1,045 research outputs found

    The Hubbard Model at Infinite Dimensions: Thermodynamic and Transport Properties

    Full text link
    We present results on thermodynamic quantities, resistivity and optical conductivity for the Hubbard model on a simple hypercubic lattice in infinite dimensions. Our results for the paramagnetic phase display the features expected from an intuitive analysis of the one-particle spectra and substantiate the similarity of the physics of the Hubbard model to those of heavy fermion systems. The calculations were performed using an approximate solution to the single-impurity Anderson model, which is the key quantity entering the solution of the Hubbard model in this limit. To establish the quality of this approximation we compare its results, together with those obtained from two other widely used methods, to essentially exact quantum Monte Carlo results.Comment: 29 pages, 16 figure

    From ferromagnetism to spin-density wave: Magnetism in the two channel periodic Anderson model

    Full text link
    The magnetic properties of the two-channel periodic Anderson model for uranium ions, comprised of a quadrupolar and a magnetic doublet are investigated through the crossover from the mixed-valent to the stable moment regime using dynamical mean field theory. In the mixed-valent regime ferromagnetism is found for low carrier concentration on a hyper-cubic lattice. The Kondo regime is governed by band magnetism with small effective moments and an ordering vector \q close to the perfect nesting vector. In the stable moment regime nearest neighbour anti-ferromagnetism dominates for less than half band filling and a spin density wave transition for larger than half filling. TmT_m is governed by the renormalized RKKY energy scale \mu_{eff}^2 ^2 J^2\rho_0(\mu).Comment: 4 pages, RevTeX, 3 eps figure

    Investigation of on-site inter-orbital single electron hoppings in general multi-orbital systems

    Full text link
    A general multi-orbital Hubbard model, which includes on-site inter-orbital electron hoppings, is introduced and studied. It is shown that the on-site inter-orbital single electron hopping is one of the most basic interactions. Two electron spin-flip and pair-hoppings are shown to be correlation effects of higher order than the on-site inter-orbital single hopping. It is shown how the double and higher hopping interactions can be well-defined for arbitrary systems. The two-orbital Hubbard model is studied numerically to demonstrate the influence of the single electron hopping effect, leading to a change of the shape of the bands and a shrinking of the difference between the two bands. Inclusion of the on-site inter-orbital hopping suppresses the so-called orbital-selective Mott transition.Comment: 5 pages, 3 figure

    Identifying spin-triplet pairing in spin-orbit coupled multi-band superconductors

    Full text link
    We investigate the combined effect of Hund's and spin-orbit (SO) coupling on superconductivity in multi-orbital systems. Hund's interaction leads to orbital-singlet spin-triplet superconductivity, where the Cooper pair wave function is antisymmetric under the exchange of two orbitals. We identify three d-vectors describing even-parity orbital-singlet spin-triplet pairings among t2g-orbitals, and find that the three d-vectors are mutually orthogonal to each other. SO coupling further assists pair formation, pins the orientation of the d-vector triad, and induces spin-singlet pairings with a relative phase difference of \pi/2. In the band basis the pseudospin d-vectors are aligned along the z-axis and correspond to momentum-dependent inter- and intra-band pairings. We discuss quasiparticle dispersion, magnetic response, collective modes, and experimental consequences in light of the superconductor Sr2RuO4.Comment: 6 pages, 5 figure

    Electronic properties of correlated metals in the vicinity of a charge order transition: optical spectroscopy of α\alpha-(BEDT-TTF)2M_2MHg(SCN)4_4 (MM = NH4_4, Rb, Tl)

    Full text link
    The infrared spectra of the quasi-two-dimensional organic conductors α\alpha-(BEDT-TTF)2_2MMHg(SCN)4_4 (MM = NH4_4, Rb, Tl) were measured in the range from 50 to 7000 \cm down to low temperatures in order to explore the influence of electronic correlations in quarter-filled metals. The interpretation of electronic spectra was confirmed by measurements of pressure dependant reflectance of α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4 at T=300 K. The signatures of charge order fluctuations become more pronounced when going from the NH4_4 salt to Rb and further to Tl compounds. On reducing the temperature, the metallic character of the optical response in the NH4_4 and Rb salts increases, and the effective mass diminishes. For the Tl compound, clear signatures of charge order are found albeit the metallic properties still dominate. From the temperature dependence of the electronic scattering rate the crossover temperature is estimated below which the coherent charge-carriers response sets in. The observations are in excellent agreement with recent theoretical predictions for a quarter-filled metallic system close to charge order

    Spectral Properties and Bandstructure of Correlated Electron Systems

    Full text link
    We present k\vec{k}-dependent one-particle spectra and corresponding effective bandstructures for the 2d2d Hubbard model calculated within the dynamical molecular field theory (DMFT). This method has proven to yield highly nontrivial results for a variety of quantities but the question remains open to what extent it is applicable to relevant physical situations. To address this problem we compare our results for spectral functions to those obtained by QMC simulations. The good agreement supports our notion that the DMFT is indeed a sensible ansatz for correlated models even in to d=2d=2.Comment: Paper presented at SCES '95, Sept. 27 - 30 1995, Goa. To be published in Physica B. 10 pages, figures include

    Kosterlitz-Thouless Transition and Short Range Spatial Correlations in an Extended Hubbard Model

    Full text link
    We study the competition between intersite and local correlations in a spinless two-band extended Hubbard model by taking an alternative limit of infinite dimensions. We find that the intersite density fluctuations suppress the charge Kondo energy scale and lead to a Fermi liquid to non-Fermi liquid transition for repulsive on-site density-density interactions. In the absence of intersite interactions, this transition reduces to the known Kosterlitz-Thouless transition. We show that a new line of non-Fermi liquid fixed points replace those of the zero intersite interaction problem.Comment: 11 pages, 2 figure

    Anomalous f-electron Hall Effect in the Heavy-Fermion System CeTIn5_{5} (T = Co, Ir, or Rh)

    Full text link
    The in-plane Hall coefficient RH(T)R_{H}(T) of CeRhIn5_{5}, CeIrIn5_{5}, and CeCoIn5_{5} and their respective non-magnetic lanthanum analogs are reported in fields to 90 kOe and at temperatures from 2 K to 325 K. RH(T)R_{H}(T) is negative, field-independent, and dominated by skew-scattering above \sim 50 K in the Ce compounds. RH(H0)R_{H}(H \to 0) becomes increasingly negative below 50 K and varies with temperature in a manner that is inconsistent with skew scattering. Field-dependent measurements show that the low-T anomaly is strongly suppressed when the applied field is increased to 90 kOe. Measurements on LaRhIn5_{5}, LaIrIn5_{5}, and LaCoIn5_{5} indicate that the same anomalous temperature dependence is present in the Hall coefficient of these non-magnetic analogs, albeit with a reduced amplitude and no field dependence. Hall angle (θH\theta_{H}) measurements find that the ratio ρxx/ρxy=cot(θH)\rho_{xx}/\rho_{xy}=\cot(\theta_{H}) varies as T2T^{2} below 20 K for all three Ce-115 compounds. The Hall angle of the La-115 compounds follow this T-dependence as well. These data suggest that the electronic-structure contribution dominates the Hall effect in the 115 compounds, with ff-electron and Kondo interactions acting to magnify the influence of the underlying complex band structure. This is in stark contrast to the situation in most 4f4f and 5f5f heavy-fermion compounds where the normal carrier contribution to the Hall effect provides only a small, T-independent background to RH.R_{H}.Comment: 23 pages and 8 figure
    corecore