1,166 research outputs found

    High-precision spectroscopy of ultracold molecules in an optical lattice

    Get PDF
    The study of ultracold molecules tightly trapped in an optical lattice can expand the frontier of precision measurement and spectroscopy, and provide a deeper insight into molecular and fundamental physics. Here we create, probe, and image microkelvin 88^{88}Sr2_2 molecules in a lattice, and demonstrate precise measurements of molecular parameters as well as coherent control of molecular quantum states using optical fields. We discuss the sensitivity of the system to dimensional effects, a new bound-to-continuum spectroscopy technique for highly accurate binding energy measurements, and prospects for new physics with this rich experimental system.Comment: 12 pages, 4 figure

    Weak Long-Ranged Casimir Attraction in Colloidal Crystals

    Full text link
    We investigate the influence of geometric confinement on the free energy of an idealized model for charge-stabilized colloidal suspensions. The mean-field Poisson-Boltzmann formulation for this system predicts pure repulsion among macroionic colloidal spheres. Fluctuations in the simple ions' distribution provide a mechanism for the macroions to attract each other at large separations. Although this Casimir interaction is long-ranged, it is too weak to influence colloidal crystals' dynamics.Comment: 5 pages 2 figures ReVTe

    Colloidal hydrodynamic coupling in concentric optical vortices

    Full text link
    Optical vortex traps created from helical modes of light can drive fluid-borne colloidal particles in circular trajectories. Concentric circulating rings of particles formed by coaxial optical vortices form a microscopic Couette cell, in which the amount of hydrodynamic drag experienced by the spheres depends on the relative sense of the rings' circulation. Tracking the particles' motions makes possible measurements of the hydrodynamic coupling between the circular particle trains and addresses recently proposed hydrodynamic instabilities for collective colloidal motions on optical vortices.Comment: 7 pages, 2 figures, submitted to Europhysics Letter

    Correlated particle dynamics in concentrated quasi-two-dimensional suspensions

    Full text link
    We investigate theoretically and experimentally how the hydrodynamically correlated lateral motion of particles in a suspension confined between two surfaces is affected by the suspension concentration. Despite the long range of the correlations (decaying as 1/r^2 with the inter-particle distance r), the concentration effect is present only at short inter-particle distances for which the static pair correlation is nonuniform. This is in sharp contrast with the effect of hydrodynamic screening present in unconfined suspensions, where increasing the concentration changes the prefactor of the large-distance correlation.Comment: 13 page

    Photonic crystals of coated metallic spheres

    Full text link
    It is shown that simple face-centered-cubic (fcc) structures of both metallic and coated metallic spheres are ideal candidates to achieve a tunable complete photonic bandgap (CPBG) for optical wavelengths using currently available experimental techniques. For coated microspheres with the coating width to plasma wavelength ratio lc/λp≤10l_c/\lambda_p \leq 10% and the coating and host refractive indices ncn_c and nhn_h, respectively, between 1 and 1.47, one can always find a sphere radius rsr_s such that the relative gap width gwg_w (gap width to the midgap frequency ratio) is larger than 5% and, in some cases, gwg_w can exceed 9%. Using different coatings and supporting liquids, the width and midgap frequency of a CPBG can be tuned considerably.Comment: 14 pages, plain latex, 3 ps figures, to appear in Europhys. Lett. For more info on this subject see http://www.amolf.nl/research/photonic_materials_theory/moroz/moroz.htm

    Melting of Quasi-Two-Dimensional Charge Stripes in La5/3Sr1/3NiO4

    Full text link
    Commensurability effects for nickelates have been studied by the first neutron experiments on La5/3Sr1/3NiO4. Upon cooling, this system undergoes three successive phase transitions associated with quasi-two-dimensional (2D) commensurate charge and spin stripe ordering in the NiO2_2 planes. The two lower temperature phases (denoted as phase II and III) are stripe lattice states with quasi-long-range in-plane charge correlation. When the lattice of 2D charge stripes melts, it goes through an intermediate glass state (phase I) before becoming a disordered liquid state. This glass state shows short-range charge order without spin order, and may be called a "stripe glass" which resembles the hexatic/nematic state in 2D melting.Comment: 10 pages, RevTex, 4 figures available on request to [email protected]

    Fault-Tolerant Exact State Transmission

    Get PDF
    We show that a category of one-dimensional XY-type models may enable high-fidelity quantum state transmissions, regardless of details of coupling configurations. This observation leads to a fault- tolerant design of a state transmission setup. The setup is fault-tolerant, with specified thresholds, against engineering failures of coupling configurations, fabrication imperfections or defects, and even time-dependent noises. We propose the implementation of the fault-tolerant scheme using hard-core bosons in one-dimensional optical lattices.Comment: 5 pages and 4 figure

    Anisotropic effect on two-dimensional cellular automaton traffic flow with periodic and open boundaries

    Full text link
    By the use of computer simulations we investigate, in the cellular automaton of two-dimensional traffic flow, the anisotropic effect of the probabilities of the change of the move directions of cars, from up to right (purp_{ur}) and from right to up (prup_{ru}), on the dynamical jamming transition and velocities under the periodic boundary conditions in one hand and the phase diagram under the open boundary conditions in the other hand. However, in the former case, the first order jamming transition disappears when the cars alter their directions of move (pur≠0p_{ur}\neq 0 and/or pru≠0p_{ru}\neq 0). In the open boundary conditions, it is found that the first order line transition between jamming and moving phases is curved. Hence, by increasing the anisotropy, the moving phase region expand as well as the contraction of the jamming phase one. Moreover, in the isotropic case, and when each car changes its direction of move every time steps (pru=pur=1p_{ru}=p_{ur}=1), the transition from the jamming phase (or moving phase) to the maximal current one is of first order. Furthermore, the density profile decays, in the maximal current phase, with an exponent γ≈1/4\gamma \approx {1/4}.}Comment: 13 pages, 22 figure

    An optically actuated surface scanning probe

    Get PDF
    We demonstrate the use of an extended, optically trapped probe that is capable of imaging surface topography with nanometre precision, whilst applying ultra-low, femto-Newton sized forces. This degree of precision and sensitivity is acquired through three distinct strategies. First, the probe itself is shaped in such a way as to soften the trap along the sensing axis and stiffen it in transverse directions. Next, these characteristics are enhanced by selectively position clamping independent motions of the probe. Finally, force clamping is used to refine the surface contact response. Detailed analyses are presented for each of these mechanisms. To test our sensor, we scan it laterally over a calibration sample consisting of a series of graduated steps, and demonstrate a height resolution of ∼ 11 nm. Using equipartition theory, we estimate that an average force of only ∼ 140 fN is exerted on the sample during the scan, making this technique ideal for the investigation of delicate biological samples
    • …
    corecore