146 research outputs found
Continuous-wave Doppler-cooling of hydrogen atoms with two-photon transitions
We propose and analyze the possibility of performing two-photon
continuous-wave Doppler-cooling of hydrogen atoms using the 1S-2S transition.
"Quenching" of the 2S level (by coupling with the 2P state) is used to increase
the cycling frequency, and to control the equilibrium temperature. Theoretical
and numerical studies of the heating effect due to Doppler-free two-photon
transitions evidence an increase of the temperature by a factor of two. The
equilibrium temperature decreases with the effective (quenching dependent)
width of the excited state and can thus be adjusted up to values close to the
recoil temperature.Comment: 11 pages, 4 figures in eps forma
Excitation-assisted inelastic processes in trapped Bose-Einstein condensates
We find that inelastic collisional processes in Bose-Einstein condensates
induce local variations of the mean-field interparticle interaction and are
accompanied by the creation/annihilation of elementary excitation. The physical
picture is demonstrated for the case of three body recombination in a trapped
condensate. For a high trap barrier the production of high energy trapped
single particle excitations results in a strong increase of the loss rate of
atoms from the condensate.Comment: 4 pages, no figure
Hierarchical CorannuleneâBased Materials: Energy Transfer and SolidâState Photophysics
We report the first example of a donorâacceptor corannulene-containing hybrid material with rapid ligand-to-ligand energy transfer (ET). Additionally, we provide the first time-resolved photoluminescence (PL) data for any corannulene-based compounds in the solid state. Comprehensive analysis of PL data in combination with theoretical calculations of donorâacceptor exciton coupling was employed to estimate ET rate and efficiency in the prepared material. The ligand-to-ligand ET rate calculated using two models is comparable with that observed in fullerene-containing materials, which are generally considered for molecular electronics development. Thus, the presented studies not only demonstrate the possibility of merging the intrinsic properties of Ï-bowls, specifically corannulene derivatives, with the versatility of crystalline hybrid scaffolds, but could also foreshadow the engineering of a novel class of hierarchical corannulene-based hybrid materials for optoelectronic devices
Fulleretic well-defined scaffolds: Donorâfullerene alignment through metal coordination and its effect on photophysics
Herein, we report the first example of a crystalline metalâdonorâfullerene framework, in which control of the donorâfullerene mutual orientation was achieved through chemical bond formation, in particular, by metal coordination. The 13C crossâpolarization magicâangle spinning NMR spectroscopy, Xâray diffraction, and timeâresolved fluorescence spectroscopy were performed for comprehensive structural analysis and energyâtransfer (ET) studies of the fulleretic donorâacceptor scaffold. Furthermore, in combination with photoluminescence measurements, the theoretical calculations of the spectral overlap function, Förster radius, excitation energies, and band structure were employed to elucidate the photophysical and ET processes in the prepared fulleretic material. We envision that the wellâdefined fulleretic donorâacceptor materials could contribute not only to the basic science of fullerene chemistry but would also be used towards effective development of organic photovoltaics and molecular electronics
Correlating the nanostructure and electronic properties of InAs nanowires
The electronic properties and nanostructure of InAs nanowires are correlated
by creating multiple field effect transistors (FETs) on nanowires grown to have
low and high defect density segments. 4.2 K carrier mobilities are ~4X larger
in the nominally defect-free segments of the wire. We also find that dark field
optical intensity is correlated with the mobility, suggesting a simple route
for selecting wires with a low defect density. At low temperatures, FETs
fabricated on high defect density segments of InAs nanowires showed transport
properties consistent with single electron charging, even on devices with low
resistance ohmic contacts. The charging energies obtained suggest quantum dot
formation at defects in the wires. These results reinforce the importance of
controlling the defect density in order to produce high quality electrical and
optical devices using InAs nanowires.Comment: Related papers at http://pettagroup.princeton.ed
Quantum saturation and condensation of excitons in CuO: a theoretical study
Recent experiments on high density excitons in CuO provide evidence for
degenerate quantum statistics and Bose-Einstein condensation of this nearly
ideal gas. We model the time dependence of this bosonic system including
exciton decay mechanisms, energy exchange with phonons, and interconversion
between ortho (triplet-state) and para (singlet-state) excitons, using
parameters for the excitonic decay, the coupling to acoustic and low-lying
optical phonons, Auger recombination, and ortho-para interconversion derived
from experiment. The single adjustable parameter in our model is the
optical-phonon cooling rate for Auger and laser-produced hot excitons. We show
that the orthoexcitons move along the phase boundary without crossing it (i.e.,
exhibit a ``quantum saturation''), as a consequence of the balance of entropy
changes due to cooling of excitons by phonons and heating by the non-radiative
Auger two-exciton recombination process. The Auger annihilation rate for
para-para collisions is much smaller than that for ortho-para and ortho-ortho
collisions, explaining why, under the given experimental conditions, the
paraexcitons condense while the orthoexcitons fail to do so.Comment: Revised to improve clarity and physical content 18 pages, revtex,
figures available from G. Kavoulakis, Physics Department, University of
Illinois, Urban
Bragg spectroscopy of a Bose-Einstein condensate
Properties of a Bose-Einstein condensate were studied by stimulated,
two-photon Bragg scattering. The high momentum and energy resolution of this
method allowed a spectroscopic measurement of the mean-field energy and of the
intrinsic momentum uncertainty of the condensate. The coherence length of the
condensate was shown to be equal to its size. Bragg spectroscopy can be used to
determine the dynamic structure factor over a wide range of energy and momentum
transfers.Comment: 4 pages, 3 figure
Type-II Colloidal Quantum Wells: CdSe/CdTe Core/Crown Heteronanoplatelets
Solution-processed quantum wells, also known as colloidal nanoplatelets (NPLs), are emerging as promising materials for colloidal optoelectronics. In this work, we report the synthesis and characterization of CdSe/CdTe core/crown NPLs exhibiting a Type-II electronic structure and Type-II specific optical properties. Here, based on a core-seeded approach, the CdSe/CdTe core/crown NPLs were synthesized with well-controlled CdTe crown coatings. Uniform and epitaxial growth of CdTe crown region was verified by using structural characterization techniques including transmission electron microscopy (TEM) with quantitative EDX analysis and X-ray diffraction (XRD). Also the optical properties were systematically studied in these Type-II NPLs that reveal strongly red-shifted photoluminescence (up to similar to 150 nm) along with 2 orders of magnitude longer fluorescence lifetimes (up to 190 ns) compared to the Type-I NPLs owing to spatially indirect excitons at the Type-II interface between the CdSe core and the CdTe crown regions. Photoluminescence excitation spectroscopy confirms that this strongly red-shifted emission actually arises from the CdSe/CdTe NPLs. In addition, temperature-dependent time-resolved fluorescence spectroscopy was performed to reveal the temperature-dependent fluorescence decay kinetics of the Type-II NPLs exhibiting interesting behavior. Also, water-soluble Type-II NPLs were achieved via ligand exchange of the CdSe/CdTe core/crown NPLs by using 3-mercaptopropionic acid (MPA), which allows for enhanced charge extraction efficiency owing to their shorter chain length and enables high quality film formation by layer-by-layer (LBL) assembly. With all of these appealing properties, the CdSe/CdTe core/crown heterostructures having Type-II electronic structure presented here are highly promising for light-harvesting applications
Sexualisation's four faces: sexualisation and gender stereotyping in the Bailey Review
This paper explores the considerations of sexualisation and gender stereotyping in the recent UK government report Letting Children be Children. This report, the Bailey Review, claimed to represent the views of parents. However, closer reading reveals that, while the parents who were consulted were concerned about both the sexualisation and the gender stereotyping of products aimed at children, the Bailey Review focuses only on the former and dismisses the latter. âSexualisationâ has four faces in the Bailey Review: it is treated as a process that increases (1) the visibility of sexual content in the public domain, (2) misogyny, (3) the sexuality of children, and (4) the mainstream position of âdeviantâ sexual behaviours and lifestyles. Through this construction of âsexualisationâ, gendered relations of power are not only hidden from view but also buttress a narrative in which young women are situated as children, and their sexuality and desire rendered pathological and morally unacceptable as judged by a conservative standard of decency. Comparison of the treatment of sexualisation and gender stereotyping in the review is revealing of the political motivations behind it, and of wider discourse in these areas
Fulleretic Well-Defined Scaffolds: DonorâFullerene Alignment Through Metal Coordination and Its Effect on Photophysics
Herein, we report the first example of a crystalline metalâdonorâfullerene framework, in which control of the donorâfullerene mutual orientation was achieved through chemical bond formation, in particular, by metal coordination. The 13C cross-polarization magic-angle spinning NMR spectroscopy, X-ray diffraction, and time-resolved fluorescence spectroscopy were performed for comprehensive structural analysis and energy-transfer (ET) studies of the fulleretic donorâacceptor scaffold. Furthermore, in combination with photoluminescence measurements, the theoretical calculations of the spectral overlap function, Förster radius, excitation energies, and band structure were employed to elucidate the photophysical and ET processes in the prepared fulleretic material. We envision that the well-defined fulleretic donorâacceptor materials could contribute not only to the basic science of fullerene chemistry but would also be used towards effective development of organic photovoltaics and molecular electronics
- âŠ