72 research outputs found

    Complex Effects of Ecosystem Engineer Loss on Benthic Ecosystem Response to Detrital Macroalgae

    Get PDF
    Ecosystem engineers change abiotic conditions, community assembly and ecosystem functioning. Consequently, their loss may modify thresholds of ecosystem response to disturbance and undermine ecosystem stability. This study investigates how loss of the bioturbating lugworm Arenicola marina modifies the response to macroalgal detrital enrichment of sediment biogeochemical properties, microphytobenthos and macrofauna assemblages. A field manipulative experiment was done on an intertidal sandflat (Oosterschelde estuary, The Netherlands). Lugworms were deliberately excluded from 1x m sediment plots and different amounts of detrital Ulva (0, 200 or 600 g Wet Weight) were added twice. Sediment biogeochemistry changes were evaluated through benthic respiration, sediment organic carbon content and porewater inorganic carbon as well as detrital macroalgae remaining in the sediment one month after enrichment. Microalgal biomass and macrofauna composition were measured at the same time. Macroalgal carbon mineralization and transfer to the benthic consumers were also investigated during decomposition at low enrichment level (200 g WW). The interaction between lugworm exclusion and detrital enrichment did not modify sediment organic carbon or benthic respiration. Weak but significant changes were instead found for porewater inorganic carbon and microalgal biomass. Lugworm exclusion caused an increase of porewater carbon and a decrease of microalgal biomass, while detrital enrichment drove these values back to values typical of lugworm-dominated sediments. Lugworm exclusion also decreased the amount of macroalgae remaining into the sediment and accelerated detrital carbon mineralization and CO2 release to the water column. Eventually, the interaction between lugworm exclusion and detrital enrichment affected macrofauna abundance and diversity, which collapsed at high level of enrichment only when the lugworms were present. This study reveals that in nature the role of this ecosystem engineer may be variable and sometimes have no or even negative effects on stability, conversely to what it should be expected based on current research knowledge

    The role of macrofauna in the functioning of a sea floor: is there any seasonal, density or functional identity effect?

    Get PDF
    Macrobenthos influences rates and intensities of benthic processes. The way in which these processes are affected depends on their densities and functional characteristics in terms of sediment reworking (bioturbation and bio-irrigation). This study focuses on the importance of three different functional groups (FG) of macrobenthos in the ecosystem processes of the Western Coastal Banks area (Belgian Part of the North Sea). Macrobenthic activity depends on temperature and food availability. Therefore two lab experiments were performed: one before sedimentation of the phytoplankton bloom (spring: low food availability and temperature) and one when organic matter had been settled on the sea bottom (late summer: high food availability and higher temperatures). Single - species treatments of key-species belonging to three different functional groups were added to microcosms at three density levels (average natural, lower and very low) to account for possible density declines. These species are the bivalve Abra alba (FG: biodiffuser), the tube-building polychaete Lanice conchilega (FG: piston-pumper) andthe predatory polychaete Nephthy sp. (FG: regenerator/gallery-diffuser).In both winter - and summertime, L. conchilega had a more pronounced influence on oxygen consumption and release Nephtys sp.. Abra alba appeared to be a more effective sediment reworker than Nephtys sp. in both seasons. In addition, ecosystem functioning (as oxygen consumption by the sediment community and bioturbation) seems to be related to animal densities. As such, a decline of densities (due to anthropogenic or natural disturbances) most probably will decrease the rates of ecosystem functioning in theWestern Coastal Banks area

    Restoration of estuarine tidal mudflat sediments after hypoxia

    Get PDF
    Ecosystem function recovery and benthic community recovery was investigated after experimentally induced depleted oxygen bottom water concentrations in a tidal mudflat (Paulinapolder, Westerschelde estuary). Macrofauna recovery developed through different succession stages and was structured by facilitative and inhibitive interactions: early colonizers had a positive effect on subsequent colonizers, while later succession species negatively affected the stable conditions created by the early colonizing tube-builders. Transitions between different stages were related to changes in environmental characteristics and biotic-environmental interactions (e.g. exploitation competition for food). Nematode community -and biogeochemical recovery were related to macrobenthic succession. Dense polychaete tube aggregations and the development of a fresh diatom bloom, as a result of the low grazing pressure by surface deposit feeding macrofauna during the first stage, stabilized the sediment and thereby enhanced macrobenthic and nematode recruitment success. Bioturbation impact of later succession species increased oxygen input in the sediment, resulting in an enhanced nitrification, denitrification and energy use

    Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning

    Get PDF
    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.

    The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early diagenetic processes involved in natural organic matter (NOM) oxidation in marine sediments have been for the most part characterized after collecting sediment cores and extracting porewaters. These techniques have proven useful for deep-sea sediments where biogeochemical processes are limited to aerobic respiration, denitrification, and manganese reduction and span over several centimeters. In coastal marine sediments, however, the concentration of NOM is so high that the spatial resolution needed to characterize these processes cannot be achieved with conventional sampling techniques. In addition, coastal sediments are influenced by tidal forcing that likely affects the processes involved in carbon oxidation.</p> <p>Results</p> <p>In this study, we used in situ voltammetry to determine the role of tidal forcing on early diagenetic processes in intertidal salt marsh sediments. We compare ex situ measurements collected seasonally, in situ profiling measurements, and in situ time series collected at several depths in the sediment during tidal cycles at two distinct stations, a small perennial creek and a mud flat. Our results indicate that the tides coupled to the salt marsh topography drastically influence the distribution of redox geochemical species and may be responsible for local differences noted year-round in the same sediments. Monitoring wells deployed to observe the effects of the tides on the vertical component of porewater transport reveal that creek sediments, because of their confinements, are exposed to much higher hydrostatic pressure gradients than mud flats.</p> <p>Conclusion</p> <p>Our study indicates that iron reduction can be sustained in intertidal creek sediments by a combination of physical forcing and chemical oxidation, while intertidal mud flat sediments are mainly subject to sulfate reduction. These processes likely allow microbial iron reduction to be an important terminal electron accepting process in intertidal coastal sediments.</p

    Resource Quantity Affects Benthic Microbial Community Structure and Growth Efficiency in a Temperate Intertidal Mudflat

    Get PDF
    Estuaries cover <1% of marine habitats, but the carbon dioxide (CO2) effluxes from these net heterotrophic systems contribute significantly to the global carbon cycle. Anthropogenic eutrophication of estuarine waterways increases the supply of labile substrates to the underlying sediments. How such changes affect the form and functioning of the resident microbial communities remains unclear. We employed a carbon-13 pulse-chase experiment to investigate how a temperate estuarine benthic microbial community at 6.5°C responded to additions of marine diatom-derived organic carbon equivalent to 4.16, 41.60 and 416.00 mmol C m−2. The quantities of carbon mineralized and incorporated into bacterial biomass both increased significantly, albeit differentially, with resource supply. This resulted in bacterial growth efficiency increasing from 0.40±0.02 to 0.55±0.04 as substrates became more available. The proportions of diatom-derived carbon incorporated into individual microbial membrane fatty acids also varied with resource supply. Future increases in labile organic substrate supply have the potential to increase both the proportion of organic carbon being retained within the benthic compartment of estuaries and also the absolute quantity of CO2 outgassing from these environments

    Impact of oil on bacterial community structure in bioturbated sediments

    Get PDF
    Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions - with tidal cycles and natural seawater - was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g21 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by Gammaproteobacteria and Deltaproteobacteria. In the oiled-microcosms, the addition of H. diversicolor reduced the phylotype-richness, sequences associated to Actinobacteria, Firmicutes and Plantomycetes were not detected. These observations highlight the influence of the bioturbation on the bacterial community structure without affecting the biodegradation capacities

    Effects of bioturbation and plant roots on salt marsh biogeochemistry: a mesocosm study

    No full text

    Benthic metabolism and sulfur cycling along an inundation gradient in a tidal Spartina anglica salt marsh

    No full text
    Central aspects of carbon and sulfur biogeochemistry were studied along a transect extending from an unvegetated mudflat into a Spartina anglica salt marsh. Conditions along the transect differed with respect to tidal elevation, sediment characteristics, vegetation coverage, and benthic macrofauna abundance. Dark sediment O2 uptake and CO2 emission at the highly bioturbated mudflat were low and relatively unaffected by tidal coverage. Sulfate reduction accounted for 30–60% of the daily CO2 emission from the open mudflat sediment. Sediment O2 uptake within the nonbioturbated and vegetated marsh was up to seven times higher during air exposure than during inundation, whereas the difference in CO2 emissions always was less than a factor of 2. The contribution of sulfate reduction to CO2 production was low (<21%) and decreased progressively with tidal elevation as a result of the oxidizing capacity of S. anglica roots in the vegetated marsh. The boundary between the mudflat and the retreating marsh is a unique environment. High near-surface pore-water concentrations of dissolved organic carbon (DOC) above the marsh cliff and highly elevated total carbon dioxide (TCO2) pore-water concentrations at both sides of the cliff during air exposure coincided with extremely high TCO2 emissions and apparent respiratory quotients (up to 14) only below the marsh cliff during inundation. We propose that substantial seepage of DOC-poor and HCO2--rich pore water may have occurred from the elevated marsh to the unvegetated sediment below during low tide followed by massive release of HCO3- during high tide. Accordingly, sulfate reduction accounted for more than the TCO2 release above the marsh cliff, but only for about 40% below the cliff. Mineralization rates and pathways in salt-marsh sediments vary considerably on small spatial and temporal scales and are dependent on inundation frequency as well as the composition and distribution of flora and fauna.
    corecore