6 research outputs found
Alternative splicing of MALT1 controls signalling and activation of CD4+ T cells
MALT1 channels proximal T-cell receptor (TCR) signalling to downstream
signalling pathways. With MALT1A and MALT1B two conserved splice variants
exist and we demonstrate here that MALT1 alternative splicing supports optimal
T-cell activation. Inclusion of exon7 in MALT1A facilitates the recruitment of
TRAF6, which augments MALT1 scaffolding function, but not protease activity.
Naive CD4+ T cells express almost exclusively MALT1B and MALT1A expression is
induced by TCR stimulation. We identify hnRNP U as a suppressor of exon7
inclusion. Whereas selective depletion of MALT1A impairs T-cell signalling and
activation, downregulation of hnRNP U enhances MALT1A expression and T-cell
activation. Thus, TCR-induced alternative splicing augments MALT1 scaffolding
to enhance downstream signalling and to promote optimal T-cell activation
A Novel Neurotrophic Drug for Cognitive Enhancement and Alzheimer's Disease
Currently, the major drug discovery paradigm for neurodegenerative diseases is based upon high affinity ligands for single disease-specific targets. For Alzheimer's disease (AD), the focus is the amyloid beta peptide (AĂź) that mediates familial Alzheimer's disease pathology. However, given that age is the greatest risk factor for AD, we explored an alternative drug discovery scheme that is based upon efficacy in multiple cell culture models of age-associated pathologies rather than exclusively amyloid metabolism. Using this approach, we identified an exceptionally potent, orally active, neurotrophic molecule that facilitates memory in normal rodents, and prevents the loss of synaptic proteins and cognitive decline in a transgenic AD mouse model