95 research outputs found
Plasma polymerization for biomedical applications: A review
Plasma polymers have long been of interest as thin film coatings on biomedical devices and products, to generate desirable surface properties for favorable bio-interfacial interactions. Plasma polymers have also been used as platforms for the covalent immobilization of bioactive molecules. More recently, additional aspects have been investigated, such as selective prevention of adhesion of microbial pathogens, either via plasma polymers per se or including antimicrobial drugs. Plasma polymers have also been investigated for the release of silver ions and small organic molecules. Complementing low-pressure plasma approaches, processes at atmospheric pressure have attracted interest recently, including for nano/biocomposite coatings. This contribution reviews the use of plasma polymers for intended biomedical applications, with a focus on more recent topic areas
Switchable surface coatings for control over protein adsorption
Control over biomolecule interactions at interfaces is becoming an increasingly important goal for a range of scientific
fields and is being intensively studied in areas of biotechnological, biomedical and materials science. Improvement in the
control over materials and biomolecules is particularly important to applications such as arrays, biosensors, tissue
engineering, drug delivery and 'lab on a chip' devices. Further development of these devices is expected to be achieved
with thin coatings of stimuli responsive materials that can have their chemical properties 'switched' or tuned to stimulate
a certain biological response such as adsorptionldesorption of proteins. Switchable coatings show great potential for the
realisation of spatial and temporal immobilisation of cells and biomolecules such as DNA and proteins.
This study focuses on protein adsorption onto coatings of the thermosensitive polymer poly(N-isopropylacrylamide)
(pNIPAM) which can exhibit low and high protein adsorption properties based on its temperature dependent
conformation. At temperatures above its lower critical solution temperature (LCST) pNIPAM polymer chains are
collapsed and protein adsorbing whilst below the LCST they are hydrated and protein repellent.
Coatings of pNIPAM on silicon wafers were prepared by free radical polymerisation in the presence of surface bound
polymerisable groups. Surface analysis and protein adsorption was carried out using X-ray photoelectron spectroscopy,
time of flight secondary ion mass spectrometry and contact angle measurements.
This study is expected to aid the development of stimuli-responsive coatings for biochips and biodevices.Bellingham, US
XPS study of sulfur and phosphorus compounds with different oxidation states
In this report, we demonstrate that continuous improvement in XPS instruments and the calibration standards as well as analysis with standard component-fitting procedures can be used to determine the binding energies of compounds containing phosphorus and sulfur of different oxidation states with higher confidence. Based on such improved XPS analyses, the binding energies (BEs) of S2p signals for sulfur of increasing oxidation state are determined to be 166-167.5 eV for S=O in dimethyl sulfoxide, 168.1 eV for S=O2 in polysulfone, 168.4 eV for SO3 in polystyrene sulfonate and 168.8 eV for SO4 in chondroitin sulfate. The BEs of P2p signals show the following values: 132.9 eV for PO3 in triisopropyl phosphite, 133.3 eV for PO4 in glycerol phosphate, 133.5 eV for PO4 in sodium tripolyphosphate and 134.0 eV for PO4 in sodium hexametaphosphate. These results showed that there are only small increases in the binding energy when additional oxygen atoms are added to the S-O chemical group. A similar result is obtained when the fourth oxygen or poly-phosphate environment is added to the phosphorus compound. These BE values are useful to researchers involved in identifying oxidation states of phosphorus and sulfur atoms commonly observed on modified surfaces and interfaces found in applications such as biomaterials, super-capacitors and catalysis
Antifungal coatings by caspofungin immobilization onto biomaterials surfaces via a plasma polymer interlayer
Published Online: 14 October 2015Not only bacteria but also fungal pathogens, particularly Candida species, can lead to biofilm infections on biomedical devices. By covalent grafting of the antifungal drug caspofungin, which targets the fungal cell wall, onto solid biomaterials, a surface layer can be created that might be able to provide long-term protection against fungal biofilm formation. Plasma polymerization of propionaldehyde (propanal) was used to deposit a thin (∼20 nm) interfacial bonding layer bearing aldehyde surface groups that can react with amine groups of caspofungin to form covalent interfacial bonds for immobilization. Surface analyses by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry confirmed the intended grafting and uniformity of the coatings, and durability upon extended washing. Testing for fungal cell attachment and ensuing biofilm formation showed that caspofungin retained activity when covalently bound onto surfaces, disrupting colonizing Candida cells. Mammalian cytotoxicity studies using human primary fibroblasts indicated that the caspofungin-grafted surfaces were selective in eliminating fungal cells while allowing attachment and spreading of mammalian cells. These in vitro data suggest promise for use as antifungal coatings, for example, on catheters, and the use of a plasma polymer interlayer enables facile transfer of the coating method onto a wide variety of biomaterials and biomedical devices.Stefani S. Griesser, Marek Jasieniak, Bryan R. Coad, and Hans J. Griesse
Rhodomyrtals A–D, four unusual phloroglucinol-sesquiterpene adducts from Rhodomyrtus psidioides
Four novel compounds, rhodomyrtals A–D (1–4), with two unprecendented carbon frameworks of phloroglucinol coupled eudesmane, together with the known compound eucalyptin A (5) have been isolated from the leaves of the Australian plant Rhodomyrtus psidioides. The structures of compounds 1–4 were elucidated by spectroscopic analysis and ECD calculations. Some of the compounds showed good antibacterial activity against selected Gram-positive strains
Study of the Structure of Hyperbranched Polyglycerol Coatings and Their Antibiofouling and Antithrombotic Applications
While blood‐contacting materials are widely deployed in medicine in vascular stents, catheters, and cannulas, devices fail in situ because of thrombosis and restenosis. Furthermore, microbial attachment and biofilm formation is not an uncommon problem for medical devices. Even incremental improvements in hemocompatible materials can provide significant benefits for patients in terms of safety and patency as well as substantial cost savings. Herein, a novel but simple strategy is described for coating a range of medical materials, that can be applied to objects of complex geometry, involving plasma‐grafting of an ultrathin hyperbranched polyglycerol coating (HPG). Plasma activation creates highly reactive surface oxygen moieties that readily react with glycidol. Irrespective of the substrate, coatings are uniform and pinhole free, comprising O─C─O repeats, with HPG chains packing in a fashion that holds reversibly binding proteins at the coating surface. In vitro assays with planar test samples show that HPG prevents platelet adhesion and activation, as well as reducing (>3 log) bacterial attachment and preventing biofilm formation. Ex vivo and preclinical studies show that HPG‐coated nitinol stents do not elicit thrombosis or restenosis, nor complement or neutrophil activation. Subcutaneous implantation of HPG coated disks under the skin of mice shows no evidence of toxicity nor inflammation
Antimicrobial Peptides Grafted onto a Plasma Polymer Interlayer Platform: Performance upon Extended Bacterial Challenge
To combat infections on biomedical devices, antimicrobial coatings have attracted considerable attention, including coatings comprising naturally occurring antimicrobial peptides (AMPs). In this study the aim was to explore performance upon extended challenge by bacteria growing in media above samples. The AMPs LL37, Magainin 2, and Parasin 1 were selected on the basis of well-known membrane disruption activity in solution and were covalently grafted onto a plasma polymer platform, which enables application of this multilayer coating strategy to a wide range of biomaterials. Detailed surface analyses were performed to verify the intended outcomes of the coating sequence. Samples were challenged by incubation in bacterial growth media for 5 and 20 h. Compared with the control plasma polymer surface, all three grafted AMP coatings showed considerable reductions in bacterial colonization even at the high bacterial challenge of initial seeding at 1 × 107 CFU, but there were increasing numbers of dead bacteria attached to the surface. All three grafted AMP coatings were found to be non-toxic to primary fibroblasts. These coatings thus could be useful to produce antibacterial surface coatings for biomaterials, though possible consequences arising from the presence of dead bacteria need to be studied further, and compared to non-fouling coatings that avoid attachment of dead bacteria
Desorption by photons: laser desorption and matrix-assisted laser desorption Ionization (MALDI)
Abstract not available
- …