22 research outputs found

    Biomass burning emissions and influence of combustion variables in the cone-calorimeter

    Get PDF
    Emissions from biomass burning are highly variable and depend on combustion conditions as well as fuel properties. Simultaneous emissions from pyrolysis, smouldering, and combustion of the biomass material(s) burning leads to uncertainties in how these processes contribute to emissions of individual or groups of compounds as well as to total particle emissions. These uncertainties are difficult to constrain when analysing real-world emissions but also when performing laboratory studies of e.g., cook-stove emissions in more controlled environments. This study was designed to reduce some of this variability by enabling highly reproducible conditions by controlling combustion via adjustment of a few key factors. The aim of this study was to identify how these factors influenced emissions, and how different pyrolysis and burn conditions in turn contributed to the particle emissions.In this study, we used a controlled atmosphere cone calorimeter according to ISO 5660ā€5. We controlled fuel moisture content, the air flow to the combustion and O2 available for combustion, and the total heat flux (HF) to the fuel to study the independent effect of combustion variables on the aerosol emissions. In each experiment a small 10x10x1 cm piece of Birch-wood was put in a sample holder and combusted under controlled conditions. We conducted over 40 experiments, varying HF and flow conditions while monitoring fuel mass loss to quantify emission yields. An Aerosol Mass Spectrometer (AMS, Aerodyne Billerica, USA), a multiā€wavelength aethalometer (AE33, Magee Sci., USA) and a particle size spectrometer (DMS5000, Cambustion, UK) measured timeā€resolved evolution in particle properties during burns. Our results showed that pyrolysis conditions in the absence of O2 resulted in organic aerosol (OA) emissions with mass yields (g/g fuel) from a few percent at the lowest HF and up to ten percent at the highest HF. During combustion in air, equivalent black carbon (eBC) emissions were found to moderately increase with increasing HF. eBC was also found to increase when the O2 availability or combustion was reduced (O2 deficient combustion). Polycyclic aromatic hydrocarbon (PAH) was here defined separately from OA in the AMS analysis. PAH emissions were low for pyrolysis and combustion at high air flows (excessive O2 availability). In contrast, O2 deficient combustion conditions resulted in dramatically increased PAH emissions, with yields as high as to 0.5% (g/g fuel). The relationship between PAH emissions and availability of air and O2 during combustion is illustrated in Figure 1. Future analyses include a more detailed PAH analysis including off-line GC-MS, thermal-optical carbon analysis, UV-VIS absorption of MeOH soluble OA. We will parameterize emissions based on the initial conditions such as HF, moisture content, air flow rate (cooling) and O2 availability. A mechanistic understanding of relationships between combustion variables and emissions can aid the development of cleaner biomass combustion technologies and will improve fire emission models

    In-Use Emissions and Estimated Impacts of Traditional, Natural- and Forced-Draft Cookstoves in Rural Malawi.

    Get PDF
    Emissions from traditional cooking practices in low- and middle-income countries have detrimental health and climate effects; cleaner-burning cookstoves may provide ā€œco-benefitsā€. Here we assess this potential via in-home measurements of fuel-use and emissions and real-time optical properties of pollutants from traditional and alternative cookstoves in rural Malawi. Alternative cookstove models were distributed by existing initiatives and include a low-cost ceramic model, two forced-draft cookstoves (FDCS; Philips HD4012LS and ACE-1), and three institutional cookstoves. Among household cookstoves, emission factors (EF; g (kg wood)āˆ’1) were lowest for the Philips, with statistically significant reductions relative to baseline of 45% and 47% for fine particulate matter (PM2.5) and carbon monoxide (CO), respectively. The Philips was the only cookstove tested that showed significant reductions in elemental carbon (EC) emission rate. Estimated health and climate cobenefits of alternative cookstoves were smaller than predicted from laboratory tests due to the effects of real-world conditions including fuel variability and nonideal operation. For example, estimated daily PM intake and field-measurement-based global warming commitment (GWC) for the Philips FDCS were a factor of 8.6 and 2.8 times higher, respectively, than those based on lab measurements. In-field measurements provide an assessment of alternative cookstoves under real-world conditions and as such likely provide more realistic estimates of their potential health and climate benefits than laboratory tests

    Exploring Divergent Volatility Properties from Yield and Thermodenuder Measurements of Secondary Organic Aerosol from Ī±ā€‘Pinene Ozonolysis

    No full text
    There are large uncertainties in the parameters dictating the gas-particle partitioning of secondary organic aerosols (SOA), although this process has major influences on their atmospheric lifecycle. Here, we extract parameters that describe the partitioning of SOA from Ī±-pinene ozonolysis using measurements from a dual-thermodenuder (TD) system that constrains both the equilibrium and the kinetic properties that dictate SOA phase partitioning. Parallel TDs that vary in temperature and residence time were used with an evaporation-kinetics model to extract parameter values. An evaporation coefficient of an order of 0.1 best describes the observed evaporation, suggesting equilibration time scales of atmospheric SOA on the order of minutes to hours. A total of 20ā€“40% of SOA mass consists of low-volatility material (saturation concentration of <0.3 Ī¼g m<sup>ā€“3</sup>) in the TD-derived SOA volatility distribution. While distinct from existing parametrizations from aerosol growth experiments, derived values are consistent with recent observations of slow room-temperature evaporation of SOA and contributions from extremely low volatility organic compounds formed during Ī±-pinene ozonolysis. The volatility parameters thus determined suggest that SOA yields and enthalpies of evaporation are substantially higher, and products less volatile, than is currently assumed in atmospheric models. These results will help improve the representation of SOA in air-quality and climate models

    Determining Aerosol Volatility Parameters Using a ā€œDual Thermodenuderā€ System: Application to Laboratory-Generated Organic Aerosols

    No full text
    <div><p>Thermodenuders (TD) are a tool widely used for measuring aerosol volatility in the laboratory and field. Extracting the parameters that dictate organic aerosol volatility from TD data is challenging because gas-particle partitioning rarely reaches equilibrium inside a TD operating under atmospheric conditions, thus a wide variety of parameter sets can explain observed evaporation. Component volatilities (as represented by saturation vapor pressure, <i>C</i><sub><i>sat</i></sub>), cannot be directly extracted due to uncertainties in potential limitations to mass transfer (represented by mass accommodation coefficient, Ī±) and componentsā€™ enthalpies of evaporation (Ī”<i>H</i><sub><i>vap</i></sub>). To address these limitations, we have developed a ā€œdual TDā€ experimental approach in which one line uses a temperature-stepping TD (TS-TD) with a relatively long residence time (RT) and the other operates isothermally at variable residence time (VRT-TD). Data from this approach are used in tandem with an optimizing evaporation kinetics model to extract the values of parameters dictating volatility (C<sub><i>sat</i></sub>, and associated values of Ī”H<sub><i>vap</i></sub> and Ī±). The system was evaluated using laboratory generated dicarboxylic acid aerosols (adipic acid and succinic acid). Excellent agreement with previously published evaporation data collected with other TD systems was observed. Parameter values reported in the literature for the tested acids vary widely, but our results are generally consistent with those from studies that allow for nonunity values of Ī±. For example, our results suggest that Ī± for these aerosols are of order 0.1, in agreement with results determined by Saleh etĀ al. (2009, 2012). Modeling results suggest that the addition of VRT-TD data provides tighter constraint on feasible Ī”<i>H</i><sub><i>vap</i></sub> and Ī± values. The dual TD approach presented here does not rely on equilibration in the TD and thus can be directly applied to extract volatility parameters for more complex laboratory and ambient organic aerosol systems.</p><p>Copyright 2015 American Association for Aerosol Research</p></div

    Primary and Photochemically Aged Aerosol Emissions from Biomass Cookstoves: Chemical and Physical Characterization

    No full text
    Secondary organic aerosol (SOA) formation during photo-oxidation of primary emissions from cookstoves used in developing countries may make important contributions to their climate and air quality impacts. We present results from laboratory experiments with a field portable oxidation flow reactor (F-OFR) to study the evolution of emissions over hours to weeks of equivalent atmospheric aging. Lab tests, using dry red oak, measured fresh and aged emissions from a 3 stone fire (TSF), a ā€œrocketā€ natural draft stove (NDS), and a forced draft gasifier stove (FDGS), in order of increasing modified combustion efficiency (MCE) and decreasing particulate matter emission factors (EF). SOA production was observed for all stoves/tests; organic aerosol (OA) enhancement factor ranged from 1.2 to 3.1, decreasing with increased MCE. In primary emissions, OA mass spectral fragments associated with oxygenated species (primary biomass burning markers) increased (decreased) with MCE; fresh OA from FDGS combustion was especially oxygenated. OA oxygenation increased with further oxidation for all stove emissions, even where minimal enhancement was observed. More efficient stoves emit particles with greater net direct specific warming than TSFs, with the difference increasing with aging. Our results show that the properties and evolution of cookstove emissions are a strong function of combustion efficiency and atmospheric aging

    Seasonally Varying Secondary Organic Aerosol Formation From In-Situ Oxidation of Near-Highway Air

    No full text
    The extent to which motor vehicles contribute to ambient secondary organic aerosol (SOA) remains uncertain. Here, we present in situ measurements of SOA formation at a near-highway site with substantial tree-cover 10 m from Interstate 40 near Durham, North Carolina. In July 2015 (summer) and February 2016 (winter), we exposed ambient air to a range of oxidant (O<sub>3</sub> and OH) concentrations in an oxidation flow reactor (OFR), resulting in hours to weeks of equivalent atmospheric aging. We observed substantial seasonal variation in SOA formation upon OFR aging; diurnally varying OA enhancements of āˆ¼3ā€“8 Ī¼g m<sup>ā€“3</sup> were observed in summer and significantly lower enhancements (āˆ¼0.5ā€“1 Ī¼g m<sup>ā€“3</sup>) in winter. Measurements in both seasons showed consistent changes in bulk OA properties (chemical composition; volatility) with OFR aging. Mild increases in traffic-related SOA precursors during summer partly explains the seasonal variation. However, biogenic emissions, with sharp temperature dependence, appear to dominate summer OFR-SOA. Our analysis indicates that SOA observed in the OFR is similar (within a factor of 2) to that predicted to form from traffic and biogenic precursors using literature yields, especially in winter. This study highlights the utility of the OFR for studying the prevalence of SOA precursors in complex real-world settings

    Fine particle emission factors from vehicles in a highway tunnel: Effects of fleet composition and season

    No full text
    In-use, fuel-based motor vehicle emission factors were determined using measurements made in a highway tunnel in Pittsburgh, Pennsylvania. Concentrations Of PM2.5 mass, CO, CO2, and NO, were measured continuously. Filter-based measurements included PM2.5 mass, organic and elemental carbon (OC and EQ, inorganic ions and metals. Fuel-based emission factors for each pollutant were calculated using a fuel-carbon balance. The weekday traffic volume and fleet composition varied in a consistent diurnal pattern with the estimated fraction of fuel consumed by heavy-duty diesel ve ' hicle (HDDV) traffic ranging from 11% to 36%. The emission rate of most species showed a significant dependence on sample period. NOx, PM2.5, EC and OC emission factors were significantly larger during the early morning, truckdominated period. Emissions of particulate metals associated with brake wear (Cu, Sb, Ba and potentially Ga) were emitted at higher rates during the rush-hour period, which is characterized by slower, stop-and-go traffic. Emission rates of crustal elements (Fe, Ca, Mg, Li), Zn and Mn were highest during the early-morning period when there was more heavytruck traffic. A seasonal shift in average OC/EC ratio for the rush-hour period was observed; fall and summer OC/EC ratios are 1.0+0.6 and 0.26+0.06, respectively. Potential causes for this shift are increased partitioning of semi-volatile organic compounds into the gas phase during the summer months and/or effects of seasonal changes in fuel formulation. Emission factors for HDDV and light-duty vehicles (LDV) classes were estimated using a linear regression of emission factor as a function of fleet composition. The extrapolated emission factors generally agree with previously published measurements, though a substantial range in published values is noted. (c) 2006 Elsevier Ltd. All rights reserved
    corecore