6 research outputs found
Comparison of head impact measurements via an instrumented mouthguard and an anthropometric testing device
The purpose of this study was to determine and compare the efficacy of head impact measurements via an electronic sensor framework, embedded within a mouthguard, against an anthropometric testing device. Development of the former is in response to the growing issue of head impacts and concussion in rugby union. Testing was conducted in a vehicle safety laboratory using a standard impact protocol utilising the headforms of anthropometric testing devices. The headforms were subjected to controlled front and side impacts. For each impact, the linear acceleration and rotational velocity was measured over a 104-ms interval at a frequency of 1 kHz. The magnitude of peak linear acceleration and peak rotational velocity was determined from the measured time-series traces and statistically compared. The peak linear acceleration and rotational velocity had intraclass correlation coefficients of 0.95 and 0.99, respectively. The root-mean-square error between the measurement systems was 4.3 g with a standard deviation of 3.5 g for peak linear acceleration and 0.7 rad/s with a standard deviation of 0.4 rad/s for rotational velocity. Bland and Altman analysis indicated a systematic bias of 2.5 g and − 0.5 rad/s and limits of agreement (1.96 × standard deviation) of ± 13.1 g and ± 1.25 rad/s for the instrumented mouthguard. These results provide the basis on which the instrumented mouthguard can be further developed for deployment and application within professional rugby, with a view to accurately and reliably quantify head collision dynamics
Muscle Activity during Maximal Isometric Forearm Rotation Using a Power Grip
This study aimed to provide quantitative activation data for muscles of the forearm during pronation and supination while using a power grip. Electromyographic data was collected from 15 forearm muscles in 11 subjects while they performed maximal isometric pronating and supinating efforts in nine positions of forearm rotation. Biceps brachii was the only muscle with substantial activation in only one effort direction. It was significantly more active when supinating (µ = 52.1%, SD = 17.5%) than pronating (µ = 5.1%, SD = 4.8%, p \u3c .001). All other muscles showed considerable muscle activity during both pronation and supination. Brachioradialis, flexor carpi radialis, palmaris longus, pronator quadratus and pronator teres were significantly more active when pronating the forearm. Abductor pollicis longus and biceps brachii were significantly more active when supinating. This data highlights the importance of including muscles additional to the primary forearm rotators in a biomechanical analysis of forearm rotation. Doing so will further our understanding of forearm function and lead to the improved treatment of forearm fractures, trauma-induced muscle dysfunction and joint replacements
An in-silico study of the effect of non-linear skin dynamics on skin-mounted accelerometer inference of skull motion
Accurate and precise analysis of head impact telemetry data is important for development of biomechanical models and methodologies to decrease the risk of traumatic brain injury. Systematic review suggests that much existing data lacks verification. Soft tissue artefact is a common problem that is not frequently addressed. This paper outlines a method of modelling the coupled, non-linear, skull-skin-sensor system. The model is based on a second order underdamped spring mass damper system that incorporates non-linear values to account for the complex dynamic nature of skin. MATLAB was used to simulate the estimated movement of a sensor mounted to the skin relative to measurements collected via a mouthguard sensor. The non-linear elastic and damping models were developed from descriptions in literature. The model assumed a sensor of 8 g, mounted behind the ear. Results were compared to a typical linear system. In small impacts, the linear and non-linear models provided similar accelerations to the skull. However, in large impacts, the acceleration of the sensor was estimated to be 158% greater than the skull acceleration when modelled non-linearly, while a linear model showed only a 0.7% increase. This implies that for small impacts, the nonlinearity of skin-skull dynamics is not an important characteristic for modelling. However, in large impacts, the non-linearity of the skin-skull dynamic can lead to drastic over-estimates of skull acceleration when using skin mounted accelerometers
Muscle Activity during Maximal Isometric Forearm Rotation Using a Power Grip
This study aimed to provide quantitative activation data for muscles of the forearm during pronation and supination while using a power grip. Electromyographic data was collected from 15 forearm muscles in 11 subjects while they performed maximal isometric pronating and supinating efforts in nine positions of forearm rotation. Biceps brachii was the only muscle with substantial activation in only one effort direction. It was significantly more active when supinating (µ = 52.1%, SD = 17.5%) than pronating (µ = 5.1%, SD = 4.8%, p \u3c .001). All other muscles showed considerable muscle activity during both pronation and supination. Brachioradialis, flexor carpi radialis, palmaris longus, pronator quadratus and pronator teres were significantly more active when pronating the forearm. Abductor pollicis longus and biceps brachii were significantly more active when supinating. This data highlights the importance of including muscles additional to the primary forearm rotators in a biomechanical analysis of forearm rotation. Doing so will further our understanding of forearm function and lead to the improved treatment of forearm fractures, trauma-induced muscle dysfunction and joint replacements