex-smokers with COPD (GOLD stage II and GOLD stage 

III- IV) (Table 2). Our study was approved by the medical ethics committee of the Ghent University 

Hospital (2011/114) and the University Hospital Gasthuisberg (S51577). All subjects provided written 

informed consent.  

Table 1. Characteristics of the screening cohort.  
 

 Never smokers Smokers COPD 
Number 8 10 12 
Gender (male/female) 2/6 ‡ 7/3 ‡ 12/0 ‡ 
Age (years) 60 (40-70) 58 (51-65) 64 (55-69) 
BMI 25 (23-28) 23 (20-26) 24 (21-26) 
Current-smoker/ex-smoker - 10/0 12/0 
Smoking history (pack years) 0 (0-0) 34 (22-46)* 45 (40-71)* † 
FEV1 post-bronchodilator (L) 2.6 (2.3-3.7) 3.1 (2.7-3.4) 2.2 (1.9-2.6) † 
FEV1 post-bronchodilator (% predicted) 108 (92-120) 100 (93-114) 72 (65-74)* † 
FEV1/FVC post-bronchodilator (%) 77 (75-79) 76 (73-81) 56 (45-57)* † 
ICS (yes/no) 0/8 ‡ 0/10 ‡ 6/6 ‡ 
Lung resection for lung cancer (yes/no) 8/0 10/0 12/0 

Footnote 
Abbreviations: FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity; ICS: inhaled 
corticosteroids.  
Data are presented as median (IQR); p-values were determined by Mann-Whitney U test: * p < 0.05 versus 
never smokers; † p < 0.05 versus smokers or Fisher's exact test: ‡ p < 0.001  
Lung tissue was collected at maximum distance of the tumor. 
 

Cigarette smoke exposed mice 

C57BL/6 mice were exposed whole body to CS, as described previously 360. 

miRNA expression profiling and analysis (screening cohort) 

To characterize the miRNA expression of 740 miRNAs and 15 endogenous controls in lung tissue of the 

screening cohort, RNA was extracted and reverse transcribed (using miRNA specific stem-loop primers) 

followed by a pre-amplification step and qPCR quantification (TaqMan miRNA assays). For generating 

the heatmap (Figure 2), differentially expressed miRNAs across the 3 groups were identified using a 

Kruskal-Wallis test (p-value < 0.05) and were hierarchically clustered using clustering method ‘Ward’ 
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and distance ‘Manhattan’. Multiple testing correction was performed using the Benjamini-Hochberg 

algorithm (adj. p-value < 0.05). To identify differentially expressed miRNAs between 2 patients groups, 

an ANOVA test was chosen followed by the Tukey Post Hoc Test (adj. p-value < 0.05). 

miRNA-218-5p expression analysis by RT-qPCR  

miRNA expression was assessed with the Qiagen miScript PCR system. RNA was converted to cDNA 

using the miScript II RT kit and cDNA was amplified according to the miScript PCR protocol for miR-

218-5p.  

mRNA profiling (screening cohort) 

For mRNA quantification on human lung (screening cohort), we applied a custom microarray based on 

the Agilent Sureprint 8x60K platform.  

In situ hybridization 

6μm thick formalin fixed and paraffin embedded lung tissue was attached to superfrost plus slides 

(Thermo scientific Menzel gläzer) and dried on a heating plate at 57°C. Every handling was performed 

in order to guarantee RNase free conditions. All glassware was baked for minimum 8h at 180°C, all 

other materials were cleaned with RNase ZAP (Ambion, Life technologies) and all solutions were RNAse 

free. Protocol was performed according to the manufacturer’s guidelines (Exiqon, Denmark). Briefly, 

after deparaffinization, lung tissue was pretreated with proteinase K (5μg/ml for mouse lung, 15μg/ml 

for human lung) and hybridized with 5’ and 3’ DIG-labeled miRCURY LNA Detection probes. Detection 

of the probe was carried out with sheep anti-DIG-AP (Roche Diagnostics) using NBT/BCIP (Roche 

Diagnostics) as a substrate. Nuclear fast red (Sigma) served as counterstaining. For miR-218-5p, the 

hsa-miR-218-5p probe (18111-15, Exiqon, Denmark) was used. Omitting of the probe or an LNA 

scrambled probe served as a negative control and the LNA U6 small nuclear RNA probe served as a 

positive control. 

Human bronchial biopsy study population 

Bronchial biopsies from 19 patients, consisting of 9 never smokers and 10 patients with COPD (GOLD 

stage I and II), were obtained during bronchoscopy (John Hunter Hospital, Newcastle, Australia) (Table 

S3). None of the patients were diagnosed with lung cancer. 

Human bronchial epithelial cells (HBECs) 

Primary cells were obtained by enzymatic digestion from lung resection specimens of 5 anonymous 

donors. At passage 2, the cells were cultured on an air-liquid interface and after 14 days of culture, the 

cells were exposed to air (control) or CS as described previously 399. Twenty-four hours after the 

exposure, RNA was harvested. 
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In vitro perturbation of miR-218-5p in normal human bronchial epithelial (NHBE) cells 

NHBE cells (CC-2540, Lonza) were cultured in BEGM (CC-3170, Lonza) according to the manufacturers’ 

guidelines. At passage 2, cells were seeded at 30-60% confluency in 6-well plates and 24h later, cells 

were transfected with 30nM of the mirVana miR-218-5p mimic (4464066, Life technologies) or the 

negative scrambled control (4464058, Life technologies) using Lipofectamine RNAiMAX (Invitrogen) or 

a lipofectamine control (mock). Culture medium was refreshed after 16 hours. Then, survival and 

transfection efficiency was confirmed and 24h after transfection (Fig. S7 A), medium with or without 

cigarette smoke extract (CSE) at a final concentration of 2.5% was added. At 48h after transfection, 

supernatant and RNA were harvested. RNA was used for either RNA-sequencing and subsequent 

analysis (Illumina) or for cDNA synthesis (miScript II RT kit, Qiagen) followed by RT-qPCR in duplicate 

using the TaqMan Gene Expression Assays for IGFBP3, HMOX1, FKBP1A, DUSP5, IL-8 and CCL20. mRNA 

levels were normalized to HPRT1, GAPDH and RPL13A. Protein levels of CCL20 and IL-8 (R&D systems, 

Minneapolis, USA) were measured in the supernatant by ELISA according to the manufacturer’s 

instructions. Data were analyzed with an ANOVA test followed by the Tukey post hoc test. 

Cigarette smoke extract (CSE) 

To prepare CSE, the smoke of 10 3R4F reference cigarettes (without filter, University of Kentucky, 

Lexington, KY) was bubbled through 30ml of Opti-MEM (Thermo Fisher Scientific). The resulting 

suspension was filter-sterilized and considered to be 100%. This solution was then diluted with BEGM 

medium to a final concentration of 2.5%. 

RNA-sequencing 

RNA sequencing (Illumina) was performed on RNA from NHBE cells transfected with scrambled control 

(n=4) or miR-218-5p mimic (n=4), without CSE exposure. 

In vivo perturbation of miR-218-5p in air or CS-exposed mice 

miR-218-5p was inhibited in lungs of mice that were exposed to air or CS for 5 days. 10mg/kg of an 

LNA modified mmu-miR-218-5p inhibitor, a scrambled control or PBS (solvent) was intranasally 

administered on the first and the fourth exposure day, before the start of air or CS exposure. The day 

after the last air or CS exposure, the mice were sacrificed and bronchoalveolar lavage (BAL) fluid was 

investigated.  

Bronchoalveolar lavage (BAL) 

Via a tracheal cannula, lungs were first lavaged using 3 times 300 μl HBSS (free of Ca2+ and Mg2+ and 

supplemented with 1% BSA). Supernatant of this fraction was used for ELISA. Then, lungs were lavaged 

using 3 times 1 ml HBSS supplemented with 0.6 mM EDTA. The six lavage fractions were pooled, 

centrifuged, and the cell pellet was resuspended in 200 μl FACS buffer (PBS supplemented with 1 % 
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BSA, 5mM EDTA and 0.1 % sodium azide). Subsequently, total cell counts were obtained using a Bürker 

chamber and differential cell counts (on at least 400 cells) were performed on cytocentrifuged 

preparations after May-Grünwald-Giemsa staining. Further, BAL cells were used for flow cytometric 

analysis. 

Flow cytometry 

After FcR blockade, BAL cells were stained with the following anti-mouse antibodies: CD45-FITC (30-

F11), Siglec-F-PE (E50-2440), Ly6G-PE-Cy7 (1A8), CD11c-APC (HL3), Ly6C-Alexa Fluor 700 (AL-21) and 

CD8-BV605 (53-6.7) from BD biosciences, CD11b-BV605 (M1/70), MHCII (I-A/I-E)-APC-Cy7 

(M5/114.15.2), CD103-BV421 (2E7) and CD4-APC (GK1.5) from Biolegend and CD3-Alexa Fluor 700 

(17A2) from eBiosciences. Analysis was performed on an LSR Fortessa (BD Biosciences, San Diego, USA) 

and data were analyzed with FlowJo software (Tree Star Inc., Ashland, USA). More in detail, after 

excluding doublets, the CD45+ cells were retained. First, alveolar macrophages were gated out as Siglec 

F+ and CD11c+ cells. Of the remaining cell population, the dendritic cells (DCs) were defined as MHCIIhi 

and CD11chi with as subpopulations: CD103+ DCs (CD103+ and CD11b-) and CD11b+ DCs (CD103- and 

CD11b+). After gating out the alveolar macrophages and the DCs, neutrophils (CD11c-, CD11b+, Ly6Cint 

and Ly6G+) and inflammatory monocytes (CD11c-, CD11b+, Ly6G- and Ly6C+) were identified. From the 

CD45+ cell population, T cells were identified as CD3+ cells with the CD8+ T cells and CD4+ T cells as 

subpopulations. 

In silico analysis 

GSEA was performed using Gene Ontology – Biological Process and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) gene sets 393. 

Statistical analysis 

The following statistical analyses were performed with R (version 3.1.1) or SPSS (SPSS Inc, Chicago, IL, 

USA): Kruskal-Wallis, Mann-Whitney U, Fisher’s exact test, ANOVA, paired t-test, linear regression and 

Spearman correlation analysis. The Benjamini-Hochberg algorithm or Bonferroni correction was used 

for multiple testing correction. Reported values are expressed as mean ± SEM and p-values < 0.05 were 

considered statistically significant.  
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Table 2. Characteristics of the validation cohort. 
 

 Never 
smokers 

Current 
smokers 

Ex-smokers COPD II 
current 
smokers 

COPD II 
ex-
smokers 

COPD III-IV 
ex-smokers 

Number 12 8 13 12 12 14 

Gender 
(male/female) 

3/9 ** 5/3 ** 10/3 ** 10/2 ** 12/0 ** 8/6 ** 

Age (years) 68 (63-72) 65 (56-71) 69 (59-72) 66 (58-68) 67 (63-71) 56 (54-60)* 
†‡ § II 

BMI 27 (22-30) 24 (20-27) 27 (24-30) 20 (19-26)* 28 (25-30) 

§ 
21 (20-23)*‡ 

II 

Smoking history 
(pack years) 

0 (0-0) 39 (21-52)* 20 (12-60)* 45 (35-55)* 47 (30-
60)* 

30 (25-30)* § 

II 

FEV1 post-
bronchodilator (L) 

2.4 (2.0-
3.0) 

2.3 (1.7-
2.4) 

2.6 (2.3-
3.5) † 

2.1 (1.8-
2.4) ‡ 

2.1 (1.8-
2.4) *‡ 

0.7 (0.7-
0.9)* † ‡§ II 

FEV1 post-
bronchodilator (% 
predicted) 

104 (89-
114) 

93 (76-101) 96 (92-114) 70 (61-78)* 
† ‡ 

65 (60-
73)* † ‡ 

26 (20-32)* 

†‡§ II 

FEV1/FVC post-
bronchodilator (%) 

81 (73-83) 75 (71-78) 77 (71-79) 55 (50-62)* 

†‡ 
56 (55-
62)* †‡ 

32 (27-35)* 

†‡§ II 

ICS (yes/no) 1/11 ** 2/6 ** 0/13 ** 5/7 ** 4/8 ** 13/1 ** 

Lung resection for 
lung cancer 
(yes/no) 

12/0 ** 8/0** 12/1** 11/1** 12/0** 0/14** 

Footnote  
Abbreviations: FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity; ICS : use of inhaled 
corticosteroids. 
Data are presented as median (IQR). Mann-Whitney U test: * p<0.05 vs never-smokers, † p <0.05 vs current-
smokers, ‡ p <0.05 vs ex-smokers, § p <0.05 vs GOLD II current-smokers and  II p <0.05 vs GOLD II ex-smokers ; 
Fisher’s exact test: ** p <0.01 
When a lesion was present, lung tissue was collected at maximum distance.  
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RRESULTS 

miRNA expression profiling in lung tissue  

The screening cohort consisted of 8 never smokers, 10 current smokers without airflow limitation and 

12 current smokers with stable COPD (GOLD stage II). Patient characteristics are shown in Table 1. 

Lung tissue of these 30 patients was used for miRNA profiling using the stem-loop RT-qPCR method 
374. Of the 740 miRNAs profiled, 377 were detected in lung tissue. 29 miRNAs were significantly 

differentially expressed between smokers without airflow limitation and never smokers (12 up-

regulated and 17 down-regulated in smokers without airflow limitation) (Figure 1A). 59 miRNAs were 

significantly differentially expressed between patients with COPD and never smokers (15 up-regulated 

and 44 down-regulated in patients with COPD) (Figure 1B). Furthermore, 3 miRNAs showed significant 

differential expression between patients with COPD and smokers without airflow limitation of which 

1 was up-regulated (Figure 1C). An overview of these differentially expressed miRNAs is represented 

in Table S1. 

57 miRNAs were differentially expressed across the 3 patient groups (Figure 2). After correction for 

multiple testing, 5 miRNAs remained differentially expressed: hsa-miR-221-3p, hsa-miR-34a-3p, hsa-

miR-92a-3p, hsa-miR-99b-5p and hsa-miR-218-5p (Table 3). Of note, a marked down-regulation of 

most miRNAs was observed in the COPD group (Figure 1B & 2). 

Table 3. Differentially expressed miRNAs across all patient groups 

   miRBase release 21 Unadj. p-value Adj. p-value 

hsa-miR-221 hsa-miR-221-3p 0.000283 0.0356 

hsa-miR-34Ax hsa-miR-34a-3p 0.000342 0.0356 

hsa-miR-92a hsa-miR-92a-3p 0.000331 0.0356 

hsa-miR-99b hsa-miR-99b-5p 0.000415 0.0356 

hsa-miR-218-5p hsa-miR-218-5p 0.000685 0.0470 

Footnote 
First column: annotation of miRNA at the time of the miRNA profiling; Second column: 
annotation of miRNA according to miRBase release 21 
Abbreviations: Unadj.: unadjusted ; Adj. p-value: p-value adjusted for multiple testing  
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Figure 1. miRNA profiling in 
lung tissue (screening 
cohort).  

Volcano plots showing the 
differential miRNA expression 
(in fold change on X-axis) and 
significance level (-log 10 
adjusted p-value on Y-axis). 
(A) Differential miRNA 
expression in smokers 
without airflow limitation 
(n=10) versus never smokers 
(n=8) (B) Differential miRNA 
expression in smokers with 
COPD (n=12) versus never 
smokers (n=8) (C) Differential 
miRNA expression in smokers 
with COPD (n=12) versus 
smokers without airflow 
limitation (n=10).   
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Figure 2. Hierarchical clustering of differentially expressed miRNAs in lung tissue (screening cohort) across the 
3 patient groups. In this heatmap, all miRNAs are represented that are differentially expressed across the 3 
patient groups. Each column represents a patient sample, each row represents a miRNA. The 5 miRNAs that 
remained differentially expressed after multiple testing correction (adj. p < 0.05) are represented in bold. The 
color code indicates expression level: red indicates higher expression, blue indicates lower expression. 

Expression of miR-218-5p in lung tissue  

We decided to focus on miR-218-5p since this miRNA showed a strong and significant down-regulation 

in smokers without airflow limitation (fold change=1.578, adj. p=0.003) and in patients with COPD (fold 

change=1.865, adj. p=5.24x10-5), compared to never smokers  (Figure S1 A) in the screening cohort. 

In addition, involvement of miR-218-5p in smoking and COPD was suggested previously 34,149,153,321. To 

validate the expression of miR-218-5p and to evaluate the effect of smoking cessation, we selected a 
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larger validation cohort that also included ex-smokers. The independent validation cohort consisted of 

71 patients including 12 never smokers, 8 current smokers without COPD, 13 ex-smokers without 

COPD, and 38 subjects with COPD (12 current smokers with COPD GOLD stage II, 12 ex-smokers with 

COPD GOLD stage II and 14 ex-smokers with COPD GOLD stage III-IV). Patient characteristics are 

represented in Table 2. Similar to the screening cohort, expression analysis by RT-qPCR revealed a 

significant down-regulation of miR-218-5p in smokers (fold change=2.36, adj. p=0.0055) and in current 

smoking patients with COPD GOLD stage II (fold change=2.14, adj. p=0.0028) compared to never 

smokers (Figure 3A). In ex-smokers without airflow limitation, the expression of miR-218-5p 

manifested normal levels when smoking was quitted for at least 1 year (Figure 3A). However, in 

patients with COPD, the ability to reach normal miR-218-5p expression levels upon smoking cessation 

seemed to be hampered, especially in patients with severe COPD (Figure 3A). Overall, when combining 

all smokers without airflow limitation and all patients with COPD from the validation cohort, significant 

lower expression levels of miR-218-5p were observed among patients with COPD compared to never 

smokers and smokers without airflow limitation (Figure S1 B). 

Correlation of pulmonary miR-218-5p expression with clinical parameters  

We correlated the normalized expression of miR-218-5p in the validation cohort with parameters of 

disease severity i.e. % forced expiratory volume in 1 second (FEV1) post-bronchodilator and its ratio to 

forced vital capacity (FVC): FEV1/ FVC and smoking history, such as pack years. In addition, we 

correlated the expression of miR-218-5p with the diffusing capacity of the lungs: DLCO (carbon 

monoxide diffusing capacity) and KCO (DLCO/alveolar volume). miR-218-5p significantly correlated 

with % FEV1 post-bronchodilator (Rs=0.576, p=2.729x10-7), FEV1/FVC (Rs=0.604, p=1.582x10-7), DLCO 

(Rs=0.665, p=9.474x10-9) and KCO (Rs=0.528, p=2.9x10-5) (Figure 3B-E). There was only a weak 

correlation between miR-218-5p expression and pack years (Rs=-0.281, p=0.026) and no correlation at 

all when never smokers were omitted (Rs=0.015, p=0.918) (Figure S2 E). Importantly, the strong 

correlation of miR-218-5p with disease severity remained significant when never smokers were 

excluded (Figure S2 A-D) and when only patients with COPD were included (Figure S3 A-D). Linear 

regression analysis showed that severe COPD was associated with decreased miR-218-5p levels (p < 

0.001) even after adjustment for covariates including current smoking and age (Table S2). 



 
 

85 
 

 

Figure 3. Expression of miR-218-5p in lung tissue (validation cohort). (A) Expression of miR-218-5p was assessed 
by RT-qPCR, normalized to the controls SNORD95, SNORD96A and SNORD68 and corrected for multiple 
comparisons with bonferroni correction. Data are expressed as normalized relative quantities. *adj. p < 0.05, 
**adj. p < 0.01, ***adj. p < 0.001. Spearman correlation between miR-218-5p and (B) % FEV1 post-
bronchodilator, (C) % FEV1/FVC (D) DLCO and (E) KCO.  Abbreviations: FEV1: forced expiratory volume in 1 second; 
FVC: forced vital capacity; DLCO: diffusing capacity of carbon monoxide; KCO: transfer coefficient of carbon 
monoxide (corrected for alveolar volume) 

N
e ve r  s

m
o k e rs

C
u rre

n t s
m

o k e rs

E x -s
m

o k e rs

C
O

P D
 G

O
LD

 II
 c

u rre
n t

C
O

P D
 G

O
LD

 II
 e

x

C
O

P D
 G

O
LD

 II
I- I

V  e
x

0

1

2

3

4

5

h
s

a
-m

iR
-2

1
8

-5
p

 e
x

p
re

s
s

io
n

* *

* *

* *

*

* * *

* * *

B C

A

5 0 1 0 0 1 5 0
0

1

2

3

4

K C O (% p re d ic te d )

h
sa

-m
iR

-2
1

8
-5

p
e

xp
re

ss
io

n

R = 0 .5 2 8 ; p < 0 .0 0 0 1C O P D

n o C O P D

5 0 1 0 0
0

1

2

3

4

D L C O (% p re d ic te d )

h
sa

-m
iR

-2
1

8
-5

p
e

xp
re

ss
io

n

R = 0 .6 6 5 ; p < 0 .0 0 0 1C O P D

n o C O P D

D E

0 5 0 1 0 0 1 5 0
0

1

2

3

4

F E V 1 p o s t-b ro n c h o d ila to r (% p re d ic te d )

h
sa

-m
iR

-2
1

8
-5

p
e

xp
re

ss
io

n

R = 0 .5 7 6 ; p < 0 .0 0 0 1C O P D

n o C O P D

5 0 1 0 0
0

1

2

3

4

F E V 1 /F V C p o s t-b ro n c h o d ila to r (% )

h
sa

-m
iR

-2
1

8
-5

p
e

xp
re

ss
io

n

R = 0 .6 0 4 ; p < 0 .0 0 0 1C O P D

n o C O P D



 
 

86 
 

Expression of miR-218-5p in human bronchial biopsies  

Additionally, we investigated the expression of miR-218-5p in bronchial biopsies of 9 never smokers 

and 10 patients with COPD GOLD stage I-II. Patient characteristics are represented in Table S3. In 

biopsies of patients with COPD GOLD stage I-II, the expression of miR-218-5p was significantly lower 

(0.67 ± 0.14) compared to the never smokers (2.5 ± 0.58, Figure 4A).  

 

Figure 4. Expression of 
miR-218-5p in human 
bronchial epithelium. 
(A) Expression of miR-
218-5p in human 
bronchial biopsies of 9 
never smokers (controls) 
and 10 ex-smokers with 
COPD GOLD stage I and II 
assessed by RT-qPCR and 
normalized to the 
controls SNORD95, 
SNORD96A and 
SNORD68. Data are 
expressed as normalized 
relative quantities ± 
SEM. **adj. p < 0.01. (B)  
In situ hybridization of 
miR-218-5p on lung 
tissue of a never smoker. 
Blue staining indicates 
miR-218-5p expression. 
(C) In situ hybridization 
on lung tissue of the 
same never smoker 
when the miR-218-5p 
probe was omitted 
(negative control) (D) 
miR-218-5p expression 
in in vitro cultured HBECs 
(n=5) exposed to air or 
CS. RNA was extracted 
24h after exposure. RT-
qPCR was performed 
and the expression of 
miR-218-5p was 
normalized to the 
controls SNORD95, 
SNORD96A and 
SNORD68. **p < 0.01 
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High expression of miR-218-5p in human bronchial airway epithelium 

To determine the localization of the expression of miR-218-5p in the lung, we performed in situ 

hybridization on human lung tissue (Figure 4B-C). Although expressed in various other cell types, 

highest expression of miR-218-5p was observed in the bronchial epithelium. In order to mimic the 

effect of CS exposure on human airway epithelium, we exposed primary HBECs, cultured on an air-

liquid interface, to air or CS. We observed a significant down-regulation of miR-218-5p in HBECs 24h 

after CS exposure (0.79 ± 0.025), compared to air-exposed cells (1.28 ± 0.044, Figure 4D).  

 

Figure 5. Expression of mmu-miR-218-5p in lungs of mice exposed to cigarette smoke. (A) Expression of mmu-
miR-218-5p was assessed by RT-qPCR and normalized to the controls SNORD95, SNORD61 and SNORD68 in lungs 
of mice that were exposed to air or CS for 4 or 24 weeks. (n=5-8/group). Expression of mmu-miR-218-5p is 
expressed as a normalized relative quantity.  **p < 0.01. (B-C) In situ hybridization of mmu-miR-218-5p in lung 
tissue of mice that were exposed to (B) air or (C) CS for 4 weeks. Blue staining indicates mmu-miR-218-5p 
expression. (D) In situ hybridization on mouse lung for the scrambled probe (negative control). 
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Expression of mmu-miR-218-5p in lung tissue of cigarette smoke-exposed mice 

Since miR-218-5p is highly conserved across species, we analyzed its expression in lungs of mice that 

were exposed to air or CS for 4 weeks (subacute model) or 24 weeks (chronic model). In agreement 

with our findings in the human lung, we demonstrated that mmu-miR-218-5p was significantly down-

regulated in mouse lung upon CS exposure (Air 4 weeks: 1.0 ± 0.058; CS 4 weeks: 0.86 ± 0.032; Air 24 

weeks: 1.1 ± 0.071; CS 24 weeks: 0.84 ± 0.0059, Figure 5A). In the bronchial airway epithelium and also 

to a lesser extent in the lung parenchyma, in situ hybridization clearly revealed lower expression of 

mmu-miR-218-5p in CS-exposed mice compared to air-exposed mice (Figure 5B-D). 

Correlation of pulmonary miR-218-5p expression with its predicted targets  

We performed a mRNA microarray on lung tissue of patients from the screening cohort. 14,759 genes 

were expressed in this microarray. By coupling the miRNA profiling data with the mRNA microarray 

data in the screening cohort, we were able to determine whether down-regulation of miR-218-5p 

modulates the expression of its target genes in COPD. To facilitate selection of predicted targets for 

miR-218-5p, we used the miRNA bodymap 400 which summarizes data of eight different publically 

available databases for target prediction, i.e. miRDB, TargetScan, MicroCosm, DIANA, TarBase, PITA, 

RNA22 and miRecords. Putative targets for miR-218-5p were retained when they were predicted by at 

least three different databases. 2,106 genes were predicted to be targeted by miR-218-5p of which 

1,710 were expressed on the mRNA microarray. We calculated the Spearman rank correlation 

coefficients for miR-218-5p with its 1,710 predicted targets and detected 307 significantly correlated 

target genes. Of these 307 significantly correlated target genes, 163 were negatively correlated with 

the expression of miR-218-5p. After correction for multiple testing, mRNA expression of 29 target 

genes was significantly negatively correlated while 33 target genes were significantly positively 

correlated with the expression of miR-218-5p (data not shown). mRNA expression of four target genes 

of miR-218-5p (CDC like kinase 3, Cytochrome P450 family subfamily B member 1, Leukemia inhibitory 

factor, Dual specificity phosphatase 5 [DUSP5]) in lung tissue is depicted in Figure S4.  

Gene set enrichment analysis for miR-218-5p in the context of COPD  

To explore pathways and functions associated with miR-218-5p activity in COPD, we performed GSEA 

using 14,759 genes expressed in lungs of patients with COPD 400. Defense response, immune and 

inflammatory response and pathways involved in NOD-like receptor signaling and cytokine-cytokine-

receptor interaction were found to be inversely correlated to miR-218-5p activity (Figure 6) (Figure 

S5). By exploring the genes belonging to the top ranked gene sets (as shown in Figure 6 and Figure S5), 

highest negative correlation with miR-218-5p activity is shown for genes that affect development and 

recruitment of immune cells towards the sites of inflammation (Figure S6).  
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Figure 6. GSEA for miR-218-5p in lung tissue (Gene Ontology- biological process). Circos plot where the outer 
circle indicates the most significant gene sets (FDR < 0.001) that are inversely correlated with miR-218-5p activity. 
The inner circle shows a subset of the leading edge genes (those with r ≤ -0.4) and the underlying heatmap shows 
the correlation value (r) between the respective genes and miR-218-5p. Leading edge genes that are part of 
multiple gene sets are linked. Abbreviation: FDR: false discovery rate 
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 Figure 7. In vitro transfection of miR-218-5p mimic in NHBE cells. NHBE cells exposed to 2.5% CSE or control 
medium and transfected with miR-218-5p compared to scrambled control and mock (lipofectamine control). 
mRNA expression of (A) IGFBP3, (B) HMOX1, (C) FKBP1A and (D) DUSP5, 4 predicted target genes of miR-218-5p, 
as assessed by RT-qPCR and normalized to the controls HPRT1, GAPDH and RPL13A. mRNA expression of (E) IL-8 
and (F) CCL20, as assessed by RT-qPCR and normalized to the controls HPRT1, GAPDH and RPL13A. Protein 
expression of (G) IL-8 and (H) CCL20 measured in cell supernatant by ELISA. mRNA data are expressed as 
normalized relative quantities. *p < 0.05, **p < 0.01, ***p < 0.001. Abbreviations: IGFBP3: Insulin-like growth 
factor-binding protein 3; HMOX1: heme oxygenase 1; FKBP1A: FK506 binding protein 1A; DUSP5: dual specificity 
phosphatase 5; IL-8: interleukin 8; CCL20: chemokine (C-C motif) ligand 20 
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In vitro overexpression of  miR-218-5p in normal human bronchial epithelial cells  

To elucidate the functional effect of miR-218-5p on predicted targets and markers of inflammation in 

a single cell type, we transfected NHBE cells in vitro with a miR-218-5p mimic, a scrambled negative 

control or a lipofectamine control (mock) and exposed these cells to 2.5% CSE or control medium. 

More than 90% of NHBE cells survived the transfection and the transfection efficiency was over 90% 

(Figure S7 A). The expression of miR-218-5p was significantly up-regulated in cells transfected with the 

mimic (Figure S7 B). RNA sequencing revealed 2,914 genes that were significantly differentially 

expressed in NHBE cells transfected with the miR-218-5p mimic, compared to the scrambled control 

(data not shown). Of these 2,914 genes, 600 were predicted target genes of miR-218-5p of which 509 

were down-regulated upon miR-218-5p overexpression (data not shown). This indicated that ectopic 

overexpression of miR-218-5p had a significant effect on its predicted target genes, more than 

expected by chance (p < 0.001). Down-regulation of four miR-218-5p target genes (IGFBP3, HMOX1, 

FKBP1A, DUSP5) was validated by RT-qPCR (Figure 7 A-D). We also investigated the effect of the miR-

218-5p mimic on CCL20 and IL-8, 2 important chemokines in the pathogenesis of COPD 84,85,87. Both the 

mRNA and the protein levels of CCL20 and IL-8 were significantly lower in the cells transfected with 

the mimic, compared to the scrambled or mock controls (Figure 7 E-H).  

GSEA on all 12,930 expressed genes, ranked according to fold change, revealed that overexpression of 

miR-218-5p was negatively associated with defense and inflammatory responses, regulation of the 

NFκB pathway, antigen processing and presentation, and chemokine signaling (data not shown).  

In vivo inhibition of miR-218-5p in CS-exposed mice 

To investigate the in vivo effect of miR-218-5p in lungs during CS exposure, we intranasally 

administered a miR-218-5p inhibitor, a scrambled control or PBS (solvent) to mice that were exposed 

to air or CS for 5 days. In BAL, exposure to CS significantly increased the number of total BAL cells, 

neutrophils, inflammatory monocytes, dendritic cells and CD4+ and CD8+ T cells (Figure 8 A-F) (Figure 

S8 A-B). Importantly, administration of the miR-218-5p inhibitor significantly aggravated the CS-

induced increase in inflammatory cells in BAL. Moreover, protein levels of CCL2, a chemokine known 

to be up-regulated in patients with COPD, were higher in BAL fluid of CS-exposed mice treated with 

the miR-218-5p inhibitor (Figure S8 C) 401. 
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Figure 8. In vivo administration of a miR-218-5p inhibitor to air- or CS-exposed mice.  Effect of a miR-218-5p 
inhibitor, a scrambled control or PBS (solvent) on total bronchoalveolar lavage (BAL) cells and cell differentiation 
in BAL of male wild type mice exposed to air or CS for 5 days. (A) Total BAL cells, (B) alveolar macrophages, (C) 
neutrophils, (D) dendritic cells, (E) CD4+ T cells, (F) CD8+ T cells, enumerated by flow cytometry. Results are 
expressed as mean ± SEM. N= 6-8 mice per group. *p < 0.05, **p < 0.01, ***p < 0.001 
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DDISCUSSION 

Aberrant expression of miRNAs has been associated with several pulmonary disorders, suggesting their 

involvement in the pathogenesis of these diseases. In this study, we explored the expression and 

functional characteristics of miR-218-5p in lung tissue in the context of COPD. Starting from miRNA 

profiling on lung tissue of never smokers, smokers without airflow limitation and smokers with COPD, 

a significant down-regulation of miR-218-5p in patients with COPD and an association of miR-218-5p 

expression with airway obstruction and lung diffusing capacity was observed. Intriguingly, in ex-

smokers without airflow limitation, miR-218-5p expression displayed normal levels whereas in ex-

smoking patients with COPD, this was not the case, especially not for patients who suffered from 

severe COPD. Interestingly, we show, both in human and mouse lung, that miR-218-5p is strongly 

expressed in the bronchial epithelium. Finally, in vitro overexpression of miR-218-5p in NHBE cells and 

in vivo inhibition of miR-218-5p in CS-exposed mice provide functional data for a protective role of 

miR-218-5p in CS-induced inflammatory responses and COPD pathogenesis.  

By performing miRNA profiling on lung tissue, we detected 29 differentially expressed miRNAs 

between smokers without airflow limitation and never smokers and 59 differentially expressed 

miRNAs between smokers with COPD and never smokers. The miRNA profiling revealed only 3 

differentially expressed miRNAs between smokers with or without airflow limitation. In contrast, a 

previous study by Ezzie et al. reported 70 differentially expressed miRNAs in lung tissue of smokers 

without airflow limitation and patients with COPD 152. This difference could be explained by the fact 

that in the latter study the majority of patients with COPD had severe disease (GOLD IV) whereas our 

patients with COPD only had moderate disease (GOLD II). By surveying the differentially expressed 

miRNA spectrum across the 3 patient groups of our screening cohort, the vast majority of miRNAs was 

down-regulated in the COPD group when compared to non-smoking controls, indicating that the 

overall suppressive effect of miRNAs on gene expression and translation is abrogated. Of the miRNAs 

that were down-regulated in the profiling, miR-218-5p is an interesting candidate since it is strongly 

down-regulated in patients with COPD versus never smokers and has already been reported in relation 

to smoking or COPD 34,149,402. Down-regulation of miR-218-5p has previously been described upon 

exposure to cigarette smoke condensate or smoking in human bronchial and small airway epithelium 
34,149 and in lung squamous cell carcinoma 402. Down-regulation of miR-218-5p was also documented in 

other lung compartments. We previously showed a significant lower expression of miR-218-5p in 

induced sputum supernatant of smokers with or without airflow limitation versus never smokers 153. 

In cells from bronchoalveolar lavage fluid of patients with lung cancer and/or COPD, miR-218-5p 

associated with the COPD group when miRNA expression profiles were quantified 321, thereby 

suggesting a greater involvement of miR-218-5p in COPD than in lung cancer. In addition, when the 
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expression profile of human miRNAs was evaluated in several tissues, highest expression of miR-218-

5p was detected in lung tissue 403. 

We confirmed decreased expression of miR-218-5p in smokers and patients with COPD in an 

independent validation cohort. By including ex-smokers in the validation cohort, we also obtained 

information on the effect of smoking cessation on miR-218-5p expression. A recent study shows that 

in the small airway epithelium of healthy smokers, miR-218-5p levels do not return to normal levels 

when smoking is quitted for 3 months, which is in contrast to most other miRNAs 34. Our results 

demonstrate that, in lungs of smokers without airflow limitation, miR-218-5p shows normal expression 

levels after smoking cessation for at least 1 year, which was not the case for patients with COPD. The 

irreversible down-regulation of miR-218-5p in patients with COPD might contribute to the persistent 

systemic and pulmonary inflammation, irrespective of smoking.  

By correlating the expression of miR-218-5p with physiological parameters of airway obstruction and 

emphysema, we demonstrate a strong association of miR-218-5p with COPD, which remained 

significant when excluding never smokers or when including only patients with COPD. Importantly, by 

performing linear regression analysis, we demonstrate an association of miR-218-5p with severe COPD, 

independent of smoking status.  

By exploring the expression of mmu-miR-218-5p in lung tissue of mice that were subacutely or 

chronically exposed to air or CS, we underscore its biological relevance among a variety of species in 

smoking-induced disease. A consistent overlap between rodent miRNAs and their human homologs 

was shown by Izzotti and coworkers 150. After 4 weeks of CS exposure, we observed a significant down-

regulation of mmu-miR-218-5p which was more pronounced after chronic CS exposure. In agreement 

with our results, Izzotti et al. described a significant down-regulation of rno-miR-218-5p in lungs of rats 

after 4 weeks of exposure to environmental CS (ECS) and a borderline significant down-regulation of 

mmu-miR-218-5p in mice after 5 weeks of exposure to ECS 150,151. 

In both human and murine lung, in situ hybridization (ISH) revealed the highest expression of miR-218-

5p in the bronchial epithelium. In the murine lung, ISH clearly showed reduced expression of mmu-

miR-218-5p in the bronchial airway epithelium upon CS exposure. To confirm direct or indirect effect 

of CS exposure on the epithelium, we analyzed the expression of miR-218-5p in primary HBECs that 

were grown on an air-liquid interface and were exposed to air or CS. Twenty-four hours after CS 

exposure, we observed a down-regulation of miR-218-5p which was in agreement with our expression 

data in lung and ISH. Similarly, Schembri et al. showed a down-regulation of miR-218-5p in normal 

cultured HBECs that were exposed to CS condensate 149. 

To find out how miR-218-5p might be involved in pathways that are relevant to the pathogenesis of 

COPD, we correlated the mRNA expression profile of 14,759 expressed genes with the expression of 

miR-218-5p in lung tissue and performed GSEA. GSEA suggests a functional role for miR-218-5p in 
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immune, defense and inflammatory responses. Within the top ranked gene sets, some genes are highly 

negatively associated with miR-218-5p activity. More in detail, CCL20 is a chemokine that attracts 

dendritic cells (DCs) and is known to be elevated in lungs of patients with COPD 87, whereas CXCL1 

attracts monocytes and neutrophils 404. IRF8 is necessary for the development of antigen presenting 

cells (DCs, monocytes and B cells) 405,406 and miR-218-5p is also negatively correlated with MHCII 

molecules such as HLA-DQA2. These genes (and gene sets) emphasize the association of down-

regulation of miR-218-5p activity with an accumulation and activation of immune cells, characteristic 

for the chronic inflammation in lungs of patients with COPD. However, as expected in a complex in vivo 

setting, mRNAs and miRNAs do not operate in isolation but rather in regulatory networks, which might 

explain why some predicted target genes were positively correlated with the expression of miR-218-

5p 407,408.  

To further strengthen our observations by mechanistic studies, we overexpressed miR-218-5p in vitro 

in NHBE cells, the cell type with the highest miR-218-5p expression. RNA sequencing showed down-

regulation of 509 miR-218-5p target genes and GSEA revealed a negative association of miR-218-5p 

with inflammatory and defense pathways. These data support the protective or even therapeutic 

properties of miR-218-5p in CS-induced airway inflammation and COPD. Moreover, by RT-qPCR and 

ELISA, we confirmed diminished expression of the inflammatory chemokines IL-8 and CCL20, and of 

the miR-218-5p predicted target genes IGFBP3, HMOX1, FKBP1A and DUSP5. IGFBP3 is overexpressed 

in idiopathic pulmonary fibrosis, in allergic airway remodeling, during acute respiratory distress 

syndrome and its effect on pathological and cellular proliferation processes might be independent of 

insulin growth factors 409-411. HMOX, a rapid inducible oxidative stress response gene, is reported to be 

higher expressed upon CS 412. FKBP1A, a highly conserved immunophilin of the FK506-binding protein 

(FKBP) family, functions as a regulator of the TGF-β superfamily (TGF-β, activin) signal transduction 413. 

Recent studies also provide evidence for participation of FKBPs in innate and adaptive immunity and 

in the development of immunopathologies 414. Within the MAPK pathway, DUSP5 ensures the 

inactivation and nuclear translocation of ERK1/2 415. DUSP5 is up-regulated in the bronchial airway 

epithelium of patients with COPD and this up-regulation was modified by administration of inhaled 

corticosteroids 168.  

Importantly, by inhibiting miR-218-5p in CS-exposed mice, we clearly demonstrate an aggravation of 

the CS-induced inflammation, leading to significant higher numbers of neutrophils, dendritic cells and 

T cells, all important cell types in the pathogenesis of COPD. These results indicate that reduced 

expression of miR-218-5p likely contributes to the CS-induced inflammation. 

For this study, expression of miR-218-5p was investigated in-depth across different patient groups with 

a total sample size of 101 well-characterized subjects. This miR-218-5p expression was validated, not 

only using 2 independent cohorts, but also using 2 different RT-qPCR methods (TaqMan stem-loop RT-
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qPCR technology (Life technologies) in the screening cohort versus miScript miRNA assay (Qiagen) in 

the validation cohort), which strengthen our findings 371. In addition, we obtained concordant results 

in human bronchial epithelial cells, in in vitro cultured primary epithelial cells and in a COPD mouse 

model, underscoring the biological relevance of our observations. Integration of gene expression and 

miRNA data allowed us to unravel the potential functional role of miR-218-5p in the context of COPD 

in total lung. By perturbing the miR-218-5p levels in vitro and in vivo, we highlight the biological 

relevance of miR-218-5p in CS-induced inflammation and COPD pathogenesis.   

However, there are also a few limitations to our study. First, we are aware of the gender imbalance in 

our screening cohort and tried to address this issue in the independent validation cohort. Second, a 

longitudinal cohort study of smokers who develop COPD would ideally be suited to further investigate 

the causal effect of miR-218-5p on COPD pathogenesis. Third, for this study, lung tissue was obtained 

mainly from patients who underwent surgery for solitary lung tumors. It has been described that the 

expression level of miR-218-5p changes from within the lung tumor (lowest expression) to the adjacent 

lung tissue (intermediate expression), to the tissue far away from the tumor (highest expression) 416. 

To avoid any confounding effects of the tumor on our results of the screening and validation cohorts, 

we used lung tissue as far as possible from the tumor. Although it has previously been shown that miR-

218-5p decreases in lung cancer, we observed the lowest miR-218-5p levels in severe COPD subjects 

without lung cancer. Additionally, we have validated the decreased expression of miR-218-5p in 

bronchial biopsies from patients with COPD compared to never smokers. Importantly, all patients were 

without diagnosis of lung cancer.  

In conclusion, our results strongly suggest a role for miR-218-5p in the host response against CS 

exposure and in the pathogenesis of COPD. First, we demonstrate a significant down-regulation of miR-

218-5p in patients with COPD versus never smokers, which is persistent upon smoking cessation. 

Second, miR-218-5p strongly correlates with disease severity. Third, we show that the highest 

expression of miR-218-5p in the lung is localized to the bronchial airway epithelium which is the first 

cell line of defense in combat against harm-causing agents such as CS. Fourth, GSEA points towards an 

involvement of miR-218-5p in defense and inflammatory responses. Finally, by overexpressing or 

inhibiting miR-218-5p in vitro and in vivo, we provide functional data of miR-218-5p impacting 

biological pathways that are relevant to COPD pathogenesis. In the future, more research is needed to 

investigate the regulatory mechanism that controls the expression of miR-218-5p in a disease state 

versus a non-disease state and to unravel the biological implications of down-regulation of miR-218-

5p in COPD. A further understanding of its role in the host response against CS and the pathogenesis 

of COPD will be required to decide whether miR-218-5p can be put forward as a candidate for 

therapeutic interventions in COPD.   
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SSupplementary Tables  

Table S1. Differentially expressed miRNAs in screening cohort.  

Up-regulated  in COPD vs never 
smokers miRBase release 21 FC Adj. p-value 

hsa-miR-31x hsa-miR-31-3p 2.743 0.013 

hsa-miR-31 hsa-miR-31-5p 2.273 0.049 

hsa-miR-21x hsa-miR-21-3p 2.170 <0.001 

hsa-miR-1274A  2.060 0.042 

hsa-miR-34Ax hsa-miR-34a-3p 1.833 <0.001 

hsa-miR-136x hsa-miR-136-3p 1.789 0.020 

hsa-miR-135bx hsa-miR-135b-3p 1.765 0.034 

hsa-miR-625x hsa-miR-625-3p 1.735 0.039 

hsa-miR-155 hsa-miR-155-5p 1.695 0.002 

hsa-miR-146b-5p hsa-miR-146b-5p 1.547 0.008 

hsa-miR-625 hsa-miR-625-5p 1.463 0.046 

hsa-miR-135b hsa-miR-135b-5p 1.442 0.017 

hsa-miR-425x hsa-miR-425-3p 1.358 0.036 

hsa-miR-148a hsa-miR-148a-3p 1.285 0.029 

hsa-miR-191 hsa-miR-191-5p 1.265 0.034 

 

Up-regulated in smokers vs never 
smokers 

miRBase release 21 FC Adj. p-value 

hsa-miR-885-5p hsa-miR-885-5p 3.680 0.019 

hsa-miR-21x hsa-miR-511-5p 1.953 0.003 

hsa-miR-135bx hsa-miR-654-3p 1.826 0.030 

hsa-miR-136x hsa-miR-136-3p 1.721 0.039 

hsa-miR-155 hsa-miR-155-5p 1.712 0.003 

hsa-miR-34Ax hsa-miR-34a-3p 1.604 <0.001 

hsa-miR-146b-5p hsa-miR-146b-5p 1.599 0.006 

hsa-miR-511 hsa-miR-511-5p 1.567 0.050 
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hsa-miR-654-3p hsa-miR-654-3p 1.543 0.030 

hsa-miR-340x hsa-miR-340-3p 1.360 0.038 

hsa-miR-148a hsa-miR-148a-3p 1.275 0.044 

hsa-miR-191 hsa-miR-191-5p 1.275 0.035 

 

Up-regulated in COPD vs smokers miRBase release 21 FC Adj. p-value 

hsa-miR-1274A  1.980 0.040 

 

 

Down-regulated in COPD vs never 
smokers 

miRBase release 21 FC Adj. p-value 

hsa-miR-519a hsa-miR-519a-3p 3.079 0.020 

hsa-miR-592 hsa-miR-592 2.745 0.007 

hsa-miR-551b hsa-miR-551b-3p 2.628 0.001 

hsa-miR-517c hsa-miR-517c-3p 2.458 0.033 

hsa-miR-450a hsa-miR-450a-5p 2.457 <0.001 

hsa-miR-455-3p hsa-miR-455-3p 2.340 0.032 

hsa-miR-744x hsa-miR-744-3p 2.174 0.036 

hsa-miR-517a hsa-miR-517a-3p 1.997 0.036 

hsa-miR-218 hsa-miR-218-5p 1.865 <0.001 

hsa-miR-99b hsa-miR-99b-5p 1.771 <0.001 

hsa-miR-455-5p hsa-miR-455-5p 1.727 0.015 

hsa-miR-221 hsa-miR-221-3p 1.672 <0.001 

hsa-miR-30dx hsa-miR-30d-3p 1.665 0.043 

hsa-miR-181c hsa-miR-181c-5p 1.602 0.014 

hsa-miR-125a-3p hsa-miR-125a-3p 1.531 0.030 

hsa-miR-296-5p hsa-miR-296-5p 1.521 0.006 

hsa-miR-339-5p hsa-miR-339-5p 1.518 0.001 

hsa-miR-149 hsa-miR-149-5p 1.514 0.024 
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hsa-miR-497 hsa-miR-497-5p 1.502 0.003 

hsa-miR-181a-2x hsa-miR-181a-2-3p 1.500 0.030 

hsa-miR-502-5p hsa-miR-502-5p 1.497 0.003 

hsa-miR-197 hsa-miR-197-3p 1.491 0.018 

hsa-miR-331-3p hsa-miR-331-3p 1.467 0.005 

hsa-miR-423-5p hsa-miR-423-5p 1.457 0.010 

hsa-miR-25 hsa-miR-25-3p 1.455 <0.001 

hsa-miR-484 hsa-miR-484 1.455 0.002 

hsa-miR-199a-5p hsa-miR-199a-5p 1.443 0.006 

hsa-miR-345 hsa-miR-345-5p 1.438 0.004 

hsa-miR-328 hsa-miR-328-3p 1.435 0.015 

hsa-miR-130b hsa-miR-130b-3p 1.425 0.011 

hsa-miR-106b hsa-miR-106b-5p 1.422 0.007 

hsa-miR-505 hsa-miR-505-3p 1.416 0.016 

hsa-miR-92a hsa-miR-92a-3p 1.408 <0.001 

hsa-miR-30ax hsa-miR-30a-5p/-3p 1.382 0.041 

hsa-miR-222 hsa-miR-222-3p 1.372 0.020 

hsa-let-7b hsa-let-7b-5p 1.361 0.009 

hsa-miR-502-3p hsa-miR-502-3p 1.356 0.005 

hsa-miR-193a-5p hsa-miR-193a-5p 1.355 0.021 

hsa-miR-148b hsa-miR-148b-3p 1.348 0.021 

hsa-miR-15a hsa-miR-15a-5p 1.336 0.020 

hsa-miR-99bx hsa-miR-99b-3p 1.333 0.027 

hsa-miR-128 hsa-miR-128-3p 1.313 0.010 

hsa-miR-27b hsa-miR-27b-3p 1.294 0.015 

hsa-miR-93 hsa-miR-93-5p 1.257 0.028 
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Down-regulated in smokers vs never 
smokers 

miRBase release 21 FC Adj. p-value 

hsa-miR-592 hsa-miR-592 5.125 0.007 

hsa-miR-138 hsa-miR-138-5p 1.959 0.010 

hsa-miR-455-5p hsa-miR-455-5p 1.692 0.026 

hsa-miR-218 hsa-miR-218-5p 1.578 0.003 

hsa-miR-181a hsa-miR-181a-5p 1.508 0.045 

hsa-miR-99b hsa-miR-99b-5p 1.507 0.001 

hsa-miR-25 hsa-miR-25-3p 1.393 0.002 

hsa-miR-222 hsa-miR-222-3p 1.369 0.026 

hsa-miR-497 hsa-miR-497-5p 1.361 0.029 

hsa-miR-221 hsa-miR-221-3p 1.356 0.008 

hsa-miR-345 hsa-miR-345-5p 1.354 0.023 

hsa-let-7b hsa-let-7b-5p 1.341 0.017 

hsa-miR-199a-5p hsa-miR-199a-5p 1.338 0.039 

hsa-miR-339-5p hsa-miR-339-5p 1.326 0.032 

hsa-miR-502-3p hsa-miR-502-3p 1.297 0.021 

hsa-miR-27b hsa-miR-27b-3p 1.286 0.022 

hsa-miR-15a hsa-miR-15a-5p 1.155 0.035 

 

Down-regulated in COPD vs smokers miRBase release 21 FC Adj. p-value 

hsa-miR-484 hsa-miR-484 1.262 0.046 

hsa-miR-502-5p hsa-miR-502-5p 1.174 0.018 

 

In total, 343 miRNAs were tested. 
smokers: current smokers without airflow limitation; COPD: current smokers with COPD GOLD stage 
II;  
Abbreviations: FC: fold change ; Adj. p-value: p-value adjusted for multiple testing (Benjamini-
Hochberg)  
First column: annotation of miRNA at the time of the miRNA profiling; Second column: annotation of 
miRNA according to miRBase release 21 
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Table S2. Linear regression analysis (validation cohort) 

Parameter  B Std. Error t p-value 

Gender male -0.052 0.114 -0.454 0.651 

 female 0a    

COPD status COPD III-IV -0.797 0.224 -3.560 <0.001 

 COPD II -0.069 0.126 -0.546 0.587 

 no COPD 0a    

Current 
smoking 

current 
smoker 

-0.677 0.171 -3.973 <0.001 

 ex-smoker -0.122 0.161 -0.758 0.451 

 never smoker 0a    

Inhaled 
steroids 

inhaled 
steroids use 

-0.146 0.138 -1.064 0.292 

 no inhaled 
steroids use 

0a    

BMI  0.004 0.009 0.475 0.636 

Age  -0.017 0.007 -2.288 0.026 

a reference parameter is set to 0. 

The unstandardized coefficient (β) is the natural logarithm fold change in miR-218-5p expression (i.e. 
the increase in units of dependent variable) when increasing the predictor variable with 1 unit and 
holding the other variables constant. 

Table S3. Patient characteristics (bronchial biopsies) 

 Never smokers COPD GOLD I-II 
Number 9 10 
Gender (male/female) 2/7 4/6 
Age (years) 60 (52-62) 72 (63-80) 
BMI (kg/m2) 28 (24-30) 26 (23-36) 
Current-smoker/ex-smoker - 2/8 
Smoking history (pack years) 0 (0-0) 40 (29-89)* 
FEV1 post-bronchodilator (% predicted) 93 (77-105) 82 (71-93) 
FEV1/FVC post-bronchodilator (%) 75 (74-78) 64 (62-69)* 
ICS (yes/no) 0/9 † 4/6 

Footnote 
Abbreviations: FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity; ICS: inhaled corticosteroids. 
Data are presented as median (IQR); p-values were determined by Mann-Whitney U test: * P < 0.001 versus 
never smokers or Fisher's exact test: † P < 0.05    
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SSupplementary Figures 

 

  

Figure S1. Expression of miR-218-5p in lung tissue (screening cohort). (A) Normalized expression of miR-218-5p 
as assessed by stem-loop RT-qPCR in lung tissue of 8 never smokers, 10 smokers without airflow limitation and 
12 smokers with COPD (screening cohort). Normalization was achieved using the global mean on common 
targets. **adj. p < 0.01, ***adj. p < 0.001   (B) Normalized expression of miR-218-5p as assessed by RT-qPCR in 
lung tissue of 12 never smokers, 21 current and ex-smokers without airflow limitation and 38 patients with COPD 
GOLD II-III-IV (current and ex-smokers) (validation cohort). Data are expressed as normalized relative quantities, 
normalized to the controls SNORD95, SNORD96A and SNORD68.  *p < 0.05, ***p < 0.001  
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Figure S2. Spearman correlation between miR-218-5p and patient characteristics (validation cohort) when 
excluding never smokers. Spearman correlation between miR-218-5p and (A) % FEV1 post-bronchodilator, (B) % 
FEV1/FVC (C) DLCO, (D) KCO and (E) pack years in the validation cohort. Abbreviations: FEV1: forced expiratory 
volume in 1 second; FVC: forced vital capacity; DLCO: diffusing capacity of carbon monoxide; KCO: transfer 
coefficient of carbon monoxide (corrected for alveolar volume) 
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Figure S3. Spearman correlation between miR-218-5p and patient characteristics (validation cohort) in patients 
with COPD. Spearman correlation between miR-218-5p and (A) % FEV1 post bronchodilator, (B) % FEV1/FVC (C) 
DLCO and (D) KCO in the validation cohort. Abbreviations: FEV1: forced expiratory volume in 1 second; FVC: 
forced vital capacity; DLCO: diffusing capacity of carbon monoxide; KCO: transfer coefficient of carbon monoxide 
(corrected for alveolar volume) 

 

Figure S4. mRNA expression 
of predicted target genes of 
miR-218-5p. mRNA 
expression of (A) CLK3, (B) 
CYP1B1, (C) LIF, (D) DUSP5 in 
lung tissue of the screening 
cohort. mRNA data, assessed 
by mRNA microarray, are 
represented as background 
corrected and quantile 
normalized intensities. *p < 
0.05, **p < 0.01, ***p < 
0.001. Abbreviations: CLK3: 
CDC-like kinase 3; CYP1B1: 
cytochrome P450, family 1, 
subfamily B, polypeptide 1; 
LIF: leukemia inhibitory 
factor; DUSP5: dual specificity 
phosphatase 5 
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Figure S5. Gene set enrichment analysis (GSEA) for miR-218-5p in lung tissue (KEGG). Circos plot where the outer 
circle indicates the most significant gene sets (FDR < 0.001) that are inversely correlated with miR-218-5p activity. 
The inner circle shows a subset of the leading edge genes (those with r  -0.4) and the underlying heatmap 
shows the correlation value (r) between the respective genes and miR-218-5p. Leading edge genes that are part 
of multiple gene sets are linked. Abbreviation: KEGG: Kyoto Encyclopedia of Genes and Genomes, FDR: false 
discovery rate 
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Figure S6. mRNA expression of genes inversely correlated to miR-218-5p activity. mRNA expression of (A) CCL20, 
(B) CXCL1, (C) IRF8, (D) HLA-DQA2 and (E) IL-8 in lung tissue of the screening cohort. mRNA data, assessed by 
mRNA microarray, are represented as background corrected and quantile normalized intensities. *p < 0.05, **p 
< 0.01, ***p < 0.001. Abbreviations: CCL20: chemokine (C-C motif) ligand 20 ; CXCL1: chemokine (C-X-C motif) 
ligand 1 ; IRF8 : interferon regulatory factor 8 ; HLA-DQA2: major histocompatibility complex, class II, DQ alpha 
2; IL-8: interleukin 8 
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Figure S7. In vitro transfection of miR-218-5p mimic 
in NHBE cells. NHBE cells exposed to 2.5% CSE or 
control medium and transfected with miR-218-5p 
compared to scrambled control and mock. (A) Gating 
strategy to investigate cell survival and transfection 
efficiency. (B) miR-218-5p expression assessed by RT-
qPCR and normalized to the controls SNORD95, and 
SNORD96A. Data are expressed as normalized relative 
quantities. ***p < 0.001 

 

 

 

 

Figure S8. In vivo administration of a miR-218-5p 
inhibitor to air- or CS-exposed mice. Effect of a miR-218-
5p inhibitor, a scrambled control or PBS (solvent) on cell 
differentiation in BAL and protein levels of cytokines in 
BAL fluid of male wild type mice exposed to air or CS for 
5 days. (A) Total CD11b+Ly6C+ cells, (B) total CD11b+ 
dendritic cells, enumerated by flow cytometry and (E) 
CCL2 protein levels, measured in BAL fluid by ELISA. 
Results are expressed as mean ± SEM. N= 6-8 mice per 
group. *p < 0.05, **p < 0.01, ***p < 0.001 
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DDirect detection of circulating microRNAs unveiled the absence of miR 218-5p in 

smoker subjects 

Erika Cione1 and Luca Gallelli2 

1Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), 

Italy 

2Department of Health Science, School of Medicine, University of Catanzaro, Clinical 

Pharmacology Unit, Mater Domini University Hospital, Italy. 

 

Dear Editor, 

we have read with great interest the paper entitled “MicroRNA Profiling Reveals a Role for MicroRNA-

218-5p in the Pathogenesis of Chronic Obstructive Pulmonary Disease” by Conickx et al 154. In their 

study the authors evaluated miRNAs profile in 30 patients (8 never smoked, 10 were smokers without 

airflow limitation and 12 smokers with COPD), showing that the hsa-microRNA-218-5p in both COPD 

and smokers biopsies is downregulated. Therefore, the authors suggest a protective role of this miR in 

cigarette smoke-induced inflammation and COPD. Even if this study is of high interest, the cohort COPD 

patients evaluated are under pharmacological treatment and it is known that drugs, indirectly can 

perturb miR expression results 417. 

At present, there is growing scientific interest on the role of miR in COPD patients, and “in vitro” studies 

documented that hsa-miR-1343 reduces the expression of both isoforms (type 1 and 2) of the TGF-

beta receptor 418, and hsa-miR-145 negatively regulates the release of proinflammatory cytokines by 

airway smooth muscle cells 331. An important feature of miRs is the stability in the blood-stream, thus 

they are designed as biomarkers of different diseases. For such reason, our research group has started 

a clinical study (https://clinicaltrials.gov/ct2/show/NCT02633280) that is still ongoing, in order to 

evaluate in smoking and non-smoking patients with and without COPD, the serum miRnome levels 

(HumanV3 miRNA Assay-Kit-12 assay). In our tests, we used the NanoString’snCounter Flex System, 

based on the direct hybridization of hundreds (up to 800 simultaneously) of different capture/miR 

probes containing biotin and an unique fluorescent designed as a ‘molecular barcodes’ for each target. 

The probe form hydrids with their corresponding target 419 and are then immobilized on a streptoavidin 

cartridge; the nonhybridized probes are removed in the prep station system and individual hybridized 

probes are visualized and counted with fluorescent microscopic imaging/scanning. The low 

background of this technique provides a very sensitive detection (LOD 10-15) and the advantages of this 

platform are also the precision and since no amplification is required, the totally absence of 

retrotrascription bias. All the characteristics describe above, make this technology robust and 
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relatively cost effective compared to microarray in the field of translational medicine because it is able 

to analyze the entire signal transduction pathways in one reaction 420. 

In our sets of serum patients tested (divided in 4 healthy non-smokers, 5 smokers and 3 ex-smokers) 

we highlighted that in smoker subjects’ plasma hsa-miR-218-5p is not detected, compared to healthy 

ones supporting the concept that may progressive reduction in the plasma miR-218-5p level could be 

linked to lung health status. We did not detect also hsa-miR-218-5p in ex-smokers (who have quit for 

at least 2 years). At the moment we were not able to screen COPD naïve patients (for therapy) and we 

are still searching for such. In all the serum samples extracted we added two spike in (osa-miR434 and 

ath-miR159), in a known amount, in order to know the efficiency of extraction. Beside the excitement 

in miR studies for COPD patients with the discovery of microRNAs signature as predictive biomarkers 

of diseases (better if in serum/plasma samples) what is now challenging is the discovery of the target 

gene(s) of the miR-218-5p. 

  

 

Reply to direct detection of circulating microRNAs unveiled the absence of miR-218-5p 

in smoker subjects 

Griet Conickx1, Pieter Mestdagh2, Jo Vandesompele2, Guy G Brusselle1, Ken R Bracke1 

1Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of 

Respiratory Medicine, Ghent University Hospital, Ghent, Belgium 

2Center for Medical Genetics, Ghent University, Ghent, Belgium 

 

From the Authors: 

We thank Cione and colleagues for their interest in our work concerning the role of miR-218-5p in the 

pathogenesis of chronic obstructive pulmonary disease (COPD). We agree that investigating the 

contribution of microRNA (miRNA) to the pathogenesis of COPD is an attractive field 152,153,421. For 

clarity, we did not investigate the miRNA profile in lung biopsies, but in lung tissue specimens from 

lobectomy or lung transplantation. Down-regulation of miR-218-5p in lung tissue from smokers and 

COPD patients was first detected in a screening cohort of 30 patients and subsequently validated in a 

validation cohort of 71 patients and in bronchial biopsies of 19 patients. To address the concern of 

Cione and colleagues on drugs affecting miR-218-5p expression, only 6 out of 30 patients in the 

screening cohort were using inhaled corticosteroids and linear regression analysis could not 

demonstrate an impact of the treatment on the expression of miR-218-5p. 
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For the quantification of miRNA expression in human lung tissue, we used the stem-loop RTqPCR 

method, as this approach has both high sensitivity and specificity 371,374. While we did not investigate 

the expression of miR-218-5p in blood, several studies reported miR-218 levels in plasma or serum 

using RT-qPCR 422-424. We regret that Cione and colleagues are not able to detect miR-218-5p levels in 

serum in their limited cohort of smokers. Since detection of miRNA levels is highly technology-

dependent, it is crucial to evaluate the sensitivity of the proposed nCounter Flex System (NanoString), 

a hybridization-based miRNA quantification platform 372. Recently, the performance of different miRNA 

quantification platforms has been extensively evaluated in the microRNA quality control (miRQC) study 
371. In this study, the sensitivity of the individual platforms was investigated by evaluating the number 

of detected miRNAs in serum RNA samples. Detection rates in serum RNA were highly variable among 

platforms, with qPCR platforms displaying higher sensitivity compared to hybridization-based 

platforms. While the nCounter Flex System was included in the miRQC study, Nanostring did not profile 

the serum samples and detection specificity and sensitivity of this platform in serum could therefore 

not be assessed. 

Regarding the functional impact of miR-218-5p, in vitro and in vivo perturbation experiments 

demonstrated that a reduced expression of miR-218-5p likely contributes to the cigarette smoke-

induced inflammation 154, providing novel insights into the pathogenesis of COPD. 
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CHAPTER 6: microRNA profiling in lung tissue and 
bronchoalveolar lavage of cigarette smoke-exposed mice 
and in COPD patients: a translational approach 
 

 

 

 

 

 

miRNAs are generally highly conserved in mammals, indicating that murine models can be adequate 

models to identify relevant miRNAs. Our aim was to put forward interesting miRNAs for further 

research in the context of COPD. Therefore, we used our murine COPD model and detected miRNAs 

whose expression was altered following CS exposure in lung tissue and matched bronchoalveolar 

lavage (BAL) fluid, 2 different respiratory compartments, which was not yet investigated before. 

Moreover, we correlated with the inflammatory profile (i.e. altered inflammatory cell numbers and 

chemokine levels) in lung and BAL, and sought for overlap with lung tissue, bronchial biopsies and 

induced sputum of patients with COPD.  

 

 

Conickx G#, Avila Cobos F#, van den Berge M, Faiz A, Timens W, Hiemstra PS, Joos GF, Brusselle GG, 
Mestdagh P*, Bracke KR*.  
MicroRNA profiling in lung tissue and bronchoalveolar lavage supernatant of cigarette smoke-
exposed mice and in COPD patients: a translational approach 
Scientific Reports (revision submitted) 
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AABSTRACT 

 

Chronic obstructive pulmonary disease (COPD) is characterized by a progressive airflow limitation and 

is associated with a chronic inflammatory response in the airways and the lungs. microRNAs (miRNAs) 

are often highly conserved between species and have an intricate role within homeostatic conditions 

and immune responses. Also, miRNAs are dysregulated in smoking-associated diseases. We 

investigated the miRNA profile of 523 miRNAs by stem-loop RT-qPCR in lung tissue and cell-free 

bronchoalveolar lavage (BAL) supernatant of mice exposed to air or cigarette smoke (CS) for 4 or 24 

weeks. After 24 weeks of CS exposure, 31 miRNAs were differentially expressed in lung tissue and 78 

in BAL supernatant. Next, we correlated the miRNA profiling data to inflammation in BAL and lung, 

obtained by flow cytometry or ELISA. In addition, we surveyed for overlap with newly assessed miRNA 

profiles in bronchial biopsies and with previously assessed miRNA profiles in lung tissue and induced 

sputum supernatant of smokers with COPD. Several miRNAs showed concordant differential 

expression between both species including miR-31*, miR-155, miR-218 and let-7c. Thus, investigating 

miRNA profiling data in different compartments and both species provided accumulating insights in 

miRNAs that may be relevant in CS-induced inflammation and the pathogenesis of COPD. 

  



 
 

113 
 

IINTRODUCTION 

 

Chronic Obstructive Pulmonary Disease (COPD) is a debilitating respiratory condition which is 

characterized by a progressive and irreversible airflow limitation due to an abnormal inflammatory 

response to inhalation of noxious particles or gases 82,425,426. The pathology comprises a mixture of 

small airway obstruction and destruction of lung parenchyma (emphysema); their relative contribution 

varying between patients and within the lung 59. The main risk factor for developing COPD is cigarette 

smoking. However, only 20% of smokers develop COPD, suggesting that genetic susceptibility or 

alterations in the epigenetic machinery may be of importance in the development of COPD. 

microRNAs (miRNAs), i.e. small non-coding RNAs, are key regulators in diverse biological pathways. 

One single miRNA can bind to target sequences in multiple mRNAs, typically resulting in mRNA 

degradation and/or translational inhibition 265. By doing so, miRNAs embed a post-transcriptional 

control within multiple gene signaling cascades. Also, certain miRNAs are critically involved in immune 

cell development and function. Given this far-reaching influence, it is not surprising that altered miRNA 

levels contribute to disease pathogenesis 427. 

Ideally, differentially expressed miRNAs in disease versus control can serve as biomarkers of disease 

initiation/progression or as therapeutic target. In lungs of patients with COPD, we have shown the 

involvement of down-regulated miRNA-218-5p in recruiting inflammatory cells towards the airways, 

thereby assisting in the sustained inflammation 154. In sputum of patients with COPD, down-regulation 

of let-7c was inversely correlated with soluble TNFR-II, a receptor implicated in COPD pathogenesis 153. 

The expression of miRNAs is described to be altered after cigarette smoke (CS) exposure in lungs of 

mice and patients with COPD 151,152,155,428. Smoking can potentiate inflammatory processes by affecting 

the expression of miRNAs that play a key role in immune responses. To obtain full insights in the CS-

induced alterations in murine miRNA levels and immune cell populations in the lung, we performed an 

RT-qPCR-based miRNA profiling in bronchoalveolar lavage (BAL) supernatant and lung tissue of mice 

that were exposed to air or CS for 4 or 24 weeks, complemented with data on inflammation in BAL and 

lungs. Moreover, using a translational approach, we checked for overlapping miRNAs in lung tissue 

between CS-exposed mice and patients with COPD. This information will highlight relevant miRNAs in 

the CS-induced inflammation. 
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MMATERIALS AND METHODS 

Mice 

Male C57BL/6 wild-type (WT) mice were purchased from the Jackson Laboratory (Bar Harbor, ME, 

USA). All mice were kept under a 12h light-dark cycle in autoclaved cages and bedding, with unlimited 

access to water and food. The ethics committee for animal experimentation of the faculty of Medicine 

and Health Sciences (Ghent University) approved all in vivo manipulations. 

Smoke exposure 

Mice (n=8 per group) were exposed to air or CS, as described previously 360. Briefly, all the mice were 

exposed whole body to the mainstream tobacco smoke of 5 simultaneously lit 3R4F reference 

cigarettes (without filter, University of Kentucky, Lexington, KY), 4 times a day with a 30 minutes 

smoke-free interval. Therefore, the mice were placed in a plexiglass chamber of 7500 cm3, connected 

to a smoking chamber. The mice were exposed for 5 days per week, for 4 weeks (subacute exposure) 

or 24 weeks (chronic exposure). An optimal smoke-to-air ratio of 1:6 was maintained. The control 

groups were exposed to air.   

Bronchoalveolar lavage (BAL) 

Via a tracheal cannula, lungs were first lavaged using 3 times 300 μl HBSS (free of Ca2+ and Mg2+ and 

supplemented with 1% BSA). Supernatant of this fraction was used for ELISA and collected for miRNA 

profiling. Then, lungs were lavaged using 3 times 1 ml HBSS supplemented with 0.6 mM EDTA. The six 

lavage fractions were pooled, centrifuged, and the cell pellet was resuspended in 200 μl FACS buffer 

(PBS supplemented with 1 % BSA, 5mM EDTA and 0.1 % sodium azide). Subsequently, total cell counts 

were obtained using a Bürker chamber and differential cell counts (on at least 400 cells) were 

performed on cytocentrifuged preparations after May-Grünwald-Giemsa staining. Furthermore, BAL 

cells were used for flow cytometric analysis.  

Preparation of single cell suspension of lung tissue 

Following BAL, the pulmonary and systemic circulation was rinsed with saline, supplemented with 

5mM EDTA. The left lung was used for histology, as described previously 360. The major lobe of the right 

lung was taken and thoroughly minced, enzymatically digested and subjected to red blood cell lysis. 

After passage through a 50μm cell strainer, cells were counted with a Z2 particle counter (Beckman-

Coulter, USA) and left on ice until labeling for further flow cytometric analysis. Another lobe of the 

right lung was stored for RNA extraction which was later used for miRNA profiling. 

Quantification of inflammation  

Flow cytometry was used to enumerate inflammatory cells in BAL fluid and in lung tissue. The analysis 

was performed on a FACS Calibur (4 weeks exposure experiment) or an LSR Fortessa (24 weeks 

exposure experiment) (BD Biosciences, San Diego, USA) and data were analyzed with FlowJo software 

(Tree Star Inc., Ashland, USA). The flow cytometry data in BAL were supplemented with cytospin 
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counts. Chemokines (CCL2 and CXCL1) were measured in BAL via commercially available ELISA kits 

(R&D systems). 

RNA extraction 

Total RNA from lung tissue and 100μl of cell-free BAL supernatant was extracted using the miRNeasy 

mini kit (Qiagen) according to the manufacturer’s instructions. Afterwards, RNA was collected and 

measured using the Nanodrop 2000 (Thermo Fischer scientific).  

miRNA profiling on lung tissue of mice that were exposed to air or CS for 4 or 24 weeks 

Total RNA, including the small RNA fraction, was reverse transcribed with the miRNA reverse 

transcription kit (Applied Biosystems, Life Technologies) in combination with a stem-loop Megaplex 

miRNA primer pool (Applied Biosystems, Life Technologies) consisting of primers for 523 miRNAs and 

15 endogenous controls as described previously 374. After this RT reaction the cDNA was pre-amplified 

using the TaqMan PreAmp Master Mix and Primer Mix (Applied Biosystems, Life Technologies) . This 

pre-amplification increases the detection sensitivity. The pre-amplified cDNA was diluted 1,600 times. 

qPCR amplification of 523 mature miRNAs was performed using miRNA TaqMan assays (Applied 

Biosystems, Life Technologies). The qPCR mixture contained 4 μL of Universal qPCR mastermix, 3 μL of 

a 1/15 dilution of miRNA TaqMan assay, and 1 μL of diluted preamplified cDNA. All reactions were run 

on a 7900HT qPCR cycler (Applied Biosystems, Life Technologies) under the following cycling 

conditions: 10 min at 95°C followed by 40 cycles of 15 s at 95°C and 1 min at 60°C. If the Cq-value was 

below 32, the miRNAs were considered expressed. The miRNA expression data were normalized using 

the global mean 389,390. 

Only miRNAs that could be detected (had a Cq-value < 32) in at least 80% of the samples per group 

were included in our study, resulting in 225 miRNAs out of 523 in mouse lung. 

miRNA profiling on bronchoalveolar lavage supernatant of mice that were exposed to air or CS for 4 

or 24 weeks 

The same workflow was followed for miRNA profiling on cell-free murine BAL supernatant.  

Annotation of miRNA 

Annotation of all differentially expressed miRNAs was updated using miRBase tracker 379 in Table 1 and 

2, and in Figure S2 and S3. 

Statistical analysis 

Continuous variables were analyzed using non-parametric tests i.e. Mann-Whitney U test when 

comparing unrelated data using SPSS 24.0 software (SPSS Inc, Chicago, IL, USA). Heatmaps were 

generated using the heatmap.2 function from the gplots package 429, where samples were clustered 

using manhattan distances and the Ward’s method (R statistical programming language, version 3.3.1) 
430. Spearman rank correlation tests between expressed miRNAs from lung and BAL, and a) flow 

cytometry data in lung and BAL, respectively; b) cytospin data in BAL; c) cytokine/chemokine levels in 
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BAL, were carried out using the cor.test function (R software, version 3.3.1). For the correlation 

analysis, all miRNAs were included when expressed in at least half of the murine samples. Data were 

kept when Rs ≥ 0.5 and adjusted p-value ≤ 0.05. The Benjamini-Hochberg procedure was used for 

multiple testing correction and p-values < 0.05 were considered statistically significant. 

  



 
 

117 
 

RRESULTS 

miRNA expression profiling in lung tissue of air- and CS-exposed mice 

miRNA profiling was performed on lung tissue of C57BL/6 mice (8 per group), that were exposed to 

either air or CS for 4 or 24 weeks. Of the 523 miRNAs tested by stem-loop RT-qPCR, 255 miRNAs could 

be detected. After 4 weeks of CS exposure, 9 miRNAs exhibited differential pulmonary expression 

compared to the air-exposed mice (4 down-regulated and 5 up-regulated). After 24 weeks of CS 

exposure, 31 miRNAs showed a significant differential expression of which 16 were down-regulated 

and 15 were up-regulated. The results are represented in Figure 1. A list of all differentially expressed 

miRNAs in lung tissue can be found in Table 1.  

In lung tissue, all 5 significantly up-regulated miRNAs after 4 weeks of CS exposure, were even more 

increased following chronic CS exposure, indicating a robust and progressive miRNA signature. On top 

of the list, miR-135b displayed the highest fold change in lung tissue (Fold change = 13.59, Table 1). 

From the significantly down-regulated miRNAs following 4 weeks of CS exposure in lung, only miR-

322* was still significantly decreased after 24 weeks of CS exposure (Figure 1e).  

 

Figure 1. miRNA expression profiling in lung tissue of air- and CS-exposed mice. Volcano plots showing the 
differential miRNA expression (in fold change on the x-axis) and significance level (-log10-adjusted p-value on y-
axis). The detected miRNAs are plotted as black dots. The horizontal line indicates the 0.05 significance level. In 
the heatmaps, only the significantly differentially expressed miRNAs are represented. These were hierarchically 
clustered across the air- and smoke-exposed groups. Each row represents a miRNA and each column represents 
a murine lung sample. The color code indicates the expression level: red= higher expression following CS 
exposure, blue= lower expression, grey= miRNA was not detected (“NA” values). (a) Heatmap showing the 
differentially expressed miRNAs in murine lung tissue following subacute (4 weeks) air or CS exposure. (b) 
Volcano plot representing the miRNA profiling data following subacute CS exposure compared to air exposure. 
(c) Heatmap showing the differentially expressed miRNAs in murine lung tissue following chronic (24 weeks) air 
or CS exposure. (d) Volcano plot representing the miRNA profiling data following chronic CS exposure versus air 
exposure. (e) Overlap in differentially expressed miRNAs in murine lung tissue between subacute (4 weeks) and 
chronic (24 weeks) CS exposure compared to air exposure. (b,d) Both volcano plots with annotated miRNAs can 
be found in supplemental Figure S2. 
 

Figure 2. miRNA expression profiling in cell-free BAL supernatant of air- and CS-exposed mice. Volcano plots 
showing the differential miRNA expression (in fold change on the x-axis) and significance level (-log10-adjusted 
p-value on y-axis). The detected miRNAs are plotted as black dots. The horizontal line indicates the 0.05 
significance level. In the heatmaps, only the significantly differentially expressed miRNAs are represented. These 
were hierarchically clustered across the air- and smoke-exposed groups. Each row represents a miRNA and each 
column represents a murine BAL supernatant sample. The color code indicates the expression level: red= higher 
expression following CS exposure, blue= lower expression, grey= miRNA was not detected (“NA” values). (a) 
Heatmap showing the differentially expressed miRNAs in murine BAL supernatant following subacute (4 weeks) 
air or CS exposure. (b) Volcano plot representing the miRNA profiling data in BAL supernatant following subacute 
CS exposure compared to air exposure. (c) Heatmap showing the differentially expressed miRNAs in murine BAL 
supernatant following chronic (24 weeks) air or CS exposure. An enlargement of the heatmap can be found in 
Figure S1 of the supplemental data. (d) Volcano plot representing the miRNA profiling data in BAL supernatant 
following chronic CS exposure versus air exposure. (e) Overlap in differentially expressed miRNAs in murine BAL 
supernatant between subacute (4 weeks) and chronic (24 weeks) CS exposure compared to air exposure. (b,d) 
Both volcano plots with annotated miRNAs can be found in supplemental Figure S3. 
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Figure 1. miRNA expression profiling in lung tissue of air- and CS-exposed mice. 
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Figure 2. miRNA expression profiling in cell-free BAL supernatant of air- and CS-exposed mice. 
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miRNA expression profiling in supernatant of BAL of air- and CS-exposed mice 

miRNA expression profiling was performed on cell-free BAL supernatant of mice exposed to air or CS 

for 4 or 24 weeks. Of the 523 miRNAs evaluated, 160 miRNAs could be detected in BAL supernatant. 

After 4 weeks of CS exposure, only 6 miRNAs were significantly differentially expressed (4 down-

regulated and 2 up-regulated). However, after 24 weeks of CS smoke exposure, 78 miRNAs exhibited 

significant differential expression in BAL supernatant of which 40 were down-regulated and 38 were 

up-regulated. The results are represented in Figure 2. A list of all differentially expressed miRNAs in 

BAL supernatant can be found in Table 2.  

In BAL supernatant, let-7b and let-7c were significantly reduced after 4 and 24 weeks of CS exposure 

(Figure 2e). Moreover, miR-680 showed the highest fold change (Fold change = 20.92, Table 2) 

following 24 weeks of CS exposure compared to air exposure. 

Differentially expressed miRNAs following CS exposure in both lung tissue and BAL supernatant 

Following subacute CS exposure, only miR-138 overlaps as being differentially expressed in both lung 

and BAL supernatant (Figure 3a). Following chronic CS exposure, 12 miRNAs (miR-146a, miR-148a, miR-

152, miR-21, miR-26a, miR-30a-5p, miR-30c, miR-31, miR-31*, miR-342-3p, miR-376b* and miR-449) 

were differentially expressed in both lung tissue and BAL supernatant of which 10 showed concordant 

up- or down-regulation. Only miR-449 and miR-148a displayed different expression patterns in the two 

compartments (Figure 3b).  

  
Figure 3. miRNAs that are differentially expressed in both lung tissue and BAL supernatant following (a) 4 
weeks of CS exposure and following (b) 24 weeks of CS exposure. 
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Furthermore, a multidimensional scaling plot (Figure 4) showed a clear separation between normalized 

miRNA profiles (only containing miRNAs expressed in both fractions) from BAL supernatant and lung 

tissue, indicating two compartments with different cellular identity, anatomical structure and 

organization. miRNA profiles of lung tissue clustered more together than miRNA profiles of BAL 

supernatant. Moreover, following 24 weeks of CS exposure in BAL, a larger separation in miRNA 

profiles was noticed compared to lung, underlining the more relative diversity in cell types in BAL 

following long-term CS exposure. Also, due to this fact and a more activated state of immune cells, a 

global increase in miRNA abundance was found in BAL supernatant following 24 weeks of CS exposure 

(Mann-Whitney U test; p-value = 0.007, Figure 5). 

 
Figure 4. Multidimensional scaling (MDS) plot. This plot visualizes how miRNA profiling experiments cluster 
together. 

 
Figure 5. Relative global mean. This graph is obtained by analyzing the global difference in Cq-values between 
the 2 groups (air versus CS) per condition (relative to the air-exposed group) by performing a Mann-Whitney U 
test, enabling to detect a possible shift in miRNA expression. 
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Inflammation in lungs and BAL fluid of mice following CS exposure 

Four weeks of CS exposure induced an inflammatory response in lung and BAL with recruitment of 

inflammatory cells and activation of immune signaling. In BAL fluid, there was a significant increase in 

total cell numbers (p-value = 0.007, Figure 6a) with more diversity in immune cell subsets such as a 

significant increase in macrophages (p-value = 0.0104), neutrophils (p-value = 0.00016), dendritic cells 

(DCs) (p-value = 0.00016) and CD4+ (p-value = 0.007) and CD8+T lymphocytes (p-value = 0.0104) 

compared with air-exposed mice (Figure 6b-f). After 24 weeks of CS exposure, the inflammatory 

response was severely augmented in BAL with a strong increase in total cell numbers as well as in 

macrophages, neutrophils, DCs and T lymphocytes (all p-values < 0.001, Figure 6a-f).  

 
Figure 6. Inflammation in BAL following 4 and 24 weeks of air or CS exposure. (a) Total cell numbers in BAL, (b) 
Total macrophages in BAL, (c) Total neutrophils in BAL, (d) Total dendritic cells (DCs) in BAL, (e) Total CD4+ T cells 
in BAL, (f) Total CD8+ T cells in BAL. * p < 0.05, ** p < 0.01, *** p < 0.001 
 
In addition, in lung tissue, the increase in dendritic cells is corresponding to the smoke-induced 

inflammation and proportionally to subacute or chronic CS exposure compared with air exposure 

(Figure 7a). Also, B cell numbers were augmented following chronic CS exposure (Figure 7b). 

 
Figure 7. Inflammation in lung following 4 and 24 weeks of air or CS exposure. (a) Total dendritic cells in lung, 
(b) Total B cell numbers in lung following 4 or 24 weeks of air or CS exposure. ** p < 0.01 
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Correlation of miRNA expression with inflammatory cell subsets in lung tissue and BAL supernatant 

To assess whether the change in cell types following CS exposure could be associated with the 

alteration in miRNA expression, we correlated the miRNA expression with populations of immune cells 

and levels of inflammatory chemokines. After subacute CS exposure, miR-135b correlated strongly 

with percentage DCs (adj. p-value = 0.017, Figure 8a). Following chronic CS exposure, miR-155 

correlated significantly with percentage B cells (adj. p-value = 0.0067, Figure 8b) and miR-152, miR-

30a-5p, miR-30c, miR-218 and miR-26a correlated with several immune cell types in lung tissue. 

In BAL supernatant, miR-21 correlated significantly with macrophage numbers and CCL2 (adj. p-value 

= 0.0014, Figure 8c, Figure S4a), while miR-142-3p, miR-21, miR-146a as well as miR-218 and let-7 

family members correlated with neutrophil numbers (Figure 8d-e). miR-26a and miR-146a correlated 

with several immune cell types whereas miR-31* correlated significantly with DC numbers (adj. p-value 

= 0.026). 

 
Figure 8. Spearman correlation analyses between the expression of (a) miR-135b and % dendritic cells (DCs) in 
lung following 4 weeks of air or CS exposure. Spearman correlation analysis between the expression of (b) miR-
155 and % B cells in lung, (c) miR-21 and total macrophage numbers in BAL supernatant, (d) miR-146a and total 
neutrophil numbers in BAL supernatant and between (e) miR-218 and total neutrophils in BAL supernatant 
following 24 weeks of air or CS exposure. 
 
Overlap in miRNA expression pattern between chronic CS-exposed mice and patients with COPD 

Generally, miRNAs are highly conserved RNA molecules. Therefore, we evaluated a possible overlap in 

miRNA expression between  mice following long-term CS exposure and patients with COPD 154. 

First, we evaluated the overlap in lung tissue of mice exposed to CS for 24 weeks and our previously 

reported miRNA profiling in lung tissue of current smoking COPD patients compared to never-smokers 

without COPD, all assessed by stem-loop RT-qPCR. Interestingly, miR-135b and miR-155 were 
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significantly up-regulated, both in COPD patients (Adj. p-value (miR-135b) = 0.017; Adj. p-value (miR-

155) = 0.0022) versus never-smoking controls and in mice following chronic CS-exposure (Adj. p-value 

(miR-135b and miR-155) = 0.004) (Figure 9a) (Table S2).  

Second, by integrating data from patients participating in the GLUCOLD study where miRNA expression 

was newly profiled in bronchial biopsies between current-smoking and ex-smoking patients with 

moderate to severe COPD 175, we found an overlap for miR-31* with miRNA profiling in lung tissue of 

mice chronically exposed to CS compared to air-exposed mice, but also with lung tissue of current-

smoking COPD patients compared to never-smokers (adj. p-value = 0.012 in GLUCOLD study; adj. p-

value = 0.0012 in lung tissue of COPD patients and adj. p-value = 0.004 in mice) (Figure 9b)(Table S3). 

The clinical characteristics of the GLUCOLD study cohort can be found in the online Table S1. 

Third, in previously published miRNA profiling data, assessed by stem-loop RT-qPCR, in induced sputum 

supernatant of current smoking patients with COPD compared to never-smokers, 8 miRNAs were 

significantly down-regulated in COPD 153. Of these 8 miRNAs, 5 miRNAs overlapped with the miRNA 

profile obtained in BAL supernatant of mice chronically exposed to CS compared to air-exposed mice 

(Figure 9c). Remarkably, let-7c and miR-218 were significantly reduced (Table S4).   
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Figure 9. overlap in miRNA expression between chronic CS-exposed mice and patients with COPD. Differential 
miRNA expression was evaluated in (a) lung tissue of mice that were exposed to 24 weeks of air or CS, and in 
lung tissue of current smoking patients with COPD GOLD II (n=12) compared to never-smokers (n=8). (b) lung 
tissue of mice that were exposed to 24 weeks of air or CS, and in bronchial biopsies of current smoking patients 
with COPD GOLD II-III (n=42) compared to ex-smoking patients with COPD GOLD II-III (n=21). (c) in BAL 
supernatant of mice that were exposed to 24 weeks of air or CS, and in induced sputum supernatant of current 
smoking patients with COPD GOLD II (n=12) compared to never-smokers (n=10). Numbers of differentially 
expressed miRNAs are represented as well as the number of overlapping miRNAs. For the overlapping miRNAs, 
the direction of change in expression following chronic CS exposure /current smoking and having COPD is 
indicated with arrows. The level of the change in miRNA expression can be found in the supplemental data (Table 
S2-4). COPD: chronic obstructive pulmonary disease, GOLD: Global Initiative for Chronic Obstructive Lung Disease 
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DDISCUSSION 

We have developed a murine model in which CS inhalation – the main etiologic agent in most COPD 

cases – initiates COPD-like manifestations, enabling us to investigate the CS-induced pathogenesis of 

COPD 360. Using these mice, we observed smoke-induced inflammation in BAL and lungs which 

coincided with changes in miRNA expression in those two compartments. To our knowledge, this is the 

first time that both lung and BAL supernatant have been thoroughly investigated regarding the miRNA 

profile. 

Several miRNAs were strongly affected by smoke in lung tissue and BAL supernatant. Remarkably, we 

did not observe an overall down-regulation upon CS exposure in lung as is frequently noted in other 

miRNA profiling studies 149,150,154,248. 

By focusing on the overlap between subacute and chronic CS exposure within the same compartment, 

or the overlap between miRNAs with altered expression levels in BAL and lung, we narrowed the pool 

of interesting miRNAs down to 18: let7b, let-7c, miR-135b, miR-138, miR-146a, miR-148a, miR-152, 

miR-155, miR-21, miR-26a, miR-30a-5p, miR-30c, miR-31, miR-31*, miR-322*, miR-342-3p, miR-376b* 

and miR-449.  

We also assessed whether miRNA profiles clustered together between BAL and lung samples and 

whether the effect of smoke on the miRNA profile could be distinguished from air-exposed mice 

(Figure 4). The clear separation in miRNA expression between BAL fluid and lung mirrors its different 

cellular content and structural organization. Moreover, lung tissue was obtained from lavaged mice, 

meaning that all BAL cells were removed. Also, smoking obviously affected miRNA profiles, both in lung 

as in BAL supernatant. As expected, a higher diversity in immune cells – often in a more activated state 

– and a greater amount of cells populate the airways and alveolar spaces following CS exposure, which 

could lead to a global increase in miRNA abundance in BAL supernatant, favoring certain immune cell-

specific miRNAs. To correct for this, we normalized with the mean expression of all miRNAs, rendering 

a profile relative to this global shift.   

CS exposure altered immune cell subsets both in lung and in BAL, as well as it affected miRNA 

expression levels. We correlated miRNA expression with numbers of inflammatory cells in BAL and 

lung and found that many of our initially indicated interesting miRNAs were highly correlated. This 

could mean that altered miRNAs could be implicated in recruitment of these immune cells to the lung 

or airways, or that they are highly immune cell-specific. 

Interestingly, an overlap was observed for miR-135b, miR-148a, miR-149, miR-155, miR-191, miR-31 

and miR-31* between lungs of mice chronically exposed to CS and smoking patients with COPD 

compared to non-smoking controls, suggesting a potential role for these miRNAs in the pathogenesis 

of COPD 154. In addition, there was also an overlap for miR-31* between these aforementioned two 

groups with patients with moderate to severe COPD participating in the GLUCOLD study where the 
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differential miRNA expression was assessed in bronchial biopsies between current- and ex-smoking 

patients 175. By surveying the overlap between miRNA profiling data in human sputum supernatant of 

current smokers with or without airflow limitation compared to never-smokers, and our results in 

murine BAL supernatant, we found several miRNAs that were concordantly reduced including let-7c, 

miR-218, miR-26a and miR-449. Although detected in both human sputum and murine BAL 

supernatant, some miRNAs were expressed in the opposite direction such as miR-146a, miR-342-3p 

and miR-150 153. 

Regarding miRNA alterations in lung, gradual elevation of miR-155 is generally expected due to its 

inherent involvement in inflammation since miR-155 modulates both the innate and adaptive immune 

system 431-434 and is induced following TLR activation. In agreement with our data, an increase in miR-

135b-5p expression was already demonstrated in lungs of mice that were exposed to CS for 4 days and 

for 18 months, besides the observation that miR-135b-5p is also highly inducible upon challenge of the 

airways with other noxious particles 435-437. It is also not surprising that miR-21 is up-regulated in BAL 

supernatant and in lung tissue. First, miR-21 is suggested to be concordantly expressed between tumor 

tissue and matched plasma or serum 438,439. Second, miR-21 is up-regulated in activated immune cell 

subsets accumulating in the lung upon an inflammatory stimulus, explaining its gradual increase 

following prolonged smoke exposure. Third, miR-21 is primarily expressed in cells of the macrophage 

lineage that are already present in the airways without prior CS trigger. Macrophages increase in 

number following CS exposure but not to the same extent as the newly arrived other immune cells 

present in BAL, explaining the only moderate increase in miR-21 expression in BAL supernatant.  

As expected, miR-21 correlated with macrophage numbers in BAL. Additionally, miR-21 also correlated 

with CCL2 (MCP-1) protein expression in BAL. It has been shown in a mouse model of abdominal aortic 

aneurysm that mice exposed to nicotine displayed higher miR-21 levels, which was associated with a 

reduction in tumor suppressor genes, as well as with an augmentation of inflammatory genes such as 

IL-6 and MCP-1. Moreover, administering a pre-miR-21 to these mice augmented MCP-1 levels 440. miR-

155, although highly correlated with most immune cell types, showed high association (Rs > 0.750) 

with B cell, CD11b+DC and monocyte-derived CD11b+DC numbers, highlighting its intricate role in B cell 

and DC functionality 306,309. Interestingly, reduced miR-218 expression was negatively correlated (Rs < 

-0.750) with both neutrophils, B cells, T cells and DC numbers, suggesting that a reduced miR-218 

expression could be implicated in directional migration of these cell types towards the inflamed lung 
154. In addition, our results highlight a strong association of miR-31* with active smoking in mice and 

both cohorts of patients with COPD, as well as with DC subsets. An association of miR-31* with DC 

numbers is in agreement with a robust increase in both miR-31 transcripts in myeloid dendritic cells 

upon TLR stimulation in hypoxic conditions 441. 
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These results put forward some interesting miRNAs considerably altered following CS exposure both 

in lung tissue and BAL supernatant of matched murine samples. Correlation of altered miRNA 

expression with the change in inflammatory profile, suggests a possible implication of these miRNAs 

in CS-induced inflammation. Evaluating the miRNA expression profile in two different respiratory 

compartments augments the relevance of our findings, although mechanistic data are lacking. 

Interestingly, we translated some of our findings to the human situation by discussing the overlap 

between our murine data and miRNA profiling data in human sputum and lung 153,154. 

In conclusion, we highlight some interesting miRNAs in CS-induced inflammation in the lung by 

integrating in vivo miRNA profiling data in both BAL supernatant and lung tissue following subacute 

and chronic CS exposure and in silico correlations with inflammatory parameters. Future research will 

be needed to investigate the exact impact of these miRNAs in CS-induced inflammation and the 

pathogenesis of COPD. 
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Table 1A. Differentially expressed microRNAs in murine lung tissue following 4 weeks of cigarette 
smoke exposure 

Up-regulated in CS-
exposed mice miRBase release 21 Fold change Adjusted p-value 

mmu-miR-135b mmu-miR-135b-5p 4.110 0.015 
mmu-miR-138 mmu-miR-138-5p 2.160 0.015 
mmu-miR-21 mmu-miR-21a-5p 1.747 0.015 
mmu-miR-155 mmu-miR-155-5p 1.580 0.021 
mmu-miR-31 mmu-miR-31-5p 1.238 0.024 

 

Down-regulated in CS-
exposed mice miRBase release 21 Fold change Adjusted p-value 

mmu-miR-322x mmu-miR-322-3p 1.695 0.015 
mmu-miR-351 mmu-miR-351-5p 1.585 0.024 
mmu-miR-434-3p mmu-miR-434-3p 1.531 0.024 
mmu-miR-136 mmu-miR-136-5p 1.531 0.021 

 

First column: annotation of miRNA during microRNA profiling; Second column: annotation of miRNA 
according to miRBase release 21 
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Table 1B. Differentially expressed microRNAs in murine lung tissue following 24 weeks of cigarette 
smoke exposure 

Up-regulated in CS-
exposed mice miRBase release 21 Fold change Adjusted p-value 

mmu-miR-135b mmu-miR-135b-5p 13.593 0.004 
mmu-miR-135a mmu-miR-135a-5p 8.557 0.014 
mmu-miR-21 mmu-miR-21a-5p 3.103 0.004 
mmu-miR-155 mmu-miR-155-5p 2.274 0.004 
mmu-miR-146a mmu-miR-146a-5p 1.969 0.004 
mmu-miR-138 mmu-miR-138-5p 1.908 0.007 
mmu-miR-449b  mmu-miR-449c-5p 1.764 0.015 
mmu-miR-31x mmu-miR-31-3p 1.452 0.004 
mmu-miR-18a mmu-miR-18a-5p 1.435 0.046 
mmu-miR-31 mmu-miR-31-5p 1.403 0.040 
mmu-miR-449  mmu-miR-449a-5p 1.386 0.046 
mmu-miR-342-3p mmu-miR-342-3p 1.322 0.004 
mmu-miR-200c mmu-miR-200c-3p 1.229 0.046 
mmu-miR-148a mmu-miR-148a-3p 1.186 0.046 
mmu-miR-191 mmu-miR-191-5p 1.148 0.040 

 

Down-regulated in CS-
exposed mice miRBase release 21 Fold change Adjusted p-value 

mmu-miR-322x mmu-miR-322-3p 1.953 0.010 
mmu-miR-489 mmu-miR-489-3p 1.890 0.033 
mmu-miR-1 mmu-miR-1a-3p 1.733 0.023 
mmu-miR-133b mmu-miR-133b-3p 1.553 0.033 
mmu-miR-503 mmu-miR-503-5p 1.520 0.015 
mmu-miR-376bx mmu-miR-376b-5p 1.493 0.046 
mmu-miR-365 mmu-miR-365-3p 1.479 0.007 
mmu-miR-149 mmu-miR-149-5p 1.443 0.010 
mmu-miR-503x mmu-miR-503-3p 1.433 0.040 
mmu-miR-224 mmu-miR-224-5p 1.393 0.046 
mmu-miR-26a mmu-miR-26a-5p 1.362 0.010 
mmu-miR-145 mmu-miR-145a-5p 1.359 0.004 
mmu-miR-676 mmu-miR-676-3p 1.302 0.023 
mmu-miR-152 mmu-miR-152-3p 1.242 0.040 
mmu-miR-30c mmu-miR-30c-5p 1.241 0.046 
mmu-miR-30a-5p mmu-miR-30a-5p 1.127 0.040 

 

First column: annotation of miRNA during microRNA profiling; Second column: annotation of miRNA 
according to miRBase release 21 
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Table 2A. Differentially expressed microRNAs in bronchoalveolar lavage supernatant following 4 
weeks of cigarette smoke exposure 

Up-regulated in CS-
exposed mice miRBase release 21 Fold change Adjusted p-value 

mmu-miR-138 mmu-miR-138-5p 2.048 0.044 
mmu-miR-182 mmu-miR-182-5p 1.727 0.050 

 

Down-regulated in CS-
exposed mice miRBase release 21 Fold change Adjusted p-value 

mmu-miR-676 mmu-miR-676-3p 1.678 0.044 
mmu-miR-574-3p mmu-miR-574-3p 1.458 0.044 
mmu-let-7c mmu-let-7c-5p 1.433 0.050 
mmu-let-7b mmu-let-7b-5p 1.325 0.025 

 

First column: annotation of miRNA during microRNA profiling; Second column: annotation of miRNA 
according to miRBase release 21 
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Table 2B. Up-regulated microRNAs in bronchoalveolar lavage supernatant following 24 weeks of 
cigarette smoke exposure 

Up-regulated in CS-
exposed mice miRBase release 21 Fold change Adjusted p-value 

mmu-miR-680 mmu-miR-680 20.924 0.005 
mmu-miR-221 mmu-miR-221-3p 14.606 0.003 
mmu-miR-297ax mmu-miR-297a-3p 6.614 0.007 
mmu-miR-150 mmu-miR-150-5p 6.382 0.002 
mmu-miR-142-5p mmu-miR-142a-5p 4.554 0.003 
mmu-miR-685  4.256 0.002 
mmu-miR-139-5p mmu-miR-139-5p 3.853 0.002 
mmu-miR-146a mmu-miR-146a-5p 3.573 0.002 
mmu-miR-706 mmu-miR-706 3.531 0.002 
mmu-miR-142-3p mmu-miR-142a-3p 3.382 0.002 
mmu-miR-340  mmu-miR-340-3p 2.900 0.010 
mmu-miR-592 mmu-miR-592-5p 2.684 0.014 
mmu-let-7ax mmu-let-7a-1-3p 2.294 0.007 
mmu-let-7i mmu-let-7i-5p 2.165 0.007 
mmu-miR-218-1x mmu-miR-218-1-3p 2.149 0.049 
mmu-miR-690 mmu-miR-690 2.143 0.007 
mmu-miR-140-3p  mmu-miR-140-3p  2.043 0.002 
mmu-miR-9x mmu-miR-9-3p 2.042 0.014 
mmu-miR-25 mmu-miR-25-3p 2.030 0.004 
mmu-miR-20b mmu-miR-20b-5p 1.964 0.007 
mmu-miR-342-3p mmu-miR-342-3p 1.954 0.018 
mmu-miR-31x mmu-miR-31-3p 1.923 0.010 
mmu-miR-21 mmu-miR-21a-5p 1.909 0.002 
mmu-miR-130b mmu-miR-130b-3p 1.807 0.004 
mmu-miR-652 mmu-miR-652-3p 1.717 0.018 
mmu-miR-15b mmu-miR-15b-5p 1.625 0.041 
mmu-miR-146b mmu-miR-146b-5p 1.619 0.007 
mmu-miR-19a mmu-miR-19a-3p 1.580 0.006 
mmu-miR-484 mmu-miR-484 1.550 0.004 
mmu-miR-93 mmu-miR-93-5p 1.501 0.005 
mmu-miR-672 mmu-miR-672-5p 1.471 0.007 
mmu-miR-15a mmu-miR-15a-5p 1.403 0.036 
mmu-miR-31 mmu-miR-31-5p 1.397 0.018 
mmu-miR-27a mmu-miR-27a-3p 1.392 0.007 
mmu-miR-20a mmu-miR-20a-5p 1.373 0.002 
mmu-miR-92 mmu-miR-92a-3p 1.365 0.007 
mmu-miR-186 mmu-miR-186-5p 1.289 0.002 
mmu-miR-140 mmu-miR-140-5p 1.261 0.018 

 

First column: annotation of miRNA during microRNA profiling; Second column: annotation of miRNA 
according to miRBase release 21 
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Table 2C. Down-regulated microRNAs in bronchoalveolar lavage supernatant following 24 weeks of 
cigarette smoke exposure 

Down-regulated in CS-
exposed mice miRBase release 21 Fold change Adjusted p-value 

mmu-miR-294 mmu-miR-294-3p 3.289 0.004 
mmu-miR-470x mmu-miR-470-3p 3.155 0.014 
mmu-miR-188-5p mmu-miR-188-5p 2.646 0.014 
mmu-miR-29bx mmu-miR-29b-1-5p 2.469 0.018 
mmu-miR-376bx mmu-miR-376b-5p 2.387 0.025 
mmu-miR-326 mmu-miR-326-3p 2.304 0.018 
mmu-miR-805  2.079 0.014 
mmu-miR-345-5p mmu-miR-345-5p 1.862 0.043 
mmu-miR-375 mmu-miR-375-3p 1.812 0.002 
mmu-miR-434-3p mmu-miR-434-3p 1.757 0.018 
mmu-miR-678 mmu-miR-678 1.701 0.043 
mmu-miR-378  mmu-miR-378-5p 1.658 0.025 
mmu-miR-30a-3p mmu-miR-30a-3p 1.595 0.002 
mmu-miR-30e-3p mmu-miR-30e-3p 1.565 0.043 
mmu-miR-10a mmu-miR-10a-5p 1.553 0.010 
mmu-miR-449  mmu-miR-449a-5p  1.506 0.034 
mmu-let-7e mmu-let-7e-5p 1.499 0.007 
mmu-miR-872x mmu-miR-872-3p 1.488 0.002 
mmu-miR-218 mmu-miR-218-5p 1.481 0.014 
mmu-miR-205 mmu-miR-205-5p 1.466 0.007 
mmu-miR-193b mmu-miR-193b-3p 1.458 0.002 
mmu-let-7c mmu-let-7c-5p 1.451 0.007 
mmu-let-7d mmu-let-7d-5p 1.420 0.018 
mmu-miR-29ax mmu-miR-29a-5p 1.408 0.043 
mmu-miR-148a mmu-miR-148a-3p 1.393 0.018 
mmu-miR-130a mmu-miR-130a-3p 1.377 0.004 
mmu-miR-30e mmu-miR-30e-5p 1.364 0.007 
mmu-miR-200a mmu-miR-200a-3p 1.353 0.002 
mmu-miR-26a mmu-miR-26a-5p 1.339 0.002 
mmu-miR-152 mmu-miR-152-3p 1.328 0.010 
mmu-let-7g mmu-let-7g-5p 1.328 0.003 
mmu-let-7b mmu-let-7b-5p 1.321 0.004 
mmu-miR-34c mmu-miR-34c-5p 1.307 0.003 
mmu-miR-30c mmu-miR-30c-5p 1.295 0.034 
mmu-miR-30d mmu-miR-30d-5p 1.287 0.004 
mmu-miR-30a-5p mmu-miR-30a-5p 1.280 0.006 
mmu-miR-708 mmu-miR-708-3p 1.264 0.043 
mmu-miR-34b-3p mmu-miR-34b-3p 1.264 0.025 
mmu-miR-22x mmu-miR-22-5p 1.263 0.043 
mmu-miR-34cx mmu-miR-34c-3p 1.253 0.034 

 

First column: annotation of miRNA during microRNA profiling; Second column: annotation of miRNA 
according to miRBase release 21 
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OOnline Tables and Figures 

Table S1. Patient characteristics of the GLUCOLD study population 

 ex-smoker with COPD current-smoker with COPD 

n 22 41 

male n (%) 20 (90.9) 34 (82.9) 

age (years) 63.36 ± 8.19 58.51 ± 7.97 

FEV1 % predicted 60.77 ± 9.96 63.25 ± 10.44 

 

Table S2. Overlap in miRNA expression in murine and human lung tissue following chronic cigarette 
smoke exposure and in patients with COPD. This table provides extra numeric information regarding 
Figure 6a.  

 MOUSE HUMAN 

 Fold change Adj. p-value Fold change Adj. p-value 

miR-135b 13.593 0.004 1.442 0.017 

miR-148a 1.186 0.046 1.285 0.029 

miR-149 -1.443 0.010 -1.514 0.024 

miR-155 2.274 0.004 1.695 0.002 

miR-191 1.148 0.040 1.265 0.034 

miR-31 1.403 0.040 2.273 0.049 

miR-31* 1.452 0.004 2.743 0.013 

 

Table S3. Overlap in miRNA expression in murine lung tissue following chronic cigarette smoke 
exposure compared to air exposure and in bronchial biopsies of current smoking patients with COPD 
compared to ex-smoking patients with COPD. This table provides extra numeric information regarding 
Figure 6b.  

 MOUSE HUMAN 

 Fold change Adj. p-value Fold change Adj. p-value 

miR-31* 1.452 0.004 2.315 0.012 
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Table S4. Overlap in miRNA expression in murine BAL supernatant following chronic cigarette smoke 
exposure and in sputum supernatant of current smoking patients with COPD compared to non-
smoking controls. This table provides extra numeric information regarding Figure 6c.  

 MOUSE HUMAN 

 Fold change Adj. p-value Fold change Adj. p-value 

let-7c -1.451 0.007 -2.59 <0.001 

miR-218 -1.481 0.014 -3.61 <0.001 

miR-30e-3p -1.565 0.043 -2.02 0.001 

miR-34c -1.307 0.003 -3.77 <0.001 

miR-342-3p 1.954 0.018 -2.33 <0.001 
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Figure S1. Enlargement of Figure 2c 
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Figure S2. Volcano plots with significantly annotated miRNAs in lung tissue of cigarette smoke-exposed 
compared to air-exposed mice. (a) 4 weeks of CS/air exposure, (b) 24 weeks of CS/Air exposure. Volcano plots 
showing the differential miRNA expression (in fold change on the x-axis) and significance level (-log10-adjusted 
p-value on y-axis). The detected miRNAs are plotted as black dots. The horizontal line indicates the 0.05 
significance level. This volcano plot is already presented in Figure 1 (without miRNA annotation). 
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Figure S3. Volcano plots with significantly annotated miRNAs in bronchoalveolar lavage supernatant of 
cigarette smoke-exposed compared to air-exposed mice. (a) 4 weeks of CS/air exposure, (b) 24 weeks of CS/Air 
exposure. Volcano plots showing the differential miRNA expression (in fold change on the x-axis) and significance 
level (-log10-adjusted p-value on y-axis). The detected miRNAs are plotted as black dots. The horizontal line 
indicates the 0.05 significance level. This volcano plot is already presented in Figure 2 (without miRNA 
annotation). 
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Figure S4. Chemokine levels in BAL supernatant of mice exposed to air or CS for 4 weeks. (a) Chemokine (C-C 
Motif) Ligand 2 (CCL2). (b) chemokine (C-X-C motif) ligand 1 (CXCL1). (n=8) 
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CHAPTER 7: Discussion and future perspectives 
  



 
 

142 
 

DDISCUSSION AND FUTURE PERSPECTIVES 

 

This research is concentrated on investigating the involvement of microRNAs (miRNAs), small 

regulatory non-protein coding RNA molecules, in the pathogenesis of COPD. Based on the knowledge 

that miRNAs play important regulatory roles in immune cell development and function, and that 

smoking affects miRNA expression levels, alterations in the expression pattern of miRNAs might be 

involved in the pathogenesis of COPD.  

For this purpose, we accurately measured miRNA expression levels by stem-loop RT-qPCR in human 

and murine lung, and in murine cell-free bronchoalveolar lavage (BAL) supernatant. Some miRNAs 

were highlighted for their potential contribution to CS-induced inflammation and COPD pathogenesis. 

In particular, the functional role of miR-218-5p was assessed in detail by a translational research 

approach. 

7.1 microRNA profiling in lung tissue of patients with COPD 
 

As a first step, we performed a miRNA profiling on lung tissue of a screening cohort consisting of 12 

patients with COPD, 10 smokers without airflow limitation and 8 never-smokers. Of the 740 miRNAs 

profiled, 377 miRNAs could be detected. Twenty-nine miRNAs were differentially expressed between 

smokers without airflow limitation and never-smokers, and 59 miRNAs were differentially expressed 

between smokers with COPD compared to never-smokers. Only 3 miRNAs were differentially 

expressed between smokers with or without airflow limitation. In another study, 70 miRNAs were 

differentially expressed in lung tissue between smokers with or without airflow limitation 152. This 

could probably be caused by the fact that only patients with moderate COPD (GOLD II) were included 

in our study while in the other study a lot of patients had severe COPD (GOLD IV).  

Across the 3 patient groups, 57 miRNAs were differentially expressed. After correcting for multiple 

testing, only 5 miRNAs remained significantly differentially expressed (Figure 26). Overall, most 

miRNAs were down-regulated in patients with COPD compared to never-smokers, indicating that the 

suppressive effect of these miRNAs on their target genes is abrogated. The observation that more 

miRNAs were down-regulated is in agreement with other miRNA profiling studies following CS 

exposure 149,150,248. 

7.2 microRNA profiling in lung tissue and bronchoalveolar lavage supernatant of 
cigarette smoke-exposed mice 
 

To perform basic research, our COPD mouse model is of great value. Although obvious species 

differences exist between mice and humans, the murine model has enabled us throughout the years 
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to answer specific questions of importance in the pathogenesis of COPD. Therefore, we used this CS-

induced mouse model of COPD to identify alterations in miRNA expression levels in lung tissue and in 

BAL supernatant of mice that were exposed to air or CS for 4 (subacute) or 24 (chronic) weeks. 

Analogous to this, we investigated miRNA expression changes in lung tissue and in sputum supernatant 

of smokers with or without airflow limitation compared to never-smokers 153,154. The advantage of 

investigating these miRNA expression changes in mice is that 1) we have matched murine samples 

both in lung and BAL supernatant, 2) we also acquired matched data on inflammatory cell subsets both 

in lung tissue and in BAL, 3) these mice have the same genotype, and 4) since most miRNAs are often 

highly conserved between humans and rodents, our data can be surveyed for overlapping miRNAs with 

human lung tissue and sputum supernatant data.  

First, we started by performing a miRNA expression profiling in lung tissue and cell-free BAL 

supernatant of mice that were subacutely and chronically exposed to air or CS. miRNA profiling in lung 

tissue of rodents exposed to environmental CS was already performed, but not yet in combination with 

a miRNA profiling in BAL supernatant 150,151. As expected, due to the different cellular content and 

tissue composition, a clear separation between miRNA profiles in BAL supernatant and lung was 

shown. Also, in BAL supernatant, the separation in miRNA profile between mice chronically exposed 

to air or CS was most obvious, corresponding to the relative increase in inflammatory cell numbers and 

cellular diversity following CS exposure.  

In a next step, the overlap within each compartment as well as between compartments was assessed. 

Most differentially expressed miRNAs showed the same expression pattern in both compartments 

such as miR-146a-5p and miR-21a-5p. By correlating the miRNA expression profile with data on 

inflammatory cell subsets and chemokines, we could highlight some miRNAs, interesting for their 

contribution to CS-induced inflammation or because of their highly immune-cell specific expression or 

activity. Of note, miR-21a-5p, which is highly expressed in macrophages, correlated with macrophage 

numbers and CCL2 (MCP-1) expression in BAL. This is in agreement with data reporting that 

administration of a miR-21a-5p mimic induced MCP-1 levels 440. In addition, miR-155-5p correlated 

with B cells, accentuating its role in B cell functionality 306. We further searched for overlap with the 

previously assessed miRNA profiling data in human lung and sputum supernatant, all performed with 

the same stem-loop RT-qPCR technique and thus in that way, comparable 153,154,374. This resulted in a 

selection of interesting differentially expressed miRNAs, putting forward these miRNAs (let-7b-5p, let-

7c-5p, miR-135b-5p, miR-146a-5p, miR-149-5p, miR-155-5p, miR-21a-5p, miR-218-5p, miR-26a-5p, 

miR-31-3p, miR-31-5p, miR-332-3p, miR-342-3p, miR-376b-5p and miR-449a-5) as relevant in the CS-

induced inflammation and in COPD (Figure 26).  
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77.3 miR-218-5p in cigarette smoke-induced inflammation and COPD 

 

7.3.1 Expression of miR-218-5p 
 

We showed that miR-218-5p was significantly down-regulated in patients with COPD. Both in our 

screening group of 30 patients as in our validation group of 71 patients, miR-218-5p levels were 

reduced in actively smoking individuals with or without airflow limitation compared to never-smokers. 

Remarkably, in ex-smokers without airflow limitation that quitted smoking for more than 1 year, miR-

218-5p expression displayed normal levels, indicating that expression of miR-218-5p could be restored 

following smoking cessation. However, this was not the case in ex-smoking patients with COPD, 

especially not in those patients with severe COPD. Another research group classified miR-218-5p as a 

‘smoking cessation persistent miRNA’ since after 3 months of smoking cessation, the expression of 

miR-218-5p remained significantly reduced compared to controls 34. Apparently, more than 3 months 

of smoking cessation is needed for miR-218-5p levels to normalize in healthy smokers. Also, in our 

data, expression of miR-218-5p correlated with lung function parameters, meaning that low miRNA 

levels corresponded with worse lung function. Additionally, severe COPD was associated with reduced 

miR-218-5p expression, even when correcting for covariates including age and current smoking.  

A decreased expression of miR-218-5p was also evaluated in human bronchial epithelial cells (HBECs) 

that were exposed to CS and in bronchial biopsies of patients with COPD, indicating a robust expression 

signature. Our findings in human airway epithelium confirm data of Schembri and coworkers where 

the expression of miR-218-5p was down-regulated in airway epithelium of smokers as well as in HBECs 

exposed to CSC compared to normal airway epithelium 149.  

Besides the reported association with smoking, miR-218-5p was also found associated with COPD. 

However, miR-218-5p was not yet in-depth investigated in the context of COPD. In literature, miRNA 

profiling and consecutive cluster analysis was performed on the cellular fraction of BAL samples of 

patients with COPD and adenocarcinoma. Intriguingly, a significantly down-regulated miR-218-5p 

clustered to the COPD group 321. In sputum supernatant, miR-218-5p was significantly lower expressed 

in smokers without airflow limitation and in smokers with COPD compared to never-smokers 153.  

Interestingly, miRNA expression analysis in specific immune cell subsets revealed particular differential 

expression profiles following diverse stimuli. In human T cells, miR-218-5p was highly up-regulated 

following CD3/CD28 co-stimulation after 48h 442. In human monocyte-derived macrophages challenged 

with different doses and durations of LPS, miR-218-5p was robustly down-regulated 443. The longer the 

exposure, the more its expression was reduced. 
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7.3.2 Functional role of miR-218-5p 
 

The two precursors of miR-218-5p, mir-218-1 and mir-218-2, are encoded on 4p15.31 and 5q35.1 

within their respective host genes SLIT2 and SLIT3. Co-transcription of the intronic miR-218-5p with its 

host genes has been suggested, implying that both miR-218-5p and (one of) its host genes could be 

involved in the same processes 403,444. SLIT2 is reported to inhibit directional migration of inflammatory 

cells (neutrophils, dendritic cells and T cells), which express the Roundabout (ROBO) 1 receptor, to the 

site of inflammation 445-449. The pulmonary expression of SLIT2 is reduced in smokers with COPD versus 

smokers without airflow limitation, thus a lower expression of both miR-218-5p and SLIT2 might be 

involved in stimulating migration of inflammatory cells 152,168. In this way, we hypothesized that miR-

218-5p could contribute to the persistent inflammation in patients with COPD. 

Furthermore, miR-218-5p has been described in many tumor types to function as a tumor suppressor 

thereby being able to influence cancer metastasis and proliferation but also to serve as a suitable 

biomarker to predict prognosis, staging of the tumor, response to therapy and survival 450-456. As miR-

218-5p is often down-regulated in tumors, reduced expression mostly implies a more invasive tumor 

and worse prognosis 457. Reduced expression of the tumor suppressor miR-218-5p and its host genes 

has been found in the majority (80%) of NSCLCs 402. Importantly, we assessed the expression of miR-

218-5p in lung tissue of patients without lung cancer, or in tissue taken by the pathologist as far as 

possible from the tumor lesion. It has been shown that the expression of miR-218-5p varies in lung 

squamous cell carcinoma with tumor stage and according to location ranging from the lowest 

expression within the tumor to the highest expression at a distance from the tumor 416. Intriguingly, 

we measured lowest expression values for miR-218-5p in lung tissue of severe ex-smoking COPD 

patients, none of them diagnosed with lung cancer. 

In COPD, an inflammation/immune response-driven disease, we demonstrated by in silico, in vitro and 

in vivo analyses that miR-218-5p may have potential as a therapeutic. In silico analyses in human lung 

tissue and in normal HBECs revealed that a reduced expression of miR-218-5p was inversely associated 

with an enrichment for genes involved in immune, defense and inflammatory responses. In vitro 

transfection of normal HBECs with a miR-218-5p mimic showed that miR-218-5p has anti-inflammatory 

properties in CS-exposed cells compared to controls. In an in vivo murine experiment, we chose to 

intranasally administer a miR-218-5p inhibitor to air- or CS-exposed mice, in accordance with the 

reduced expression of miR-218-5p in lungs of patients with COPD. Since we observed more 

inflammatory cells in airways of mice receiving the miR-218-5p inhibitor compared to mice receiving 

the scrambled control sequence, we concluded that a lower expression of miR-218-5p is likely involved 

in the active recruitment of inflammatory cells towards the airways (Figure 26).  
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7.3.3 Future perspectives 
 

Investigating miRNA expression in tissue leaves open questions about the impact of a given miRNA on 

the entire organism or on specific cell-types, as well as their interplay. In this context, we focused on 

normal HBECs and demonstrated the anti-inflammatory properties of miR-218-5p. In the future, it 

would be interesting to also include primary epithelial cells from COPD patients or smokers which can 

provide useful information regarding expression alterations linked to smoking history or disease.  

Our preliminary results in a pre-clinical mouse model of COPD suggest that miR-218-5p is suited as a 

therapeutic, but further research is warranted. First, efficient delivery and uptake of a miR-218-5p 

mimic needs to be accomplished, preferably through the intranasal route in order to stimulate uptake 

through the bronchial epithelium, which is the cell type with a high expression of miR-218-5p in the 

lung. This should also improve the local distribution, avoiding extra-pulmonary effects. In a next step, 

the therapeutic potential should be assessed by administering miR-218-5p to mice that have been 

exposed to long-term CS with improvement on inflammation and characteristics of COPD pathology as 

primary end-points.  
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77.4 General future perspectives 
 

Building on our miRNA profiling data in mice and humans, it would be interesting to investigate miR-

135b-5p, miR-146a-5p, miR-155-5p, miR-21a-5p and miR-31-3p/-5p for their involvement in the 

pathogenesis of COPD. miR-146a-5p and miR-21a-5p are sensitive to TLR signaling and are crucial for 

their contribution to the resolution of inflammation 295,299. CS induced expression of miR-31 in human 

bronchial epithelium and TLR stimulation in hypoxic conditions resulted in a robust increase of both 

miR-31 transcripts in myeloid DCs 441,458. miR-155-5p is up-regulated following TLR activation and is 

intricately connected with the innate and adaptive immune response, especially with B cell and DC 

development and function 459. miR-155-5p is regarded as a pro-inflammatory actor, of which the 

expression gradually increases with higher inflammatory state.  

We started investigating miR-135b-5p and miR-21a-5p more in-depth for their contribution to the 

pathogenesis of COPD in collaboration with the lab of Prof. Hansbro.  

For miR-21a-5p, we report a general increase in miR-21-5p expression in lungs of patients with COPD, 

which was associated with a reduction in lung function. Also, in both BALB/c mice with nose-only 

exposure and in C57BL/6 mice with whole body CS exposure, miR-21a-5p levels were up-regulated 

from 4 weeks of CS exposure onwards. Furthermore, a novel mode of action was identified for miR-

21a-5p, mediating the NFκB pathway via SATB1 and S100A9 in CS-induced inflammation and the 

pathogenesis of COPD. In vivo inhibition of miR-21a-5p resulted in a reduction in pulmonary 

inflammation, remodeling and improvement in lung function, suggesting that inhibiting miR-21-5p 

might be a therapeutic option (manuscript in preparation). 

A vital role for miR-21-5p in immune cell development and function has  been frequently reported, as 

well as its contribution in repair and tissue regeneration 460-467. In addition, the expression of miR-21-

5p is dynamically regulated at several key points in its biogenesis 468. For example, TGF-β signaling 

members regulate the processing of miR-21-5p 469. miR-21-5p is a key miRNA in balancing between a 

pro- and an anti-inflammatory state. Thus, it is not surprising that a dysregulated miR-21-5p will have 

a major impact on the overall immune response, manifested ultimately as disease. Several arguments 

indicate potential relevance of miR-21-5p in COPD. First, there is a reported link with smoking history 

and COPD 470-472. Although miR-21-5p was significantly elevated and miR-181a significantly lower 

expressed in serum samples of both asymptomatic heavy smokers and patients with COPD compared 

to healthy controls, an increased miR-21-5p to miR-181a ratio in serum was suggested as a valuable 

tool in predicting the occurrence of COPD in asymptomatic heavy smokers 470. Further, miR-21-5p was 

significantly lower expressed in exhaled breath of COPD and asthma patients versus healthy controls 
326. Second, miR-21-5p is generally considered a biomarker of inflammation-associated diseases. Third, 
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since miR-21-5p is involved in both regeneration/repair and fibrosis, processes that partly rely on 

common mediators, it might also contribute to airway remodeling in patients with COPD. With the  

effect on remodeling in mind, it would also be interesting to investigate the functional role of miR-21-

5p in cultured primary fibroblasts from patients with COPD compared with fibroblasts from controls. 

Although miR-135b-5p is associated with CS-induced inflammation, its role in COPD remained to be 

elucidated. Therefore, we investigated the expression, localization and functional role of miR-135b-5p 

in the pathogenesis of COPD. First, the expression of miR-135b-5p was elevated in patients with COPD 

compared to never-smokers. Second, miR-135b-5p was highly expressed in bronchial epithelium, 

although its induction following CS was suggested to be mainly localized to alveolar type II cells. 

Further, by inhibiting miR-135b-5p in a COPD-mouse model (nose-only, 8 weeks air- or CS-exposure), 

we demonstrated that the CS-induced pulmonary inflammation is partially dependent on miR-135b-

5p, as well as that miR-135b-5p is involved in emphysema development or progression, since mice 

receiving the miR-135b-5p inhibitor showed less parenchymal destruction and a better work of 

breathing (manuscript in preparation).  

miR-135b-5p is strongly inducible upon challenge of the airways with different kinds of noxious 

particles (CS, nanotitanium dioxide, carbon black nanoparticles) 435,436,473. Likely, the up-regulation of 

miR-135b-5p in particle- and CS-induced inflammation is IL-1RI-mediated. Once the inflammatory 

process is propagated, miR-135b-5p targets the IL-1RI in a negative feed-back loop in an attempt to 

resolve the inflammation. Target prediction and pathway analyses point towards a role for miR-135b-

5p in WNT, TGF-β and BMP signaling by targeting TGFβR2, SMAD5, TGFβR1, ACVR1B and BMPR2 which 

are all involved in inflammatory responses 474-477.  

miR-21-5p and miR-135b-5p have already been shown to be shed from exosomes to modulate the 

transcriptome in exosome-incorporating cells, thereby expanding their regulatory function beyond the 

cell of origin 478,479. It has been reported that CS enhances the secretion of extracellular vesicles from 

lung epithelial cells, endothelial cells and alveolar macrophages. Also, the composition of these 

extracellular vesicles can be modified through this stressful condition 480. In the future, it would be 

interesting to investigate whether miR-21-5p and miR-135b-5p play a role in this intercellular 

communication upon CS exposure. For example, by causing CS-induced injury to epithelial cells and 

using this supernatant for culturing fibroblasts.  

Intriguingly, up-regulation of miR-135b-5p and miR-21-5p following acute inflammatory stimuli primarily 

led to resolution of the inflammation. However, in manifested disease, both contributed to the hallmarks 

of COPD. 
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Both miR-21-5p and miR-135b-5p have been identified as an oncomiR in several cancers and are often 

correlated with clinical stage and poor outcome 481,482. This suggests a close and dangerous liaison 

between chronic inflammation and oncogenic transformation. However, the acquisition of a neoplastic 

state may require the succession of multiple cancer hallmarks. As a part of this multistep process, 

inflammation is regarded as an emerging hallmark for its tumor-promoting properties 483. 

A complex disease such as COPD is  never the result of one single perturbed gene or miRNA. Whether 

individual patients express different sets of disease-driving miRNAs remains to be tested. By 

performing research, our understanding of miRNA biology and functions within the lung will increase 

which will augment the opportunities to safely pursue miRNAs as therapeutic modalities. In light of 

therapeutic development of miRNA inhibitors or mimics, inhalation-based delivery should be aimed 

for in order to optimize a bio-distribution favoring the lung compartment and/or airways. 

For the miRNA profiling in this research, we relied on the accurate and sensitive stem-loop RT-qPCR 

method. One disadvantage is that we could not detect isomiRs or discover new small RNA molecules 

that could have been present. Building further on this basis, performing RNA sequencing in lung tissue, 

sputum and blood – preferably matched – of patients with COPD compared to controls would add 

extra layers of information to unravel the pathogenesis of COPD. In that way, we obtain knowledge on 

small RNA, mRNA, lncRNA, and preferably also exosomal RNA, content.  

More broadly, investigating non-coding RNA can represent a new step in understanding disease 

mechanisms. miRNAs and lncRNAs are highly dynamic regulatory molecules whose expression can vary 

spatially, temporally, or in response to stimuli. Their involvement in many diseases indicates that these 

non-coding RNAs may represent a gold mine of future biomarkers and drug targets. However, a large 

portion of lncRNAs has not yet been characterized. Some challenges in regard to sequencing analysis, 

annotation, the low level of cross-species conservation, the heterogeneity in structure and function, their 

predominant nuclear localization and often low expression levels hamper lncRNA research. Interestingly, 

these lncRNA molecules can serve as a source of miRNAs or can negatively regulate miRNA expression 

levels (ceRNA) 484.  

The relevance of this work lays in the presentation of valuable miRNAs in COPD research. Although lower 

expressed, miRNAs can be detected in various body fluids. In line with identification of non-invasive miRNA 

biomarkers in diseases, we first highlight the miRNA profile in murine BAL fluid following subacute and 

chronic CS exposure in combination with the lung miRNA profile of the same mice, providing insights in 

miRNA alterations in both lung tissue and BAL supernatant. Investigating overlap or directional changes in 

differentially expressed miRNAs between both compartments can give information about their potential 

as biomarkers of CS-induced lung disease. Second, we show that 5 miRNAs out of the 8 differentially 

expressed miRNAs in sputum supernatant of patients with COPD overlap with the differentially expressed 
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miRNAs in BAL supernatant following chronic CS exposure, indicating the robustness of these 5 miRNAs 

as indicators of chronic CS exposure. 

In addition, we pinpoint overlapping differentially expressed murine miRNAs within and between two lung 

compartments, as well as miRNAs that overlap with aberrantly expressed miRNAs in current smoking 

patients with COPD compared to never-smokers. The set of miRNA molecules that are transcribed in a 

certain condition reflects the current state of these cells or tissue, which can reveal pathological 

mechanisms underlying disease. Moreover, individual miRNAs can be drivers of disease. In this thesis, we 

highlight the anti-inflammatory properties of miR-218-5p, the influence of miR-21-5p on pulmonary 

inflammation and remodeling, and the impact of miR-135b-5p on development or progression of 

emphysema in COPD. However, their precise mode of action within this disease is still unknown and needs 

to be investigated in the future. In my opinion, restoring these miRNA levels, alongside others, bears 

therapeutic potential in COPD.   
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Figure 26. Schematic overview of the research work presented in this thesis  
A reduced expression of miR-218-5p, predominantly localized in the bronchial epithelium, contributes to the 
sustained inflammatory response in patients with COPD by recruiting inflammatory cells.  
miRNA profiling in both murine lung tissue and BAL supernatant revealed several interesting miRNAs. A selection 
was made based on 1) consistent overlap in the same compartment between subacute and chronic CS exposure, 
2) overlap between murine BAL supernatant and lung following chronic CS exposure, 3) overlap between human 
samples (sputum supernatant, bronchial biopsies, lung tissue) of patients with COPD compared  to never-
smokers and murine samples (BAL supernatant, lung tissue) following chronic CS exposure and 4) fold change 
above 1.3. miRNAs that were as thus detected in both compartments are represented in italic. The direction of 
the arrow indicates the miRNA expression following CS exposure or in patients with COPD compared to non-
smoking controls. 
IL-8: interleukin-8; CCL20: Chemokine (C-C motif) ligand 20; DC: dendritic cell 
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SSUMMARY 

Chronic obstructive pulmonary disease (COPD) is a respiratory condition that affects more than 200 

million people worldwide and which is characterized by a progressive airflow limitation. The 

pathological changes are defined by underlying disease processes such as chronic bronchitis, 

obstructive bronchiolitis and emphysema. In addition, its pathology is hallmarked by an exaggerated 

inflammatory reaction in the lungs and airways following long-term inhalation of cigarette smoke. 

Remarkably, although smoking cessation slows down the accelerated decline in lung function, the 

inflammation in the lungs persists. Development of COPD in only a subgroup of smokers can be due to 

variability in genetic or epigenetic susceptibility. 

The main objective of this thesis was to evaluate whether microRNAs (miRNAs) could contribute to the 

pathogenesis of COPD, as these small regulatory molecules are involved in inflammatory and immune 

responses, with as ultimate goal to identify promising miRNAs as therapeutic target. 

First, we identified differentially expressed miRNAs in lung tissue of patients with COPD compared to 

never-smoking controls. The vast majority of miRNAs was down-regulated in COPD. After correction 

for multiple testing, 5 miRNAs remained significantly altered (Figure 26).  

In a next step, we identified differentially expressed miRNAs in lung tissue and matched cell-free 

bronchoalveolar lavage (BAL) fluid of mice that were exposed to air or CS for 4 and 24 weeks. 

Importantly, miRNAs are generally highly conserved throughout evolution, making mouse models 

appropriate models to study miRNA expression and function. By digging into the miRNA profile of lung 

and matched BAL supernatant, combined with data on inflammation in both compartments, we were 

able to put forward some interesting miRNAs. Moreover, we showed concordant overlap with the 

differential miRNA expression in human lung, bronchial biopsies and sputum supernatant of patients 

with COPD (Figure 26). 

Second, we investigated the functional role of miR-218-5p in COPD. miR-218-5p was one of the lower 

expressed miRNAs in patients with COPD compared to never-smokers. This reduced expression was 

validated in a large patient cohort, in human bronchial biopsies, in lung tissue of CS-exposed mice and 

in HBECs. In situ hybridization in human and murine lung revealed highest expression of miR-218-5p in 

the bronchial airway epithelium. Moreover, miR-218-5p correlated strongly with airway obstruction 

and GSEA indicated an inverse relationship of miR-218-5p with inflammatory responses. By performing 

in vitro and in vivo perturbation experiments, we demonstrated that a reduced expression of miR-218-

5p is involved in the recruitment of inflammatory cells towards the airways, thereby assisting in the 

sustained chronic inflammation in patients with COPD (Figure 26).  
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SSAMENVATTING 

Chronisch obstructief longlijden (COPD) is een respiratoire aandoening die wereldwijd meer dan 200 

miljoen mensen treft en die gekenmerkt wordt door een progressief bemoeilijkte ademhaling. De 

pathologische veranderingen worden bepaald door onderliggende ziekteprocessen zoals chronische 

bronchitis, obstructieve bronchiolitis en emfyseem. De pathologie wordt ook gekenmerkt door een 

overdreven ontstekingsreactie in de longen en luchtwegen als gevolg van jarenlange inhalatie van 

sigarettenrook. Treffend is dat zelfs wanneer er wordt gestopt met roken de ontstekingsreactie in de 

longen blijft voortbestaan, ondanks een verminderde achteruitgang van de longfunctie. Slechts een 

bepaalde subgroep van rokers ontwikkelt deze ziekte. Waarschijnlijk is een zekere variatie in 

genetische of epigenetische susceptibiliteit hiervoor verantwoordelijk. 

We wilden tijdens dit onderzoek te weten komen of microRNAs (miRNAs), kleine RNA moleculen die 

inflammatoire en immunologische processen reguleren, betrokken zijn in de pathogenese van COPD, 

met als belangrijkste doel het identificeren van beloftevolle miRNAs als therapeutisch target. 

Ten eerste hebben we miRNAs geïdentificeerd die differentieel tot expressie komen in longweefsel 

van COPD patiënten in vergelijking met longweefsel van mensen die nooit rookten, waarvan de meeste 

miRNAs waren gedaald in COPD patiënten. Na correctie voor meervoudig toetsen kwamen 5 miRNAs 

significant differentieel uit deze analyse (Figuur 26).  

Nadien identificeerden we differentieel geëxpresseerde miRNAs in longweefsel en broncho-alveolair 

(BAL) lavage vocht van aan lucht of sigarettenrook blootgestelde muizen. Het is ook belangrijk om 

weten dat de sequentie van miRNAs goed bewaard is gebleven tijdens de evolutie zodat muismodellen 

geschikt zijn voor het bestuderen van de expressie en functie van miRNAs. Door het miRNA profiel in 

muizenlong en gepaarde BAL supernatans stalen te onderzoeken, samen met gegevens over het 

inflammatoir profiel in deze muizen, konden we enkele interessante miRNAs naar voor schuiven. Ook 

toonden we een overlap aan met differentieel geëxpresseerde miRNAs in humaan longweefsel, 

bronchiale biopsieën en sputum supernatans van COPD patiënten (Figuur 26). 

Ten tweede hebben we de functionele rol van miR-218-5p bestudeerd in COPD. miR-218-5p was één 

van de miRNAs die gedaald was in COPD. Deze gedaalde expressie werd gevalideerd in een grote 

patiënten cohorte, in humane bronchiale biopsieën, in longen van aan rook blootgestelde muizen en 

in humane bronchiale epitheelcellen. In situ hybridisatie in humane- en muizenlong toonde aan dat 

miR-218-5p zeer hoog tot expressie komt in het bronchiale epitheel. De expressie van miR-218-5p 

correleerde sterk met luchtwegobstructie en GSEA duidde een omgekeerde associatie aan met de 

inflammatoire respons. In vitro en in vivo perturbatie experimenten geven aan dat een gedaalde 

expressie van miR-218-5p betrokken is bij het rekruteren van inflammatoire cellen naar de luchtwegen 

waardoor dit miRNA bijdraagt aan de chronische inflammatie in COPD patiënten (Figuur 26). 
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moed aan jullie allen, veel musiceergenot en veel liefs! 

Ook een dikke merci aan mijn schoonouders, schoonzus en familie! Bedankt voor de fijne bezoeken, 
het lekkere eten en de rustige zondagmiddagen in Poperinge.  

En dan zijn er natuurlijk mijn twee grootste supporters, Pieter en Simon. Pieter, heel erg bedankt voor 
je liefde, steun en begrip. Het voorbije jaar was voor ons allebei zeer intens maar super waardevol. 
Simon, jouw komst is ons grootste geschenk. Bedankt voor je onvoorwaardelijke liefde en vele 
knuffels. Ik zie jullie graag!  

Hartelijk dank aan iedereen! 

Griet, september 2017 


