800 research outputs found

    The Hubbard Model at Infinite Dimensions: Thermodynamic and Transport Properties

    Full text link
    We present results on thermodynamic quantities, resistivity and optical conductivity for the Hubbard model on a simple hypercubic lattice in infinite dimensions. Our results for the paramagnetic phase display the features expected from an intuitive analysis of the one-particle spectra and substantiate the similarity of the physics of the Hubbard model to those of heavy fermion systems. The calculations were performed using an approximate solution to the single-impurity Anderson model, which is the key quantity entering the solution of the Hubbard model in this limit. To establish the quality of this approximation we compare its results, together with those obtained from two other widely used methods, to essentially exact quantum Monte Carlo results.Comment: 29 pages, 16 figure

    Attribution of ozone changes to dynamical and chemical processes in CCMs and CTMs

    Get PDF
    Chemistry-climate models (CCMs) are commonly used to simulate the past and future development of Earth's ozone layer. The fully coupled chemistry schemes calculate the chemical production and destruction of ozone interactively and ozone is transported by the simulated atmospheric flow. Due to the complexity of the processes acting on ozone it is not straightforward to disentangle the influence of individual processes on the temporal development of ozone concentrations. A method is introduced here that quantifies the influence of chemistry and transport on ozone concentration changes and that is easily implemented in CCMs and chemistry-transport models (CTMs). In this method, ozone tendencies (i.e. the time rate of change of ozone) are partitioned into a contribution from ozone production and destruction (chemistry) and a contribution from transport of ozone (dynamics). The influence of transport on ozone in a specific region is further divided into export of ozone out of that region and import of ozone from elsewhere into that region. For this purpose, a diagnostic is used that disaggregates the ozone mixing ratio field into 9 separate fields according to in which of 9 predefined regions of the atmosphere the ozone originated. With this diagnostic the ozone mass fluxes between these regions are obtained. Furthermore, this method is used here to attribute long-term changes in ozone to chemistry and transport. The relative change in ozone from one period to another that is due to changes in production or destruction rates, or due to changes in import or export of ozone, are quantified. As such, the diagnostics introduced here can be used to attribute changes in ozone on monthly, interannual and long-term time-scales to the responsible mechanisms. Results from a CCM simulation are shown here as examples, with the main focus of the paper being on introducing the method

    Conserving approximations in direct perturbation theory: new semianalytical impurity solvers and their application to general lattice problems

    Full text link
    For the treatment of interacting electrons in crystal lattices approximations based on the picture of effective sites, coupled in a self-consistent fashion, have proven very useful. Particularly in the presence of strong local correlations, a local approach to the problem, combining a powerful method for the short ranged interactions with the lattice propagation part of the dynamics, determines the quality of results to a large extent. For a considerable time the non crossing approximation (NCA) in direct perturbation theory, an approach originally developed by Keiter for the Anderson impurity model, built a standard for the description of the local dynamics of interacting electrons. In the last couple of years exact methods like the numerical renormalization group (NRG) as pioneered by Wilson, have surpassed this approximation as regarding the description of the low energy regime. We present an improved approximation level of direct perturbation theory for finite Coulomb repulsion U, the crossing approximation one (CA1) and discuss its connections with other generalizations of NCA. CA1 incorporates all processes up to fourth order in the hybridization strength V in a self-consistent skeleton expansion, retaining the full energy dependence of the vertex functions. We reconstruct the local approach to the lattice problem from the point of view of cumulant perturbation theory in a very general way and discuss the proper use of impurity solvers for this purpose. Their reliability can be tested in applications to e.g. the Hubbard model and the Anderson-lattice model. We point out shortcomings of existing impurity solvers and improvements gained with CA1 in this context. This paper is dedicated to the memory of Hellmut Keiter.Comment: 45 pages, 22 figure

    Rowing performance monitoring system development

    Get PDF
    The aim of this work was to develop sensory devices and data acquisition system to facilitate investigations into the mechanics of the rowing system, comprising the rower(s), boat and oars. As such, the parameters to be measured were: boat and seat position, velocity and acceleration; oar force; foot force; oar angle and rower heart rate. An oar force sensor was designed that fitted into the cavity of a modified oarlock. This sensor design is cheap, yields sound results and its presence is almost not noticeable to the rower. A review of previously applied methods of oar force measurement, predating 1900, is included. Foot force is of interest to many different fields of research, thus there is a large amount of literature on the subject of foot force measurement. A comprehensive review of this literature is used to aid in the design of the required sensor. The combination of a non-simple dynamic loading (i.e. time varying spatially distributed normal and shear forces), with static foot position distinguishes the problem of measuring the force under the feet during rowing from most previously considered cases. A strain gauge-based force sensing plate was designed to measure both normal force distribution and unidirectional shear force under the feet. Sample results are presented from a study with international class New Zealand rowers on a rowing ergometer. The sensor, performs well under normal force loadings, but needs modification to measure shear accurately. Possible modifications are suggested. While only a single oar angle, known as the sweep angle, was required to be measured, a sensor combination capable of measuring the spatial orientation of the oar relative to the boat was conceived. A new method of relative orientation estimation, via approximation of the Rodrigues' vector, which allows relative weighting of sensory data, was derived. Unfortunately, calibration issues prevented the gathering of meaningful data in the time available. A full theoretical development, including a new calibration scheme, which should alleviate the encountered problems, is included. While the motion of the rower within the boat is an important consideration in the dynamics of the rowing system, few previous researchers have measured it. These previous methods are briefly described, before the sensor used in this study, the optical rotary encoder, is detailed. Differentiation of the encoder signal to obtain seat velocity and acceleration relative to the boat was achieved using a purpose designed simple Kalman filter. The kinematic parameters of the boat, i.e. position, velocity and acceleration were measured using a combination of accelerometer and submerged impeller. The information from these two sensors was combined using a variant of the Kalman filter used in the differentiation of the encoder signal. The combination of the seat and boat kinematics allows study of the motion of the system centre of mass. Supplying power to, and collecting data from the above sensory devices was a purpose built data acquisition system dubbed ORAC (On-the-water Rowing Acquisition Computer). ORAC was designed to transmit the collected information, in real-time, to a remote laptop computer via wireless LAN, but the system used proved to have insufficient range, and hence ORAC was used as a standalone computer

    Electrodynamics of electron doped iron-pnictide superconductors: Normal state properties

    Full text link
    The electrodynamic properties of Ba(Fe0.92_{0.92}Co0.08)2_{0.08})_2As2_{2} and Ba(Fe0.95_{0.95}Ni0.05)As_{0.05})_As_{2}singlecrystalshavebeeninvestigatedbyreflectivitymeasurementsinawidefrequencyrange.Inthemetallicstate,theopticalconductivityconsistsofabroadincoherentbackgroundandanarrowDrudelikecomponentwhichdeterminesthetransportproperties;onlythelattercontributionstronglydependsonthecompositionandtemperature.Thissubsystemrevealsa single crystals have been investigated by reflectivity measurements in a wide frequency range. In the metallic state, the optical conductivity consists of a broad incoherent background and a narrow Drude-like component which determines the transport properties; only the latter contribution strongly depends on the composition and temperature. This subsystem reveals a T^2behaviorinthedcresistivityandscatteringratedisclosingahiddenFermiliquidbehaviorinthe122ironpnictidefamily.AnextendedDrudeanalysisyieldsthefrequencydependenceoftheeffectivemass(with behavior in the dc resistivity and scattering rate disclosing a hidden Fermi-liquid behavior in the 122 iron-pnictide family. An extended Drude analysis yields the frequency dependence of the effective mass (with m^*/m_b\approx 5$ in the static limit) and scattering rate that does not disclose a simple power law. The spectral weight shifts to lower energies upon cooling; a significant fraction is not recovered within the infrared range of frequencies.Comment: 13 pages, 9 figure

    Kinks in the electronic dispersion of the Hubbard model away from half filling

    Full text link
    We study kinks in the electronic dispersion of a generic strongly correlated system by dynamic mean-field theory (DMFT). The focus is on doped systems away from particle-hole symmetry where valence fluctuations matter potentially. Three different algorithms are compared to asses their strengths and weaknesses, as well as to clearly distinguish physical features from algorithmic artifacts. Our findings extend a view previously established for half-filled systems where kinks reflect the coupling of the fermionic quasiparticles to emergent collective modes, which are identified here as spin fluctuations. Kinks are observed when strong spin fluctuations are present and, additionally, a separation of energy scales for spin and charge excitations exists. Both criteria are met by strongly correlated systems close to a Mott-insulator transition. The energies of the kinks and their doping dependence fit well to the kinks in the cuprates, which is surprising in view of the spatial correlations neglected by DMFT.Comment: 13 pages, 15 figure

    Inelastic Neutron scattering in CeSi_{2-x}Ga_x ferromagnetic Kondo lattice compounds

    Full text link
    Inelastic neutron scattering investigation on ferromagnetic Kondo lattice compounds belonging to CeSi_{2-x}Ga_{x}, x = 0.7, 1.0 and 1.3, system is reported. The thermal evolution of the quasielastic response shows that the Kondo interactions dominate over the RKKY interactions with increase in Ga concentration from 0.7 to 1.3. This is related to the increase in k-f hybridization with increasing Ga concentration. The high energy response indicates the ground state to be split by crystal field in all three compounds. Using the experimental results we have calculated the crystal field parameters in all three compounds studied here.Comment: 12 Pages Revtex, 2 eps figures

    Exact Criterion for Determining Clustering vs. Reentrant Melting Behavior for Bounded Interaction Potentials

    Full text link
    We examine in full generality the phase behavior of systems whose constituent particles interact by means of potentials which do not diverge at the origin, are free of attractive parts and decay fast enough to zero as the interparticle separation r goes to infinity. By employing a mean field-density functional theory which is shown to become exact at high temperatures and/or densities, we establish a criterion which determines whether a given system will freeze at all temperatures or it will display reentrant melting and an upper freezing temperature.Comment: 5 pages, 3 figures, submitted to PRL on March 29, 2000 New version: 10 pages, 9 figures, forwarded to PRE on October 16, 200

    Anomalous f-electron Hall Effect in the Heavy-Fermion System CeTIn5_{5} (T = Co, Ir, or Rh)

    Full text link
    The in-plane Hall coefficient RH(T)R_{H}(T) of CeRhIn5_{5}, CeIrIn5_{5}, and CeCoIn5_{5} and their respective non-magnetic lanthanum analogs are reported in fields to 90 kOe and at temperatures from 2 K to 325 K. RH(T)R_{H}(T) is negative, field-independent, and dominated by skew-scattering above \sim 50 K in the Ce compounds. RH(H0)R_{H}(H \to 0) becomes increasingly negative below 50 K and varies with temperature in a manner that is inconsistent with skew scattering. Field-dependent measurements show that the low-T anomaly is strongly suppressed when the applied field is increased to 90 kOe. Measurements on LaRhIn5_{5}, LaIrIn5_{5}, and LaCoIn5_{5} indicate that the same anomalous temperature dependence is present in the Hall coefficient of these non-magnetic analogs, albeit with a reduced amplitude and no field dependence. Hall angle (θH\theta_{H}) measurements find that the ratio ρxx/ρxy=cot(θH)\rho_{xx}/\rho_{xy}=\cot(\theta_{H}) varies as T2T^{2} below 20 K for all three Ce-115 compounds. The Hall angle of the La-115 compounds follow this T-dependence as well. These data suggest that the electronic-structure contribution dominates the Hall effect in the 115 compounds, with ff-electron and Kondo interactions acting to magnify the influence of the underlying complex band structure. This is in stark contrast to the situation in most 4f4f and 5f5f heavy-fermion compounds where the normal carrier contribution to the Hall effect provides only a small, T-independent background to RH.R_{H}.Comment: 23 pages and 8 figure

    Effects of the Nearest-Neighbour Coulomb Interactions on the Ground State of the Periodic Anderson Model

    Get PDF
    The magnetic and non-magnetic ground states of the periodic Anderson model with Coulomb interaction between ff-electrons on the nearest-neighbour(NN) sites are investigated using a variational method, which gives exact calculation of the expectation values in the limit of infinite dimensions. It is shown that for a critical value of NN Coulomb interactions the magnetic ground state of the periodic Anderson model in the Kondo regime is unstable. Factors in terms of the physical processes responsible for instability of the magnetic ground state are also discussed. Our study indicates the importance of the NN Coulomb interactions for correlated two band models.Comment: RevTeX, 6 pages, 5 figures, to appear in Phys. Rev.
    corecore