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Abstract 

The aim of this work was to develop sensory devices and data acquisition system to 

facilitate investigations into the mechanics of the rowing system, comprising the 

rower(s), boat and oars. As such, the parameters to be measured were: boat and seat 

position, velocity and acceleration; oar force; foot force; oar angle and rower heart 

rate. 

An oar force sensor was designed that fitted into the cavity of a modified oarlock. 

This sensor design is cheap, yields sound results and its presence is almost not 

noticeable to the rower. A review of previously applied methods of oar force 

measurement, predating 1900, is included. 

Foot force is of interest to many different fields of research, thus there is a large 

amount of literature on the subject of foot force measurement. A comprehensive 

review of this literature is used to aid in the design of the required sensor. The 

combination of a non-simple dynamic loading (i.e. time varying spatially distributed 

normal and shear forces), with static foot position distinguishes the problem of 

measuring the force under the feet during rowing from most previously considered· 

cases. A strain gauge-based force sensing p late was designed to measure both normal 

force distribution and unidirectional shear force under the feet. Sample results are 

presented from a study with international class New Zealand rowers on a rowing 

ergometer. The sensor, performs well under normal force loadings, but needs 

modification to measure shear accurately. Possible modifications arc suggested. 

While only a single oar angle, known as the sweep angle, was required to be 

measured, a sensor combination capable of measuring the spatial orientation of the oar 

relative to the boat was conceived. A new method of relative orientation estimation, 

via approximation of the Rodrigues' vector, which allows relative weighting of 

sensory data, was derived. Unfortunately, calibration issues prevented the gathering 

of meaningful data in the time available. A full theoretical development, including a 

new calibration scheme, which should alleviate the encountered problems, is included. 
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While the motion of the rower within the boat is an important consideration in the 

dynamics of the rowing system, few previous researchers have measured it. These 

previous methods are briefly described, before the sensor used in this study, the 

optical rotary encoder, is detailed. Differentiation of the encoder signal to obtain seat 

velocity and acceleration relative to the boat was achieved using a purpose designed 

simple Kalman filter. 

The kinematic parameters of the boat, i.e. position, velocity and acceleration were 

measured using a combination of accelerometer and submerged impeller. The 

information from these two sensors was combined using a variant of the Kalman filter 

used in the differentiation of the encoder signal. The combination of the seat and boat 

kinematics allows study of the motion of the system centre of mass. 

Supplying power to, and collecting data from the above sensory devices was a 

purpose built data acquisition system dubbed ORAC (On-the-water Rowing 

Acquisition Computer). ORAC was designed to transmit the collected information, in 

real-time, to a remote laptop computer via wireless LAN, but the system used proved 

to have insufficient range, and hence ORAC was used as a standalone computer. 
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Chapter 1 

The aim of this research was to design sensors capable of measuring the dynamic and 

kinematic parameters of the rowing system, comprising rower, boat and oars, during 

on-tile-water rowing. As such, the logical starting point is to describe the basics of the 

dynamics of this system, both to inuminate the topic for people unfamiliar with 

rowing and to specify the requirements of the instrumentation to monitor the 

dynamics; a qualitative and conservative 'observability analysis'. 

This cbapter first informally develops crude 'one-dimensional' equations of motion of 

a rowing system. This model is then used to make decisions about which parameters 

need to be measured, for a full description of the rowing system to be provided. The 

chosen parameters are: 

.. force at the oarlock 

III force at the feet 

III oar angle 

.. boat displacement, velocity and acceleration 

III seat displacement, velocity and acceleration relative to the boat 

In addition to these kinematic and dynamic parameters, the rower's heart rate is also 

measured. 

After formally stating the research aims in Section 1.6, Section 1.7 briefly describes 

the implemented sellsors, and the rest of the thesis. 
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1.1 Description of Rowing Cycle 

For those who have not observed rowing, a brief description of the rowing motion is 

probably required. The rowing stroke can be decomposed into four stages: catch, 

drive, release and recovery. The two main phases are the drive and the recovery, with 

the catch and the release being transitional. During the drive the rower pulls on the 

oar while the blade is submerged, at the same time pushing on the foot-stretcher and 

straightening his legs, moving on a sliding seat to the bow. While the blade of the oar 

remains essentially motionless, the passage of the boat means that the oar, which 

started near the bow of the boat, ends the power phase near the stern. During 

recovery the oar is extracted from the water (the release) and moved back towards the 

bow of the boat. Simultaneously the rower draws himself towards the stern by pulling 

on the foot-stretchers (although rowing coaches will tell you that the rowers simply let 

the boat slide under them). As the oar is moved through the air it is rotated about the 

loom (shaft) so that the frontal area of the blade is minimised. This is known as 

feathering. The rower then submerges the oar again (the catch) and the cycle is 

completed. 
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1.2 Assun1ptions and Conventions 

In the following development, the oar is represented as a lever that has its fulcrum at 

the blade. This follows the approach of Brearley and de Mestre [13]. An alternative 

approach is to consider the oar as a lever with the fulcrum at the oarlock. Both 

approaches have previously been used in models of rowing dynamics. Dudhia [23] 

suggests that the fulcrum at the oarlock is more believable for rowers, since, to them, 

this point seems fixed while the blade appears to move, while that considering the 

fulcrum at the blade is natural to stationary observers as the blade moves very little 

through the water. Naturally either convention results in the same equations of 

motion. 

For simplification, all drag forces on the boat, hydrodynamic and aerodynamic, are 

combined into a single quantity, D, that acts to oppose the motion of the boat. 

Previous researchers have stated that the majority of the hydrodynamic drag is due to 

viscous effects, Pope [56], Wellicome [67]. As a consequence a suitable model for D 

is some quadratic function of the velocity of the boat relative to the water. If it is 

assumed that the water is motionless, then D obviously becomes a function of the 

instanlancous hull velocity. 

In models of rowing dynamics it is normal to ignore the mass of the oar, the exception 

being the comprehensive models developed by Rose [57] and Zatsiorsky [70]. There 

is very little to be gained in understanding through including the inertial effects of the 

oar, so the additional complication is not warranted. The only time that one may want 

to include the inertial effects of the oar in a model is if a new type of oar with 

radically different mass distribution characteristics was proposed. 
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1.3 Systen1 C0111pOnents 

1.3.1 Oar 

The, rower pulls on the oar with force, Flli/lld. Fluid forces exert a force Fhlade at the 

centre of the oar blade, and the reaction force due to the boat is Flock, transmitted to 

the oar through the rigger and oarlock. As shown it is assumed that all oar forces are 

normal to the shaft of the oar and in the plane of the page. 

Directiol1 of 
boat motion 

Boat hull ~ 

Figure 1.1 Free hod.y diagram of the oar. Forces positive to the light, moments positive 

clockwise. 

Since the oar is assumed massless the forces and moments are summed to zero 

LF=O: 

LM=O: 

yielding the two relations 

F/w/I{/ = F/ock(l - /1)/l (note F/lCIlld < Flock) 

Fh/ode = F/ock - F//(/Ild = F/ocl.:(i - (l - h)ll) = F/ocirChll) 

( 1.1) 

(1.2) 

0.3) 

(1.4) 
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1.3.2 Boat 

The force that the oar imparts to the rigger is equal and opposite to the force of the 

boat on the oar, F/ock. This force (again assumed to act in the horizontal plane) is at 

angle BOll!" to the direction of motion, thus the force in the direction of travel is 

F/od,CosBolir. Of course during rowing there are an even number of oars on either side 

of the boat ensuring that so long as the forces and angles are equal the boat should not 

turn. The components of force perpendicular to the direction of travel tend to deform 

the sides of the boat and are considered to be lost as dissipated elastic energy. The 

remaining forces on the boat in the direction of travel are the force exerted on the 

Foot-stretchers by the rower, FrOM, and the drag on the boat and rower, D, which 

always opposes the motion of the boat. Forces not in the direction of travel, such as 

the weight force of the rower and the buoyancy force on the boat are not shown. It is 

assumed that the rollers of the seat move with no friction. 

o 

-------------~~}~;-S\--

D 

Direction of 
boat lIlotiOI! 

Figure 1.2 Forces on the boat in the direction of motion. Force is positive to the right. 

Summing the forces in the direction of motion gives the equation of motion of the 

boat: 

(1.5) 

where tn/}(JIII is the mass of the boat, and O/il}(/t is the acceleration of the boat. 
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1.3.3 Rower 

The two forces that are on the rower in the direction of motion, neglecting 

aerodynamic drag, are F/()(), and Fllalld both of which are of course equal and opposite 

to the forces that the rower applied to the stretchers and oar respectively. Recalling 

that the direction of F11(/lid is assnmed to be normal to the oar, the force in the direction 

of motion of the rower is F"(11l(lcos Boar. 

FlliIl/d cos Goal' "'~I-__ ---

o 
Direcfion (~t' 
boat morian 

Figure 1.3 Forces on the rower in the direction of motion. FOl'ce is positive to the right. 

The acceleration of the rower with respect to the boat is denoted by atl!lI'er. Since 

Newton's laws only hold in an inertial frame, the sum of the forces is equal to the 

mass of the rower multiplied by the absolute acceleration of the rower, that is, the sum 

of the acceleration of the rower relative to the boat and the acceleration of the boat 

relative to an inertial frame 

( 1.6) 



1.4 Model Summary 

J .4.1 SUlmnary of Equations 

The main equations developed are 

Oar: 

Boat: 

Rower: 

Fb/llrle:::: Flock - F lwl1ri:::: F lock(1 - (l- h)ll) :::: Flock(hll) 

FlockCOS Bollr - Fji){J1 - D :::: T11'boll,aboOl 

Ftc!(J1 - FlwlldCOSBo(/f:::: T11'rower(a rl!lver + aboa,) 

0.4) 

(1.5) 

(1.6) 
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The boat equation (1.5) may be used as it is, or the rower equation (1.6) may be used 

to substitute a value for Fti)(lt as follows: 

FJr1cJ:cos ~llIr - [F[wlIIl cos ~!i/r + l11rowe,.(arollier + aboar)] - D :::: 1/1'boa'([./JOIif 

(Flock - Fhw,d) cos Boor - m'rOlver(arower + aboaf) - D :::: In[1(J(I,ClbOil/ (1.7) 

'Using the oar equation, Flock - Fhllnd :::: Fblade :::: Flock(hll), gives two more forms of the 

boat equation 

Fb[ode cos BOllI' - lnroll'el'{lrOlvcr - D :::: (In{)(}a/ + 1l1roll'er) aboat 

F/ock(hll) cos Boar - lnnJlilel.{1rower - D :::: (1TLbom + 1TLrower)abolll 

(1.8) 

(1.9) 

When considering (1.8) and (1.9), it is seen that a positive relative acceleration of the 

rower acts as a force against the motion of the boat. Clearly then the rower must 

consider more in his technique than the method by which he can impart the maximum 

oar force; his motion within the boat is also important. The sequencing of the rower's 

motion and the application of force is also significant. 
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1.4.2 Limitations of Model 

The developed model incorporates the salient points of rowing dynamics. Limitations 

of the model, excluding the obvious assumed one-dimensional aspect of motion, are 

mainly to do with propulsion. For example, the force on the blade of the oar 1S 

generated as a consequence of the oar-blade velocity the relative to the water. Thus, 

in reality the oar must move through the water to create force, meaning that it is 

incorrect to place the fulcrum at the blade, the basis of this model. Previous 

researchers have on occasion suggested that the fulcrum is slightly inside the blade 

[6J. This assumption however does not radically alter the form of the equations. 



19 

1.5 Pararneters to Measure 

'rhe equations (1.5), (l.8) and (1.9) describe a model of sufficient accuracy to indicate 

the approximate relationships between system variables. Given that the aim of this 

work is to measure the dynamics of rowing, the instrumentation mllst be able to 

quantify each of the parameters involved in these equations of motion. 

The u ItimCite aim of competitive rowing is to beat all other boats to the finish line. 

Without consideration of the dynamics it is obvious that the boat's instantaneous 

velocity and distance travelled need to be measured. 

Unless the drag coefficients of the boat are known, in which case the system drag, D, 

can be approximated as a function of instantaneous velocity, it is impossible to 

measure D. Since D appears in the equations of motion, and it is an unknown in this 

case, all other variables must be measured. From the various forms of the equation 

this means that the required measurands are: 

([ .5) F{ol'k BOllI' F 1i)()/ ctboll/ with known parameter lnbollf 

([ .8): FiJlade Boar [lI'{Jwel' Cl/}{wt with known parameters mboll/, Tn rower 

(1.9): Flock BOllI' ({rower ({I}(wt with known parameters In/}{w/, InrtJlller, 17" 

The two main options arc therefore seen to be measuring oar force at the oarlock or 

the blade, and measuring the acceleration of the rower relative to the boat or foot 

force. The next section details the aims of the research, while Section 1.7 is a 

summary of the designed instrumentation and the thesis. 
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1.6 Research Aims 

This research was not intended to answer specifjc questions about rowing, i.e. the 

determination of opthnal oar force curve, or the best way in which to sequence the 

events of rowing; rather it was intended that a tool that could be used to answer such 

questions be constructed. 

Section 1.5 outlined the parameters of interest in a one-dimensional study of the 

mechanics of rowing. As such, these are the baseline parameters that need to be 

measured in the study. Beyond these parameters, there are others of obvious interest, 

such as the velocity and displacement of the boat as a function of time. To be 

specific, it was required that sensors be designed or acquired to measure: 

.. The force at the oarlock 

It The normal and shear forces at the rower's feet 

.. The oar angle 

.. The displacement, velocity and acceleration of the boat 

III The displacement, velocity and acceleration of the seat relative to the boat 

III The rower's heart rate 

In addition to these sensors, h was required that a compact, Jjghtweight data 

acquisition system be construct.ed to fit onto a boat, supply power to the variolls 

sensors, store their output, and also transmit the data to a remote computer. 
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1.7 Instrumentation and Thesis Summary 

Referring to Section 1.5, there were three sets of parameters that could be exclusively 

measured to provide a full description of the one-dimensional dynamics of rowing. 

This section outlines the reasons for the choices, which were outlined in Section 1.6, 

the form the sensors took, and refers to the parts of the thesis in which the full 

descriptions of the sensors may be found. 

It was chosen to measure the force at the oarlock rather than the blade because it is 

easier and because it made for a more generally applicable system, i.e. oarlocks are a 

fairly standard piece of equipment, while rowers are likely to have their personal oars. 

The oarlock force sensor, a small cylindrical aluminium insert is detailed in Chapter 2. 

Rather than make a choice between measuring F{oot and a,.OIver, both were measured. 

This was because coaches had expressed an interest in measuring the precise timing of 

rowing events such as the pull on the oar and the push on the foot-stretcher during the 

drive. The foot force sensor was designed to measure centre of applied normal force, 

magnitude of normal force and magnitude of shear force. The first two objectives 

were achieved, but the design needs slight modification to reliably measure shear. 

The design and function of the foot force sensor is covered in Chapter 3. Suggestions 

for modifications are also included. 

While it is strictly required to measure only the angle Boor that the projection of the oar 

makes with a perpendicular to the boat in the horizontal plane, it was decided that an 

attempt would be made to measure the instantaneous spatial orientation of the oar. In 

Chapter 4, the method by which the earth's magnetic and gravitational fields can be 

used to measure the relative orientation of non-ferrous bodies, such a"l the oar and the 

boat, is described. Also included in this chapter is a review of methods by which 

relative orientations can be discerned through vector observations from two bodies. 

After this review and comments on efficacy, a new 'least squares' method, which has 

a number of benefits over the reviewed methods, is derived. While this method shows 

great theoretical promise, annoying hardware problems prevented the gathering of 
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sound results. An investigation into the problem and methods by which it can be 

overcome are included in this chapter. 

The acceleration of the rower relative to the boat is estimated by double 

differentiation of the seat position signal yielded from an incremental rotary encoder. 

Differentiation of a quantized signal can cause significant noise. The novel method 

that was used to avoid this is described in Chapter 5. Also in Chapter 5 is the 

discllssion of the method by which boat motion is measured. The acceleration of the 

boat is measured using an accelerometer, while the distance travelled is estimated 

llsing a commercially available submerged magnetic impeller. While it may be seen 

as a redundancy to measure parameters that are related by integration/differentiation, 

the error characteristics of the sensors mean that each measurement is only an 

approximation to reality, thus the outputs are combined using a simple sensor fusion 

technique (Kalman filtering). 

Appendix AI, describes a geometrical method of optimisation that was initially used 

in the determination of foot force, from the voltage outputs of the foot force sensor. 

Included in Appendix A2 are full derivations, and comments on strengths and 

weaknesses for a number of methods of attitude estimation. 

A derivation of the Kalman filter algorithm, used in Chapter 5, can be found in 

Appendix A3. This derivation works from the general topic of minimum mean square 

estimation, then introduces the discrete time state space model, to arrive at the final 

algorithm. 

The data acquisition hardware and software, and the methods of data capture are 

described in Appendix A4. 
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Chapter 2 

When investigating rowing, one of the main parameters of interest is the propulsive 

force. As shown in the introductory chapter, the forces that drive the boat are a 

weighted combination of the force at the oarlock and the acceleration of the rower 

relative to the boat, thus the force generated at the oarlock is an integral part of 

rowmg. 

Measurement of oar force has historically been achieved in three ways. In this 

chapter these three methods are summarised and then a new method is proposed. This 

new method is convenient, cheap and yields sound results. The only problem 

identified with the sensor is a very slow drift in the offset voltage. While a simple 

method can be used to overcome this drift, it is preferable that it be understood and 

eliminated. 
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2. I Review of Oar Force Measuring Methodology 

,\s lliscllsscd in the first charter, the terlll ' oar f"oree' can Ille~\ll the force at the handle, 

the oarlock or the hlade, This is ,I brief chronology of methods thaI have heen appllied 

to nlC'l.';urc oar force, 

111 I g()h ill volul11e g of" Natural Science , ncstled betwcen 'The Pigments of Animals ' , 

;l11d ' 1)lspL'1'sal of Sccds by Birds ' , is an article Lha t may be regarded as the beginning 

01 ro\.\ing instrulI1cnta tion .. /\ 'Rowin g. Indicator' . hy I\tkinson [5 I deLai ls the desi gn 

or ,1 IllodI1ied oarlod, Ih,lt il1cludes a spring loaded scribing arrangement thaI traces 

tile rowin g force against rowin g angle on a remo vable plate. In a later issue [6]. 

;\tkiIlSOII al so puh :li isl~ed another article 'Some More Rowing Experiments ' , in which 

Ill' ex plains the method hy which hi s original indicator has been improved so that iL 

rl'curcls data lrolll c\ery j'ilth stroke 1'01' a duration or up to .'iOO strokes ' Also in this 

:Irt id c ill' <Ippro,lciles topics SLlch as stroke ctTiciency and estimaLcs the location of {iI'l C 

tlll'llillg point of the oar (."ec ('haptn I ). \vhich he appro xilllatcd to he "3 inches aho ve 

till' top oj til e hladc", While Atkinson's mdhod of" instrumentation \Vould hc 

lln,lcceptahlc today duc to its modification or the oarlock and the large displacemcnts 

expnicllccd during opnation. it was certainly a great start and it was sadl y a long 

\vh i Ie hdore sllch an i nspi red effort was rorthcomi ng . 

) 

(a) (b) 

FiglllT 2.1 (a) A tkinsoll ' s original oar forcc tl'ansc\uccl', and (b) an example of the tnlllsducer's 

output 151. 
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Figlll-e 2.2 .\ tl<inson's modified tnmsducel' capable of J"t'cording data f!"Om up to 500 strokes 161. 

C'<lllleron 1671 descrihes a method of estimating the force experienced hy the oar via 

phologr~\pllic methods. rirst he subjecteu an oar constraineu frolll displacement hy 

knifc -eu~l's al the handle and hutton (the part normally engaged with the oarlock) to 

klIO\,v11 lo~\ds hy hanging masses Ilcar the hlade of the oar. Adding 71h 1l1~ISSeS up Lo a 

11Iaxill1UIll oj' 561h he ,'ound lhat 'thc Lip deflected lin 1'01' c.very 71h tied Oil the neck'. 

Supposedly frolll atop a hridge he then touk hird's-eyc photographs of the rowing 

:lction. Knowing the icngLh of the oar he was able to scak thc del'lection or the u(}r 

I'mlll the pllutograph. anu hence estimale the force on the hlade. Camcron states that 

(;roup Clptain H. R. A. bl\.vards in his book 'The Way of Man with ~I BLluc' h~ld 

Illl'asmcd j'orce hy 'puttin~ strain gauges on the oar' hut decided that his own method 

W ; I~ IllOiC l'l)fl\'cnient as it did not require additional apparatll~ within the hoat. 

Il .-;eClllS that the next generatioll (J 970-llJSO) uj' rowing investigators did not share 

C~llllemn's vie",s, and the method of cllllice of oar force J1lcasurement was bonding 

str~lill g:ILlges to the oar. A representative or this 'school ' is Bompa [101. 130mpa's 

·llll':Jsure.llll'llt oars ' had 'rom strain gauges placed on the l'Iat side of the oar, ~ cm 

;1i10Vl' till' collar ... (a thin disc, Ilormalto the shaft oj' the oar that prevents longitudin:ti 

tr:lIlslatioll of the oar) . .. :l11d covered with epoxy to make thcm water proof'. 

Since oars arc nol of stalllLtrd stillncss. the methou or bonding strain gauges to the oar 

ICljuires that individual o<lrs he calihrated. This is not accommodating for rowers. 

\\'111) like :l11y . ..;portslllen. have their own favouritc equipment. 'fhi . ..; may havc been the 

IllolivatioJ) for ~l)ltc \Vho dl'siglll.:(\ an instrumcnted oarlock ill 19RO. !\. schem~ltic PI' 

lliis i~ showII helll\\'. 
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pot.z.nHometc r 

JI 
• 

Figure 2.3 Nolte's measurement oarlock [19] 

No trace of Nolte's method could be found in subsequent years. Perhaps his oarlock 

was too complicated or altered the feel of rowing too much. The next method of force 

measurement, which appears to have been first suggested by Gerber [27] in 1987, is 

still very much the most popular choice among investigators Teague [64], Kleshnev 

[39]. Gerber fixed a metal plate and inductive proximity sensor to an oar so that when 

the oar deflected the distance between the plate and sensor vaIied (see Figure 2.4). A 

basic variation on this theme involves the replacement of the inductive sensor and 

plate with a Hall-effect sensor and magnet respectively. The amount of bending 

within the oar, and therefore the force causing the deflection is measured by 

monitoring the distance between the sensor and the plate/magnet. Again, the 

disadvantage of this measuring system is that each different oar requires a separate 

calibration, as the stiffness of the oar is the factor relating the force to the measured 

deflection. 

1 

2 2 

3 

~igure" .FDrce"~(;,ll~uri:ng- cdl ror lhe 0<1;. l. ~ inductivE sC'nsor. 2 .!& steel hand, 3 = DU:i, 
,j ~ me,.; ;,I.te, .'vmghl of whole device HO g, lenglh ](J "'II. 

Figure 2.4 Gerber's inductive oar force measuring device [27] 
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A design team at Virginia Tech [65J employed a new method of mea<;uring the force 

applied by the oar so that they could optimise the design of the rigger. The group 

'strain-gauged' an existing rigger using the format shown in Fig 2.5. 

Strain Gage Placement on Schoenbrod Rigger 

Figure 2.5 Strain gauged rigger used by Virginia Tech [65] 

This method of measuring oar force is not suitable for our application, as it 

necessitates a large number of channels, and is specific. 



2.2 Oar Force Measurement wjthin the DepartlTICnt of 

Mechanical Engineering at the University of Canterbury 

Oal' i'orce measurement. which has a short history within the Department of 

I'v\echanie<lI Engineering (undcr the direction of Dr Aitchison), has been attempted 

lIsinf.' a variety of strain gauge hased techniques. Figure 2.6 sl1mNs strain gauges 

;Ipplied to the pin (on which the oarlock rotates). Theoretically, this method measures 

I Ill' hendill g stress in Ihe pin caused by a force orthogonal to the plane in which the 

g~llIges arl' attached. III operatiun thc gauged pin is oriented so that force .'; in the 

direction or travel are measured. There arc a nllmber of problcms with this approach. 

including the lac[ that variation in the height at which the oarlock is mounted on the 

pin elfeets the hending moment. (In operation the oarlock is orten propped above the 

collar or the pin by washers.) Also, while thc instrumented pin should Iheoretically 

indicalc the driving force, it gives 110 indication or the wasted force , i.e. forces that ,lct 

pl'qll~ ndiculm to the direction of motion. 

Figure 2.6 An instrumented pin. 

SilOWl1 ill ~ ' igure 2.7 is (l sophisticated sensor in which a fairly sUlfldard design load 

ccll is illcurporated into the rear or a Concept J[ oarloc". Hronze inserts that screw 

into the top and bottom or the load cel l allow for acIjustment in the pitch 01 the 

uarlock. Stress is induced ,i,n the load cell when force is applied to the face uf the 

oarlock since the brol1/.e inserts prevent translation. 



Figlln' 2.7 An instnlml'nted COIll:ept II oal'loek previousl'y made in thl' Department. 

Durin)! the desi gn o/" this sensor, a major issLlc was designing the protruding load cell 

tu satisfy ti ght spatial constraints enforced by somc types of riggers. While the sensor 

Ix'rlorll1eci 'vvell. it had the disadvantages or relatively high cost and a slow method o/" 

l'h~lI1gillg tile oarlock orientation. Also, a rower's performance might be affected by 

the di Ikrent frictional characteristics associated with Lhe bron7.e hushl's. 
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2.3 Requirelnents 

2.3.1 General sensor requirements 

Since instrumentation systems now typically comprise sensor, signal conditioning and 

computer, rather than just sensor and display, the requirements of sensors have 

changed. Where linearity was once important, it is now important that the sensor 

have an output that can be 'well approximated' as a function of the measurand. Non

I inearities are permissible in a sensor's characteristics so long as they are predictable. 

Thus the equivalent of linearity is reproducibility and 'identifiability', i.e. a sensor 

should always have the same response to the same conditions and it should be 

possible to model the response, so that knowledge of the sensor output is equivalent to 

knowing the condition of the measurand. Clearly, if one is to work from knowledge 

of the system's output to an estimate of the measurand, the approximating function 

must be invertible, i.e. one-to-one. Additional requirements of general sensors are 

that they do not alter the measurand through their presence, have good quality signals 

(large range and good signal to noise ratio) and are reliable. 

2.3.2 Requirenlents Peculiar to Measuring Oar Force 

The requirements of the sensor can be divided into those imposed by the environment 

and those imposed by function. 

The oar has a high chance of getting wet during rowing (certainly at least some of it 

must) thus any sensor employed to measure the oar force must either be enclosed so 

that is 'splash-proof' or designed so that its function is not affected by water. 

Additionally, the long-term effects of moisture must be considered, i.e. the sensor 

must be designed so that corrosion cannot take place. 

By functional requirements it is meant that the sensor must be suitable for use in its 

specified role. The role of this sensor is to measure oar force, not for a particular oar 



or rigging, but for a large range of combinations of these two. As such, the sensor 

must require little or no adaptation when equipment is changed. 

31 
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2.4 Concept Development 

Till' firsl qage in the ciesign or a generally applicahlc oar force sensor is investigation 

01 ri ~~i np.s ane! idcntification of any common component that the sensor Illust 

~lcconlnlOdate. 8efore this was undertaken it had been decided that 'instrumenting' an 

();Ir. usin~ either the strain gauge or inductive approach was unacceptable due to the 

rl'CluireLi individual calibrations. 

The li~~crs shmvl'ci a large r~11lgc of vJriabiliLY. but onc componcnt was rOllnd to he 

alillost Sl~\lldard. thc Conccpt LI oarluck. fl was reali/,ed that lor the system to hl' 

~I d<lplivl' il ntllst either be compatihle with the oarlock or modiry the oarlock itsl'lf in ~l 

\\;IY that \vould not .jeopardize its function or general applicability . 

2.4 I Description or lhc Concept II Oarlock. 

Till' ~tlm()st ()mnipresent Concept II oarlock comes in sculling and rowing varieties , 

till' only dillercnce heing the scale (see FigLJr(~ 2.R). Inserting plastic hush plugs into 

either end (lIthe o~lrlock cavity controls the included angle that the axis of the pil1 -

l'<\vily 1l1~lkcs \vith the axis of the pin (pitch). The plugs come in pairs, are numbered 

·x ._ '. where x+y=R. and the dillerence or x and 4 indicates the magnitude of the angle 

l'~1l1Sl'd by the plug. e.g. 4,4 is a straight plug and 7, I is tlte most extreme plug. 

(icncral.ly top- k \'cl rowers row with either 4,4 or 5.:1 plugs. the higher angle p ~ugs are 

gCIlerall y llsed tu correct for a novice 's poor technique. 

i\llllOll~ll. as stated, elite athletes tend to row '""ith a vertical oarJock facc, it was 

decided that the sensor l11ust allow the same degree of adaptability as the oarlock 

ilsl'lf MoreoYl'r it was considered to be attractive that the method or adjustin!.! the 

;lll!2k hc exactly the same as that used in the oarlock. 

I'igure 2.8 COlll:Cpt II oarlocks rowing (left) and sculling (right) 
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2.4.2 Considered Concepts 

Several concepts considered included modification of the plugs to incorporate 

measurement facility. Manufacturing the instrumented plugs from bronze would 

allow for both good 'running' and strain measurement. One of the concepts is shown 

in Figure 2.9. 

Figure 2.9 Original measuring plug concept 

The upper and lower parts of the plug fit tightly into the oarlock cavity, with the 

central part free. Only the central part of the plugs has contact with the pin, thus when 

force is applied to the oarlock the 'beams' are stressed. Strain gauges were to be 

attached across the flats of the beams. The low level of strain in these beams would 

have necessitated very high gain gauges, which are renowned for poor signal 

integrity. The plug concept was abandoned for this reason, and also because of high 

manufacturing costs and the requirement that not just one pair, but a variety of angled 

plugs be constructed. 

'While the idea of instrument plugs was abandoned, the idea of working within the 

cavity of the oarlock was seen to be attractive, as there would be no way that the 

instrumentation would foul on the rigging. Rather than working strictly to the spatial 

constraints imposed by the dimensions of the cavity, it was considered that enlarging 

the hole and making it circular would allow for simpler designs without jeopardising 

the integrity of the oarlock. One of the ideas is shown below in Figure 2.10. The 

upper and lower parts fit tightly into Lhe bored cavity of the oarlock. The central piece 

does not contact the walls of the cavity. Angle plugs are inserted into either side of 
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the central piece so that contact is made with the pin. The columns connecting the 

extreme and central parts are subject to strain when force is applied to the face of the 

oarlock. 

Figure 2.10 Four beam instrumen~ed cavity concept 

There were many problems with this design, including dubious angular stability 

caused by the central placement of the plugs and poor candidate locations for 

applications of strain gauges. There were two places in which strain could be 

measured in this design, either the front and rear faces of the beam, measuring strain 

due to bending, or on the external flats of the beams, measuring shear strain. Both of 

these sites had problems. Firstly the beams were very thin, allowing very little space 

for strain gauge placement. Also since bending strain is proportional to the distance 

from the point of application of force, the strain 'seen' by the gauge would vary 

greatly over its length. In nonnal applications, the length of the gauge is small in 

comparison to the distance from the application of force, so this is not a problem. 

Measuring shear strain is a way in which this problem can be avoided, since shear 

strain is not a function of distance for a beam in bending. The problem with 
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measuring shear strain in this design, however, is that the levels would be very low, 

due to the thickness of the beams required for rigidity of the sensor. 

The final concept, and the one eventually used, was to instrument the cavity itself and 

continue to use pl astic plugs inserted in the top and bottom of the cavity to modify the 

oarlock angle. The contacting and free areas were reversed from the previous design, 

i.e. the central part fits the cavity while the upper and lower parts fit (with plugs) onto 

the pin. The idea of measuring shear strain was maintained. The outside of the sensor 

is simply a stepped cylinder; the inside has a constant internal diameter, making 

manufacturing easy. The gauged sites are the sections with the smallest wall 

thickness (O.75mm). Rather than performing elaborate calculations to determine this 

thickness, it was checked that this would produce a measurable level of strain without 

causing fabrication concerns for the workshop technicians. The external diameter was 

chosen by a combination of the latter of the factors and what could reasonably be 

removed from the oarlock wall without ruining its structural integrity. The height of 

the gauged sections was determined by the dimensions required for the comfortable 

placement of a strain gauge rosette with its two gauges at 45° to the longitudinal axis 

of the cylinder. Placing rosettes on points directly opposite each other on one of the 

thin sections allows for a full bridge configuration. (Strain-gauge bridges arc 

described more fu]]y in Chapter 4.) 

In summary, the sensor was designed using shear stress/strain calculations to ensure 

that yielding would not take place and that shear strain would be of a measurable 

leveL Simple beam approximations were used to estimate the expected deflection of 

the upper and lower parts of the sensor. Combining what was desirable and what was 

easily manufactured detennined the final dimensions. The manufacturing drawing for 

the sensor (generated in Solidworks™) is shown in Figure 2.12. Initially, pitch 

adjustment plugs were entirely machined, but it was found to be easier to 'tum down' 

existing plugs so that they fit the modified cavity. This approach also has the benefit 

that the coefficient of friction between the pin and the plugs will remain unchanged, 

and hence the 'feel' of rowing affected only minimally. 



"igure 2.11 Semor inserted r>art way into the oarlod:, with onc strain gangl' \"()sdte exposed 
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·Figure 2.12 Oarlock force sensor manufacturing drawing. 
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2.5 Sensor Characteristics 

The sensor was calibrated in a way similar to the method of Cameron [67J, described 

in the introductory review. A coach-bolt acting as pin was mounted horizontally. The 

oar handle was prevented from translation using a G-cl amp. Masses, suspended [Tom 

the oar near the blade were added to a hanger of 0.7kg mass up to a total of 27.7kg. 

The longitudinal dimensions of the oar were measured and moments were bal anced 

about the pin to show that the force at the oarlock was almost exactly three times that 

suspended for near the blade. Data was collected at 25Hz and averaged over 

approximately 10 seconds. 

Voltage Output and Least-Squares Fit 

Voltage 

Force at Oar] ock (N) 

Figure 2.13 Calibration curve for the oar force sensor 

It was ensured in all cases that the substantial oscillations caused by the addition of 

the mass had subsided before measurements were taken. At low levels of force, the 

response of the sensor was found to be close to linear, however, above 600N (at the 

oarlock) the output becomes slightly non-linear. A quadratic approximation to the 

sensor's force response was calculated using least squares. A plot of the sensor 

outputs and the calibration curve are shown in Figure 2.13. At an amplification of 

100 the amplitude and signal to noise ratio were satisfactory. 
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As mentioned previously, reproducibility is the key to instrumentation. To check the 

repeatability of the measurements, the sensor was loaded to 27.7kg and unloaded, 

with the outputs at each level compared. An example of the output of such a 

repeatability test is shown in Figure 2.14. 

Voltage vs. Applied Mass - Repeatability 

"'p""'"'" 
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Figure 2.14 Oar force sensor repeatability. 

An unexpected characteristic of the sensor was that over long periods of time, e.g. 

days, the offset value (output value at zero load) drifted slightly. Normally one could 

attribute this to a thermal problem, but the symmetry of the strain gauge placement 

combined with the properties of the full bridge in which the strain gauges are 

combined make this unlikely. The only other possibility is some inconsistency in the 

amplifier, which, incidentally did exhibit a number of other problems. While the 

problem should be further investigated, it can be factored out by taking a reading from 

the sensor when no load is applied and using this to correct the offset value. 
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2.6 Results 

In possession of the three calibration factors Co, Cl and C2 (the offset, linear and 

quadratic terms respectively), it is simple to convert measured voltages into the force 

applied at the oarlock,l Since the voltage is approximated by a quadratic function of 

force 

(2.1) 

The force,.f; is a solution to the equation 

(2.2) 

both of which can be found using the quadratic formula: 

(2.3) 

In all cases the 'correct' solution is given by assigning a positive sign to the square 

root term. While the force was determined during post-processing, this simple 

method of calculation could obviously be implemented in real-time at the currently 

used sampling rate of 25Hz. Shown below in Figure 2.15(a) is a graphical example of 

the sensor's output. The rower in this case is a heavyweight experienced female. 

The shape and magnitude indicated is consistent with intuition and previous research. 

The only filtering used on the oar force sensor outpul was inside the amplifier and in 

the kilohertz range. This is clearly not suitable as an anti-aliasing filter when the 

sampling frequency is only 25Hz, however, performing fast Fourier transforms 

(FFTs) on the data showed that the spectrum of the signal was almost entirely below 

4.5 Hz, meaning that aliasing is not a potential problem. An FFT of the signal in 

Pigure 2.15(a) is shown in Figure 2.15(b). The large 'spike' at just below 0.5Hz is 

the base frequency of rowing, indicating that the rower was performing just under 30 

strokes per minute. 
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Force at Oarlock During Rowing 

Force (N) 

(a) 
time (s) 

'00 

Force (N) 

(b) Frequency (Hz) 

Figure 2.15 (a) Typical oar force data, and (b) the associated frequency spectrum 
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2.7 Discussion 

The designed oar force sensor yieJds sound results and has a number of advantages of 

previous methodologies. Firstly, apart from the wire protruding from the rear of the 

om'lock, the rigging is externally identical to that normally used. The rower may 

personalise their set-up in the normal fashion, by changing the pitch plugs and 

stacking washers beneath the oarlock without affecting the sensor characteristics. 

Another impOliant advantage of the sensor is that the characteristics of the oar are 

immaterial to its functioning. This is beneficial because the rower gets to use his own 

oar, and hence row to the best of his abilities, without necessitating a recalibration. 

Additional to the functional benefits of the sensor, it is also very easy to manufacture 

<md llses inexpensive materials. 

The drift is occurring at snch a low rate that it is negligible over the testing period; 

however, over hours or days it becomes noticeable. Assuming that the other 

coefficients relating the force to voltage of the sensor do not similarly vary, a simple 

method of accounting for the drift is to take a zero load recording prior to performing 

a run and using this value as the new offset. 

Based on the aforementioned positive aspects of the sensor, it is thought that further 

development is warranted. This development might include more detailed design and 

calibration. An investigation into the drift of the offset value should also be 

II ndertaken. 
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Chapter 3 

The application of force at the feet is an important issue in rowing performance. The 

timing, magnitude and direction of applied force are all variables of interest. 

Foot force measurement in general is a topic that has generated much literature over 

the last century. The following review investigates the methodology that has been 

applied to the problem over this period, focussing particularly on approaches that 

could conceivably be used to measure foot force during rowing. 

Pactors that make the measurement of force at the foot stretcher unusual are the 

combination of static foot position; the generation of dynamic bi-directional norma] 

forces and the additional requirement of measurement of shear force. 

Like a11 intelface measurement problems the foot-force sensor must measure the 

applied force with as little modification to the interface as possible. 

The designed transducer measured normal force and centre of force to a good degree 

of accuracy but the shear output was very poor. 

This section discusses the design of the transducer and the ideal response. The 

method of data extraction is then detailed. Sample results are shown, the reasons for 

poor shear measurement performance discussed, and the way in which these problems 

can be overcome in design and analysis is described. In particular an in-depth 

discussion of error propagation in least squares estimation is included. 
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3.1 Foot Force Measurement Review 

3.1.1 Introduction 

The force at the feet has been measured for many reasons including diagnosis of gait 

disorders and investigation of pressure ulcer causation. Since 1882, when Beely stood 

subjects on a sack containing Plaster of Paris [42], state of the aft technology has been 

applied to the problem of measuring foot force. Many approaches have been 

attempted, including optical, su'ain gauge, magnetoresistive, piezoelectric and 

capacitive methods. Not all these methods are applicable to the problem at hand, that 

is measuring the force at the feet during rowing, and hence only the relevant methods 

are reviewed. Readers are referred to two comprehensive reviews [17], [42] if a full 

development of the foot force measuring 'scene' is desired. 

In rowing, the oarsman's feet are secured, via rowing shoes, onto the foot stretcher, 

which is in tum attached to the boat or rigger. The toe of the shoes are prohibited 

from motion, while the heels rise and fall during the rowing cycle. The possible sites 

for the measurement of foot force are seen to be within the shoe (between sole of foot 

and shoe), between the shoe and the stretcher or within the stretcher itself 

(modification of stretcher). Bearing this in mind,' technologies that could potentially 

be used in one of these sites were researched. 

Measuring foot force during rowing is a peculiar problem since the feet are essentially 

static while dynamic forces are produced. The requirements of the sensor are 

increased by the fact that normal force is generated in both directions during the 

rowing stroke - the rower pulls on the stretcher to bring himself . forward during the 

recovery and pushes during the drive. Added to this bi-directional normal force is the 

presence of a shear force, since the rower does not exert force exactly normal to the 

stretcher surface. There will also be a lateral shear force, although it is expected that 

this component will be very small, and thus is ignored in this development. 

The potential methods of foot force measurement are significant! y narrowed by these 

requirements. Most methods considered below are not capable of measuring all of 
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these parameters in isolation, but were considered WOlih reviewing since it would be 

possible to use a combination of sensors to fulfil the requirements. Also, while some 

methods seem on the surface to be unsuitable due to their physical size it was thought 

that the concept of the sensor could be captured and altered to more amenable 

dimensions. 

The following review of foot force measurement methodology roughly divides work 

into sensors capable of measuring only normal force, those that measure shear force, 

and multi-component transducers that can measure both shear and normal forces. 

Within each category is a range of sensing strategies. Following a brief description of 

each sensor is a discussion of the applicability of the method. 

3.1.2 Normal Force Sensors 

3.1.2.1 Capacitive Sensors 

Miyazaki [52], [53J describes an insole shaped capacitive sensor that is attached to the 

bottom of the shoe. The sensor is only a few millimetres in thickness, with the change 

in capacitance caused by the variation in separation between copper foil sheet,> 

separated by a foam lUbber layer. The sensor was divided into two sensing areas, the 

heel and the forefoot, with the voltage measured across each of the capacitors related 

to the force depressing the associated rubber layer. Miyazaki [53] details an error 

analysis to investigate the effects of a uniformly distributed force versus the same 

magnitude load applied at a single point. This type of sensor could conceivably be 

sandwiched between the rowing shoe and foot stretcher plate. 

The potential problems concerning such a sensor are the robustness of the design and 

the coarse information regarding force distribution. Increasing the number of sensing 

areas Call ld yield more precise information. Some considerable time was spent trying 

to conceive of a sensor that would reliably measure both shear and nOlmal forces 

using a capacitive approach. Consider, for example, a capacitive sensor with a large 

number of pairs of plates. Some of the pairs have exactly the same size and are 

oriented above one another, separated by an appropriate layer of foam. Other pairs 

have one plate that is significantly larger than its mate. Since capacitance is 

propoliional to the effective plate area and inversely proportional to the distance 
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between the plates, the pairs that are the same size will be affected by both shear and 

normal force due to the relative motion of the top plate in the direction of shear. If the 

plates of the pair of different sized plates are arranged so that any expected shear 

force will not change the effective area then this pair is insensitive to shear. This is 

illustrated in Figure 3.1. The thick lines represent the upper and lower capacitor 

plates as viewed in profile. The rectangle indicates the effective area of the plate 

pairs. In the left hand side case, in which no shear is applied, both capacitors have 

the s;une effective area. When shear is applied (right), the upper plates are displaced, 

reducing the effective area of the capacitor formed by the plates of similar size, while 

the effective area of the other capacitor remains unaffected. Note that it is assumed 

that the size of the overall sensor is much larger than the dimensions of the plates, so 

that the rotation of the upper plates caused by deformation of the rubber layer during 

shear loading is minimised. In possession of the outputs of the various plate pairs it 

should be possible to separate the effects of normal and shear force. Adding 

complexity to the required analysis is the fact that the force is not uniformly 

distributed. A secondary effect that would also cause difficulties is the existence of a 

coupling between shear and vertical displacements, I.e. displacements of the upper 

plates due purely to shear will reduce the vertical plate spacing. The magnitude of 

this effect would be dependent on the properties of the material between the plates. 

While a stiff material would reduce this cross-coupling effect, it would also decrease 

the sensor's sensitivity. 

DR 
Figure 3.1 Shear and normal force sensing capacitive sensor concept. 

Comments on the Applicability of Capacitive Sensors 

The idea of a capacitive sensor was abandoned due to the potential robustness 

problems (separation of glued layers), difficult analysis and warnings from 

technicians about poor signal integrity. Also note that a capacitive sensor capable of 

measuring a tensile (pulling) force is difficult to conceive. 
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3.1.2.2 Force Sensing Resistors 

The Force Sensing Resistor (FSR) is a relatively new type of sensor that is being used 

to measure interface pressures in a range of applications. They are approximately 

0.5mm in thickness and come in a range of sensing area sizes and shapes. Their basic 

construction and method of operation is as follows. Two plastic film discs are 

separated by a circular ring at their perimeters. The upper disc has interdigited 

electrodes printed upon it and the lower is coated with a conductive polymer. There is 

very little contact between the electrodes and polymer when no force is applied to the 

FSR, but when a compressive force is applied to the FSR the area of contact increases 

and the resistance decreases, as more current flow occurs through the conductive 

polymer. This type of technology has been applied to the measurement of foot force 

in two different manifestations, discrete sensors and matrix insoles. Zhu et al [71] and 

Abu-Faraj et al [1] describe the development of an FSR measurement system based 

on the former approach. Using discrete sensors at the interface requires the 

identification of anatomical sites involved in the transmission of force, a non-trivial 

task. Two commercially available matrix insole type systems employ technology that 

is essentially that described above. The Musgrave Footprint system is a matrix of 

2048 3x3 mm FSRs [17]. It was not possible to find any information on this product. 

The second product is the F-Scan system produced by TekScan, shown in Pigure 3.2. 

The F-Scan is a very thin (O.lmm) ins01e comprising 960 sensors that are formed 

using conductive and resistive inks [17]. With the insole, which may be cut to size to 

fit the shoe, comes proprietary Windows software, and acquisition card 

[www.tekscan.com]. It has been reported that 'calibration between sensors was found 

to be poor and the sensors showed significant wear with use' [17]. Personal 

experience with "FSR type sensors has shown the output to be heavily dependent upon 

the operating temperature. [t is not known, but considered unlikely that thermal 

compensation for each of the sensors forming the matrix is included. 

Comments on the Applicability of FSR type sensors 

It was considered that discrete FSRs within the shoe would be too much trouble to 

locate on the foot. A reliable, robust and temperature compensated insole system, if 

such a product exists, would be almost ideal if a full investigation of the plantar 
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pressure dist.rihution were being made, but the expected cost and voluIlle of data 

yielded hy the sensor make it inappropriate for our purpose. Note also that I:SRs and 

.similar sensors could Ilot he used to measure the pulling force during recovery. Thus 

il ~lll ill .sok systelll were used all additional sensor wou ld he required to measure this 

IOJ"ce. 

Figure 3.2 The F-Scan Insole, hy Tckscan 

.~.1.2.3 Piezoelectric Sensors 

Sen .sors th~lt exploit picmelectric materials have also been designed in discrete ami 

insllie matrix IOJ"I1lL1ts. /\n example of the lonner is the transducer developed hy 

GJ"()ss ami BUllch [ .~()l In these sensors. copper tahs wen~ soldered to either side of 

sll1all piezoelectric ceramic squares. The sensor was constructed as showll in rigure 

.'.3. I ~ ight sensors were positioned under the insole of a shoe at prescribed anatornical 

sill'S. vlore recently Nevill nsed a piel.Oe lcctric film to design discrete normal force 

sensor.s 11 7 1. Hennig et a1133] developed a matrix insole or499 4.7RI1lIl1 square. 1.2 

111111 tllid piezoelectric ceramic sensors , also shown in rigure 3.J. While this sensor 

had excellent sensing characteristics. Nevill notes that slIch arrays 'call be dirricult to 

C011StJ"ucl ami call he suhject tll rapid mechanical latigue'. He also suggests that ' both 

pr()hlcms C<l1l he reduced hy using pie/.oelcctric polymer film .' 1171. 
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Figurr .L3 Two t~ ' pes of piezoelectric sensors that have been used. (Left) The discn:te sensor used 

hy (;ross et al [JOI, and (Right) the matrix insole of Hennig et a11J31. 

('()Illrncnl s on the Applicability or Piezoe lectric sensors 

\Vllik lhc pil'7oeicctric e lleet has been known for somc time. it secms that thc 

dfcctiH' w;c or piezoclectric materials is still bes t left to thosc in cOll1mercial 

Opl'r~\l iOlls . It would havc been ,interesting to research pic!',oeleclric materials further. 

hut it \-vas thought that the design or a rcliable piezoelectric sensor would constitutc 

~c\er~tI years' \vork in itself. Th e sensors, if available coml1lercially arc suhject to the 

~~ \Il\C crilic isms as lhe FSR type transducers , namely diserL'lc sensor location would he 

Ilrnhlc1l1atic. the insole would yield too much inrormation and neither yield 

illlml11atioll on the ten sile force. fncidentally piezoelectric rilm can he sensitive to 

hOlh she~lr anu normal stress l22 1. meaning that they arc potentially the ultimate 

~en .'-ior type 1'01' 1l1l~aSUrel11t'nt or multi-component interface rorces. 
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3.1.1.4 Strain Gauge 

The strain gauge, as in most areas of force measurement, has been used to great extent 

in the measurement of foot force. The following is a very brief review of the applied 

methods. 

Beam Type Sensors 

Stott et al [62] describe an apparatus consisting of twelve beams, each lAcm wide 

and 25 cm long, connected by pin joint at each end to a strain gauge load cell that is in 

turn pin-jointed to a support frame. The load cell pairs are used in such a way that 

only the longitudinal tension of each of the beams is measured. An ink imprint is 

made as the subject walles on top of the beams so that it is known exactly where the 

foot is oriented with respect to the beams. 

Comments on the Applicability of Beam Type Strain Gauge Sensors 

By using discrete beams, the sensor allows for one 'degree of resolution' in the 

calculation of the instantaneous centre of force. It should be possible to use the 

bending stress in a beam to also approximate the centre of application of force for 

each beam. Combining the data would allow for at least a rough approximation of the 

centre of force. It may also be possible to gauge the fore and aft faces of the beams so 

that shear forces could be similarly estimated. These two suggested modifications 

would require modification of the beam supports and would also add to the number of 

channels required to record the data. While the idea is intuitively appealing, the 

number of channels required would be prohibitive in Ol1r application. It is also 

doubtful that a sensor of this type could be 'downsized' to an extent acceptable for 

use on a rowing boat. While this sensor could be used to measure tensile force, it 

WOllJd not give information regarding the distribution, since the shoes would be likely 

to be attached to only a small number of the beams, and torsion of the beams is not 

being measured. 
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PIO'v'iiltc Rill~ Type Sensors 

Slrain gauge provIng ring type load cells have been used in the measurel11ent or 1'001 

I'orcl' hy hOlll Dhanendran l21], II~] and Arvikar [31 . Dhanl'ndran created a close 

pad': l'd \11;ltri x of load cells suitable for usc in a walkway (sec Figure 3.4) Arvikar. 

Oil tile other hand, t.'xpected his palients lo halance on s ix proving rings for wl1<11 was 

()1)\iOlI.~ly ;1 st<lt ie me<lsmel11ent I 

COllllllents {In the Applicahilit y or Proving Ring type Strain Gauge Sensors 

Thl' l)hanckndran force plate gives information on the lotal normal rorce ,\Ild could be 

uSl'd 10 accm,llely est il1late the centre or force . The prohlem with this sl'nsor in our 

;Ipplication is its si/.l'. \vhich could not he reduced if a good response was required 01 

I Ill' l,rm'ill tc rilltc s. !\ large Ilumber of channels would also he required and extra 

:--'L'llSms would he required for the ll1easurement of shear. 

Figun~ 3.4 A lIuarter of I>hanendran's proving ring matrix 121.1. 

!V1iniature C,lIltiicver Strain (,<luge Sensors 

SO;lIlil'S rh q des igned a vcry compact beryllium copper sensor, shown In Figure 3.5. 

,\ SL~ll1icol1dLll'lor strain gauge was used , presumably because or their high gain. It 

\Vas l10ted tlwt 'To give an accurale measurement oj' pressure requires that the soft 

li .~sllcs ur the sole or the rool are surficiently compliant to distort the canLiicver 

\vithout sitcni l'ic;\Ilt change in the pressure exerted, that the surface beneath the 

Ir,1I1Sclllcn docs l10l c\dmll1 to an eXlent Lhat it obliterates [he recess, and tilat the load 
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is evenly distributed on the cantilever.' Fifteen of these sensors were located on one 

foot of the subject. 

Figure 3.5 The sensor nsed by Soames et al [61]. This view is from below, showing the recess into 

which the central cantilever is expected to deflect. 

Comments on the Applicability of Miniature Cantilever Strain Gauge Sensors 

While the design and manufactme of these sensors is admirable they suffer from the 

same probJem as all previously mentioned interface sensors. 
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3.1. 3 Shear Sensors 

A number of investigators have designed discrete shear force sensors that are placed 

at the intelface [17],[40],[55],[68]. AU use essentially the same principle. The basic 

sensor, which appears to have first been used by Pollard and Le Quesne [55J, consists 

of two thin metal discs, one with a groove, and the other with a matching ridge. The 

upper disc has a magnet mounted in the ridge and the second has a magnetoresistive 

(MR) sensor located centrally in the groove. The two discs are separated by a rubber 

element to oppose relative motion of the discs. Shear force causes the upper disc, and 

therefore the magnet, to be displaced by an amount proportional to the applied load 

and the MR sensor gives an output related to the displacement of the magnet. 

Williams [68] designed a sensor based on this approach capable of biaxial shear and 

norma] force measurement. The purpose of the sensor was to investigate the forces 

involved at prosthetic limb interfaces. The shear force part of the sensor is essentially 

two of the aforementioned sensors stacked on top of each other, as shown in Figure 

3.6. The normal force part of the sensor consisted of a strain-gauged circular 

diaphragm that was forced onto a central Indenter. 

Figure 3.6 The multi-component force sensor used by Williams [68] to measure stump-socket 

interface forces. 

A similar method of shear measurement was applied by Lebar et al [40]. An LED and 

solar cell were located opposite one another in a circular bronze housing. Located at 

the intersection of the diameter perpendicular to that connecting the LED and soJaI' 
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cell are two beam spring elements. A disc with a ridge that has a central triangular 

notch is inserted into the first part so that the ends of the ridge det1ect the two springs. 

In this position light passes through the notch unimpeded. When a shear force is 

applied to the upper plate the springs allow the disc, and therefore the notch, limited 

progress in the direction of shear. As the notch displaces the amount of light 

intersected by the ridge increases and hence the motion is sensed by the sol ar cerJ. 

The sensor components are each 15mm in diameter and 3.8mm in thickness. 

Comments on the Applicability of Discrete Shear Force sensors 

Again, these sensors, since discrete, would require to be fixed to the inner sole of the 

shoe at sites where load transfer was expected. The position of the sensors would 

have to be altered for each rower. Also, placing sensors within the shoe can modify 

the way in which the force is transferred. It was thought however, that a similar 

method of shear sensing could be used exterior to the shoe. Consider, for example, a 

normal force sensor that is securely fixed to the top plate of a shear force sensor, the 

bottom plate of which is fastened to the foot stretcher. A possible difficulty with this 

type of sensor would be finding an adhesive strong enough to keep the layers of the 

sensor bonded together during the phases of the rowing cycle when tensile forces 

would tend to pull them apart. 
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3.1.4.1 Force Plate 

55 

A common use of piezoelectric materials in the measurement of foot force is in load 

cells suppOlting the corners of a plate, an alTangement is known as a force plate. 

While some researchers have designed their own force plates using strain gauge load 

cells [31], the commercially available Kistler force plate is almost omnipresent in the 

field of biomechanical measurement. The Kistler force plate is suppot1ed by four tri

axial piezoelectric load cells. Since the reactions at each corner of the plate are 

known, it is possible to estimate the total force in each direction (normal force and 

both longitudinal and lateral shear forces) and the centre of applied force. 

Comments on the Applicability of Force Plates 

The force plate yields the data required, but commercially available units have the 

disadvantages of high cost (tens of thousands of dollars) and bulk. The principle of 

operation is attractive and it is easy, in theory, to see that a sensor using a similar 

approach could be designed to be of a more convenient size. 

3.1.4.2 Pressure Platform 

Giacomozzi and Macellari made an interesting and useful sensor by placing a pressure 

sensitive mat on top of a standard force platform [28], [49]. Their pressure sensitive 

mat used a principle similar to the FSR described above. The upper and lower layers 

of the sensor are a flexible Kapton (a polyimide film manufactured by Dupont) sheet 

and printed circuit board respectively. Paranel conductive tracks are printed on each 

of the layers, with the layers oriented so that the tracks are orthogonaL A layer of 

conductive polyethylene separates the tracks. Knowing which part of the foot is in 

contact with the ground (from the pressure mat) and the total shear force (from the 

force plate), they were able to investigate the shear stress acting on small areas of the 

foot during gait. Redundant data from the compound sensor was also used to 

in vestigate other areas of interest. 
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('llllllllent,'-, 011 the Applicability of the Pressure Platform 

\-\'hile it \\;IS not seriollsly proposed that this sensor be used in the application at hand. 

it is obviouslly subject to the combined criticisms or the force plate and matrix type 

scnsor. thc \o\'ay in which the sensors arc combined to form a transducer with excellent 

capahilities is oj' interest. J\ comparable method would sec some normal force 

distrihutioll sensor l110unted 011 a rigid plate and supported oy Illulti-colllponent :Ioad 

cl'lh, 

3.1.4.3 Stra,in Gauged, ColumniVIollnted, Canmever Sensor 

Recent ~y Davis et al 1201 described their 'Device for Simultaneous Measurement of 

Pressure and Shear Force Distribution on the Plantar Su rface or the Foot. ' This 

lkvicc COl1sists or an array oj' strain gauge sensors that are each cOlllpo,-;ed or t \VO 

parts, 

J 

1 
I 1.3 I 

ouler 
diameter 

0.1 wn ll ttll cknesg 

Filglln' J.7 ,\ single dl'ment and packed matrix of sensors developed by Davis 1211j. l'be t~xplod('d 

rt:dangle on tlw Id't indicates a strain gauge T-roseUe. 

The upper jJlIrl. designed to measure the compressive force IS an 'S -shaped 

cliiti lever', The shear-sensillg clement is an aluminium tube on which the upper part 

is located , see Figure 3.7. 
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Comments on the Applicability of the Strain Gauged, Column Mounted Cantilever 

Sensor 

The dimensions of this device are such that it is unsuitable for our purpose, further it 

is not easy to see how such a sensor could be reduced in size. However, the method 

by which shear is isolated from the normal component, and the idea of a two

component sensor are interesting. Note also that this sensor would be incapable of 

measuring the distribution of force during the recovery since the shoes would have to 

be connected to a finite number of the sensing elements, which are incapable of 

measuring bending moment. 

Note: The interface sensor designed by Williams and detailed in the Shear Sensors 

section is truly a multi-component sensor, but was included in the previous section 

due to the fact that two of its axes used exactly the same technique as the dedicated 

shear sensors. 
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3.2 Summary of Review 

The ollly sensors in the preceding review that could be implemented to measure 

normal force in both directions and longitudinal shear are the force plate and Davis's 

device. This is ignoring geometric constraints, which rules out the usc of the latter 

(assuming that a force plate could be rniniaturised to a sufficient extent). Davis's 

sensor is also unacceptable in the number of channels involved and since it would 

only measure the load distribution when normal force was compressive, i.e. pushing 

down on the sensor. 

All discrete sensors that are placed within the shoe are undesirable due to the time it 

would take to locate anatomical sites of load transfer, also no discrete 'in-shoe' sensor 

can conceivably be used to me~"ure force as the rower pulls on the stretcher. 

A possibility however is the use of discrete sensors in an external role, say as the 

support of a normal force sensor. ('Support' entails both physical constraint and the 

addition of information.) An example of this would be mounting a rigid sensor 

capable of measuring normal forces on supports that incorporated shear sensors. 

~ounting a normal force sensor that had some cross-axis effect on shear sensors that 

were relatively free of this contamination would enable shear and normal forces to be 

accurately evaluated. In an even more ideal situation a multi-component sensor 

(shear and normal) could be mounted on shear sensors. If this approach were taken, 

the shear force could be estimated using some optimal combination of the sensor 

outputs. The cross-axis effect of the multj-component sensor could be well 

approximated, and knowing the shear to an accurate level, the normal force and 

distribution could be well estimated. These comments also apply to any combination 

of complementary or redundant sensors such as a shear sensor supported by normal 

force sensors or a multi-component sensor and normal force sensors. Alternatively, a 

multi-component discrete sensor coul d be used to support a rigid plate, essentially 

creating a force plate. 

It was stated in the introduction of the review that the sites available for 

instrumentation were within the shoe, between the shoe and stretcher, or the stretcher 
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itself. The first option has been shown to be undesirable and most of the discussion 

has centred on placing a sensor between the shoe and stretcher. To show that this is 

the most sensible option requires the elimination of the third site - modification of the 

foot stretcher structure. While this seems an attractive option, since it would be 

possible to directly relate the strain in the stretcher support to the applied load, it is 

unachievable due to the large range of foot stretchers that are currently in use. If it 

were only required that a single boat be instTIlmented then it may be possible to 

design a specially gauged support structure, but the aim of this work was to design the 

instrumentation to be as generally applicable as possible. 

The required measurands, spatial constraints and inter-boat variability lead to the 

conclusion that the sensor must be at least in part rigid (this is imposed by the bi

directional normal force), and fit in between the shoe and the stretcher surface. The 

following is a design that was intended to fulfil these criteria. 



l.J Sensor Description 

The loot-force transducer W<lS designed to Illeasure hi-directional normal and 

l(ln gitudin;\I shear forces. <IS \veill as the approximate centre 01" applied norlllal force . 

• \ ri ~ id rectan gular plate is stlpported at each corner by slender heams that arc 

Gliltilc\erecllrul11 a support centred to the longitudinal axis of the plate. Thin sl ots cut 

Ihroll!,!h the plate form the beams . Generous radii blend the cantilever supporLs to feet 

;11 l' ither Clld. The feet fix by I11c(1)s or socket heaJ cap scn:ws to a location plate . 

IVI i I led recesses in the support plate prevent the motion of the upper plate in the 

I()n~itllclinal directiun. Beyond the recesses, (\ small clearance allows lil1lited vc rliGti 

ddlcl'lion or the upper plale hut prevents potential overloading or the support beams. 

Roth the LIpper and support plates arc monolithic, CNC machinecl from Aluminiulll 

;llloy. 

Fi~\Ire 3.S The designed foot force sensor, without hase plate. 

'T\velvl' strain gauges are honded to the cantilever heams , two un the upper anu lower 

Slll'fal'CS (If each heam , and onc on the exposed vertical face or each healll. The 

~ all t'- cs un the upper and lo\ver surfaces are placed ostensibly to monitor lhe normal 
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force (tensi1e and compressive) whi1e the gauges on the fore and aft faces are placed 

to measure shear. The upper and lower gauges on each of the beams form a half 

bridge, as do the 'shear' gauges at each end of the sensor. The bridges are comp1eted 

by gauges that are bonded to an aluminium block so that thermal effects are 

minimised. 

Not knowing the approximate magnitudes of the force components experienced 

during rowing meant that the sensor design had to be conservative. The overall 

dimensions of the sensor were defined by what could be fit onto a reasonab1y 

representative foot-stretcher. The beams were sized using simple beam theory, to 

ensure that yielding would not occur, but that a measurable value of strain would be 

induced. 

In Figure 3.9, the sensor with main dimensions is shown with its location plate. 

Beam sectional width 4.5 mm 
Beam sectional height 6.0 mm 

Figure 3.9 Main dimensions of the foot force sensor. 

The next section describes the theoretical outputs of the strain-gauged beams in 

response to general loadings, and the way in which the loading condition can be 

implied from the data. 
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3.4 Ideal Sensor Theory 

3.4.1 Sensor Loading 

Consider an arbitrary 2D distributed loading over a plate of length, Lp , and width, w. 

The loading can be reduced to a central normal force, two orthogonal moments and a 

shear force using simple statics. 

Consider first the case when all loading is normal to the sensor plate. Define the 

normal arbitrary load as being made up of discrete loads, An, acting at coordinate 

(Xj,)li) with the origin of the coordinate system at the plate's centre. The long axis of 

the pJ ate is Y the short axis is X. Shown in Figure 3.10 is the sensor pI ate geometry 

and the application of a single discrete load, An. The letters at the comers of the plate, 

F, A, L, R, denote fore, aft, left and right respectively. The reaction at the rear of the 

plate is denoted RA i.e. Reaction Aft. 

A,L F,L 
I 

--.,...-

i 
i 

-~-.-~-.-.-.-.-.-.-~ 

~Xi ...-
....... 

Y tV 

)Ii 

A,R " x F,R 

Figlue 3.10 Theoretical normal sensor loading. Diagram showing position of discrete load 4fi, 

dimensions of plate and labelling of (~orners. 

The net normal load on the plate is the sum of all discrete loads 

(3.l) 

The moments about the X and Y-axes of the plate at the origin are given by 
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Mx =" .0.f")I' = Y FAT L.,; , I - I C 1Y 

(3.2) 

where (xc ,)!(,) is the coordinate of the point load which is equivalent to the distributed 

load. Assuming that the plate can be adequately modelled as being simply suppOlted 

the reaction to the normal loading and Mx at each end of the pJ ate is calculated to be: 

(3.3) 

where subscripts F,A denote fore and aft. Simllarly the load supported at each side, 

due to the moment My is: 

(3.4) 

where L,R denote left and right. Adding together the contributions due to the vertical 

loading, the following four veliical reactions result: 

R"" ~ FN[ ~ + ~p - ;: J 

R -F 1 )Ie Xl' \ -+--+-
RFJI - N 4 2L1' 2w 

J 

R =F [l_l_~J 
Uin . N 4 2Lp 2 w 

r 1 )I X J l\ = F ---"-' +-" 
RRI1 N 4 2L" 2w 

\ 

(3.5) 

where RLl'1I indicates the reaction at the Left Eront corner due to Normal loading etc. 

The reactions show a 'complementary nature' in the signs associated with the centre 

of force coordinates. This is an important feature that is referred to in later sections. 

If a uniform shear loading, 5, is introduced, the reactions due to this force at each of 

the corners of the plate are simply 

5 
Rs =-, 4 (3.6) 

where the subscript s denotes reaction due to shear. Shear is assumed to be positive 

when in the positive Y direction. 
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3.4.2 Beam Strains 

The beams that are loaded at each corner by the normal and shear reaction forces are 

of length I, breadth b and depth d. The material of which they are constructed is of 

YOlUlg'S modulus, E. 

The strain developed in the beams and measured by the gauges placed on the upper 

and lower surfaces, at distance Is from the external ends of the beams are given by: 

R I,d 
E -+ LFIl.\ 
'LFIl - 21?J 

..../. I! 

bd 3 

where I =--
n 12 

(3.7) 

where it is assumed that the previously calculated reaction forces act at a point at the 

end of the beams. The positive/negative signs in front of the expressions indicate that 

when subject to a particular vertical loading, one gauge of each pair is in tension (+), 

wllile the other is in compression (-). 

The strain due to the shear loading is measured by gauges mounted on the external 

faces of the beams and are 

db 3 

where I, =--
.1 12 

(3.8) 

The pairs formed by gauges measuring shear at the same end of the plate will be in 

the same stress state (compression/tension) at all times (assuming uniform shear 

distribution ). 
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3.4.3 Transducer Outputs (Ideal) 

While the simple approach given above suggests a model for the strains at each of the 

gauged sites in telIDS of the plate geometry and applied loading, it would be naive to 

believe that the coefficients of proportionality were exactly defined by the physical 

measurements of the plate. Among other factors, nonlinearities in the stress state of 

the transducer at the gauged sites and inaccuracies in strain gauge placement will lead 

to deviations from the ideaJ case. This section considers the ideal outputs of each of 

the half~bridges. In the next section, possibJe deviations from the ideal are considered 

and a method in which to use the sensor in the presence of uncertainties is developed. 

Each strain gauge pair measuring normal force is connected in a half bridge 

configuration. The strain gauges are of gauge factor g, i.e. 

AR 
-=ge 
R 

(3.9) 

where R is the nominal resistance of the gauge, and !J.R, is the change in resistance 

due to stmi n. 

The gauge in tension has resistance RT = R + !J.R, while the gauge in compression has 

resistanceRc = R ~ !J.R. 

The gauges are arranged in the bridge as shown in Figure 3.11, with the outputs 

calculated as follows 
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A 
5-~ Vi 

VI Vo V2 

R,. R 

V 
Figure 3.11 The half-bridge configuration used for the normal channels of the foot force sensor. 

Vi is the input voltage, and VD = V2 - VI is the measured output. 

(3.10) 

Thus, each normal strain gauge pair yields an output that is directly proportional to 

the strain at the site of the pair. The shear gauges, which have the active gauges 

mounted diagonally opposite each other in a bridge format yields the same result. 

Substituting (3.7) and (3.8) into (3.1 0) gives expressions of the form 

(3.11 ) 

\l = gl.J? SV 
\ 4EI f 

s 

where VII is the form of the voltage output of a normal channel, and V,I' is the general 

form of the shear bridges output. Recall the complementary nature of the reaction 

forces due to 110rmalloadings. This is reflected in the output channel associated with 

each corner of the plate. 
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3.5 Deviation froll1 the Ideal Transducer Model 

3.5.1 Causes and Effects of Deviations 

The basic development assumes that the system behaves in a completely linear 

manner, obeying the simply supported assumption and that the strain gauges are 

mounted precisely (collinear with the neutral axis of the strain element) and 

equivalently (all strain gauges mounted the same distance along the strain element 

from the point of application of load). The linearity of the actual load ceLl 

(independent of the gauges) depends on its degree of symmetry. 

While it is na'ive to think that all the above assumptions wi!] be totally fulfilled, the 

development docs lead to a simple model that can be extended further through testing 

and parameter estimation. 

Quick consideration of the errors that arc likely to cause the actuator's behaviour to 

devi ate from that of the model are: 

(i) Orientation of strain gauge 

(it) Eccentricity of strain gauge (parallel to <axis of sensing clement) 

(iii) Inaccuracy of the simply supported assumption for the plate 

(iv) Inaccuracy of simple beam bending model for the sensing beams. 

The first two factors will cause the strain gauges to be subject to strains due to shear 

stress as well as the orthogonal force (i.e. the gauges measuring vertical force may be 

affected shear force and vice versa). This will be known as the cross-coupling effect. 

If the sensor plate is more 'built in' than simply supported, there wiLl be moments at 

either end that arc functions of both the force and the eccentricity of the centre of 

force. These moments will be transmitted to the sensing beams. 

The ideal strain of the sensing beams was developed using the assumptions that they 

behaved as simple beams built in at one end, and loaded at a point at the other. The 
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reality is more complicated. Both ends of the beam are effectively built in, preventing 

rotations. When the plate is translated downwards, a tensile stress caused by these 

built-in conditions accompanies the bending stress of the beams (when a beam is in 

simple bending, the neutral axis remains the same length, since this is prevented by 

the physical constraints, a stress results). Thus the strain at the gauged sites is due to 

a superposition of the effects of bending and tensile forces. Clearly these tensile 

forces do not change sense when the plate is translated upwards, and thus a translation 

dependent offset is introduced. The translation is of course a function of the 

magnitude and centre of the nonnal force. 

Tbe actual output of each of the channels should be approximately linearly related to 

each of the quantities involved in the ideal output, with the addition of cross-coupling 

effects (shear effects normal channels and vice versa). The constants relating the 

pm'ameters to the output cannot be expected to be the physical characteristics of the 

force plate, but the complementary nature of the outputs should be preserved. 

Given parameters that the output of the bridges should be proportional to, the problem 

of system identification, i.e. relating input to output, is reduced to that of finding 

coefficients that relate the parameters of interest to the output; parameter estimation. 

Tbe simplest methods of parameter estimation are,the least squares techniques, which 

aim to minimise the mean-squared error between the actual output and the output of 

the estimated model. The application of least squares parameter estimation to the 

problem will be discussed in the following section. 
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3.5.2 Least Squares Parameter Estimation 

As discussed, it was assumed that the output voltage of each channel is linearly 

related to F (previously denoted FN), Fxc, Fyc and S by a series of constants. In the 

ideal case, these constants would be simple expressions containing the physical 

dimensions of the sensor. Due to the potential inaccuracies previously discussed, 

these constants will be much more 'arbitrary'. 

To estimate the actual constants involved in the expressions, least squares estimation 

was used. (Appendix Al describes another method that was used). Consider a single 

channel, j. Its output voltage, for a constant input voltage, is approximated as follows: 

(3.12) 

where F is the normal force, (xc,Yc) are the coordinates of the equivalent normal point 

load, S, is the shear load, and ((i), (~~,h C)1, Cs) are coefficients relating the loading 

condtion to the output voltage of the /h channel, Yj. If the output voltage of channel j 

is recorded for N different values of F, XC, Yc and S, the equations can be written as 

follows: 

V(O;::: F(1).Cu + F (l).xcCl). Cj + F(l).yc(l). Cyj + S(l). Cj 

V (2)) ::: F (2). Cu + F (2).xc(2). Cx) + F(2).YcC2). Cyj + S(2). Cs} 

V (N)} ::: F (N). Co + F (N).xc(N). Cx} + F(N).yc(N). Cyj + SeN). C,I) 

V(l\ F(l) F(l)xc (1) F(l)y)l) S(l) - Cli 

V (2)j F(2) F(2)xc(2) F(2)yc (2) S(2) C,j 

M M M M M Cvi 

V(N\ F(N) F(N)xc(N) F(N)yc (N) S(N) C"j 

Equation (3.13) can be concisely written 

(3.13) 

(3.14) 
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Least squares parameter estimation involves finding the parameters Ci , such that the 

cost function, 

(3.15) 

is minimised, where E is the 'elTor vector'. It can be shown (see Sensor Analysis and 

Improvement) that the least squares estimate of the constant vector C i is given by 

(3.16) 

Applying parameter estimation techniques to each of the channels then yields a set of 

constants that relates the voltage output to the loading conditions. 

The method of calibration is to subject the sensor to a large range of known loading 

conditions, recording the data for each channel, and then applying least squares 

estimation to determine the best linear relationship between the vaIiab1es and the 

output voltages. 
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3.6 Calibration 

The requirement of calibration was that known loading conditions be created and the 

outputs recorded. A simple test-rig, shown in Fig. 3.12, was manufactured. During 

the application of normal force, the [rame is horizontal, with each end supported on a 

desk. Known 'compressive' forces are applied by hanging masses below the sensor 

via a cross bar arrangement. The cross bar is balanced on a small circular plug that is 

placed on the sensor surface to localise the loading. Forces of the opposite sense are 

applied by inverting the entire rig, during which the sensor was both screwed and 

clamped to the rig frame. A 20mmx20mm grid was drawn on both sides of the sensor 

plate, with an origin placed at the centre of the plate (this is partly visible in Figure 

3.8) to act as a guide for the load placement. 

Figure 3.12 The foot force calibration test-rig 

The initial rig (shown above) did not allow for simultaneous application o[ shear and 

norma] forces. To apply shear, the rig was clamped upright (long axis of sensor 

vertical) and weights were applied to the sensor via rods that extended from plates 

that were screwed and damped to the sensor. Later the rig was modified by 

suspending a bearing on a horizontal shaft, projected out from one of the ends of the 

rig. A cable that was attached by a hook to the sensor plate ran over the bearing and 

was used to suspend masses. The bending moment caused by the cable was 

minimised by attaching it to the hook at close to the level of the plate, and ensuring it 

was as horizontal as possible. This modification allowed the application of a limited 

amount of combined loadings (normal and shear). The amount of testing was limited 

because only compressive forces could be applied concurrently and also since the 
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• the good linearity and low variability with increasing mass of the normal 

channels 

III the arbitrary appearance (but apparent repeatability) of tbe response of the 

shear channels to normal loading 

III the shallow gradient of the plane that passes through the shear surfaces 

Separate shear calibration results are also shown below in Fig 3.14. These results 

were the effective downfall of the sensor. It was hoped that the shear channels would 

offer much higher sensitivity to shear loading than the normal channels. Observation 

of the results shows that this was not the case. 

Channel 1 

Figure 3.]4 Results of a shear calibration with linear and quadratic lines of best fit forced to pass 

through zero at zero load. 
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In addition to the poor sensitivity of the 'shear channels', it was found that their 

response was dependent on the direction of application of the shear force, i.e. channel 

3 may be linear when shear force acts towards the front of the sensor, but highly 

erratic with force in the other sense. A method was conceived to alleviate this 

problem that is detailed later. 

The coefficients obtained by normal force application are shown below in Table 3.1. 

The columns represent the change in voltage associated with: 0) unit normal load at 

the centre of the plate (ii) unit normal load at unit distance in positive direction along 

X-axis (iii) nnit nonnalload at unit distance in positive direction along Y-axis 

~f Cfx Cfy 

-0.0357 0.0154 0.0029 

-0.0409 -0.0152 0.0027 

0.0047 0.0014 -0.0000 

-0.0415 -0.0195 -0.0028 

-0.0386 0.0192 -0.0024 

0.0034 -0.0020 -0.0002 

Table 3.1 Coefficients generated by normal force calibration. 

The bold entries correspond to the 'normal force' channels (1,2,4,5); the two 

remaining are 'shear'. Ignoring the shear channels, note the complementary nature of 

the signs associated with each channel, i.e, channell (-,+,+), channel 2 (-,-,+), 

channel 4 (-,-,-) and channel 5 (-,+,-). The effect of these patterns is discussed in 

Section 3.9. Another important feature of the coefficients is that the elements relating 

the response of the shear channels to normal loading are generally an order o[ 

magnitude smaller than the other entries. Physically, this means that normal loading 

has very ]jttle effect on the shear channels. 

The coefficients in Table 3.2 resulted from combined loadings, applied as discussed. 

previously. The fourth column represents the increase in each channel due to a unit 

shear load in the positive direction. 
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C f Cfx Cfy C.I' 

-0.0414 0.0211 0.0029 -0.0203 

-0.0421 -0.0211 0.0032 I 0.0250 

0.0026 0.0013 0.0001 

1-0.0443 -0.0158 -0.0033 -0.0129 

i -0.0397 0.0156 -0.0026 0.0009 

O. 0017 -0.00::"9 -0.0000 0.0010 

Table 3.2 Coefficients generated by combined loading calibration. 

Kate that the magnitudes and signs associated with the first three columns remain 

almost unchanged and that channels 3&6, that were designed to respond to shear, 

have very low magnitude response. 
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3.7 Sensor Function 

In possession of the six constant vectors from the calibration, the next task is the 

inverse of calibration, i.e. given a certain voltage vector, detennining the (most likely) 

loading condition, i.e. combination of nOlIDal force, nonnal force coordinates and 

shear force. 

This probJem was originally approached using what appeared to be a novel method. 

The normal force and coordinate estimation problem was reduced to that of 

minimising the diagonal of a quadrilateral with sides that have fixed gradient and 

intercept inversely proportional to the applied force. After solving the problem and 

applying the results, it became obvious that this problem is a restatement of 'least 

squares' in a very paliicular application, which as previously shown has a very 

concise solu60n. Thus, rather than inserting the derivation of this 'novel' method of 

finding the solution to a group of approximate equations, it is relegated to the 

appendices (see Appendix AI). The fact that it is included at all is due to the 

geometric interpretation that the method gives to this problem. It is also conceivable 

that a similar method may be useful in problems where least squares estimation is not 

applicable. 

At each instant the output of the sensors channels is V = [Vl V2 ... V6J. Recall that 

each channel's voltage is approximatel y reI ated to the loading condition by the 

relation 

(3.17) 

which, defining the loading condition vector F = [F F.xc F.Ye 51 and constant vector 

C [( ' (~' (~' (~']T b . j = /J) -~xj /yj /s ,can e reWrItten 

(3.18) 
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for j=1,2, .. ,6. Using the measurement (voltage) vector, V, and constant vectors Cj 

j= 1,2, .. ,6 we must solve for .F. As a first step each of the scalar relations are stacked 

to form the matrix equation 

(3.19) 

where V and F are as previously defined and C=[C t
T C2 T C3 T C4 T Cs T C6 T]T, which 

is a 6x4 matrix, i.e. there are six equations in four unknowns. An alternative, and 

ultimately more useful notation is C=[Ct CfX CD' Cs], where the (6xl) column vectors 

of the matrix are as previously described. Each of these equations is approximate, 

thus we are trying to find the best solution, Ii', given V. The method of solving such 

an over-determined system of equations is to use the matrix pseudo-inverse, which is 

the least squares solution, thus 

(3.20) 

The loading conditions are included within the vector, F, and are extracted by simple 

division, (xc = F(2)/F(l), )Ie "" F(3)/F(l)). These expressions become undefined when 

the applied force is calculated to be zero. Also the accuracy of the centre of force 

estimate becomes low as F~O. 

Shown in Fig. 3.15 are the graphical results obtained when this method of 

determining the loading conditions is applied to calibration data. From top left, they 

show the accuracy in determination of load coordinates (in em), accuracy of load 

determination, norm of coordinate elTor, approximated load against X - coordinate 

and coordinate error norm against X - coordinate. All plots are for a nominal 

compressive load of 20kg, but the hanging apparatus (chains, beams and hanger) add 

3kg to this value. The characteristics of the sensor were plotted against X -

coordinate to discern if there were points that were not as reliable as others. The 

results are pleasing. The norm of the coordinate error is less than Icm in all cases, 

and the approximated load is within O.5kg of the true va]ue. 
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Figure 3.15 Characteristics of sensor for normal loading of 20kg. 

As can be seen in the approximated load against X - coordinate plot, the sensor tends 

to slightly overestimate the load at the left edge of the plate. Methods to overcome 

this are described in later sections. 
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I~l'Slllh includeu in this section arc from ergomeler trials of a numher or the Nev\ 

/.cal;llld I ()t)() rowing squad. Palria HUllle, a biol1lechani :; t ;It the University or 
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Figure 3.17 Normal force generated by subject 'sb' for three separate foot stretcher angles 
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It is evident from Figure 3.17 that changing the foot stretcher angle effects not only 

the peak force attained during ergometer rowing, but the profile of the force. 

The X and Y coordinates of force were also computed. Interesting results were found 

by plotting the Y-coordinates and X-coordinates against the applied force. 
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While the X-coordinate of the centre of force was not seen to vary greatly, indicating 

that the normal force is applied towards the centreline of the force plate, the Y

coordinate varied in a way that is consistent with intuition (see Figure 3.18). Consider 

the cycle of foot force from the end of the drive onwards. At first the rower's foot is 

flat on the plate and the force is practically zero. As he pulls himself forward the 

force becomes negative and a moment about the X-axis is created that puts the centre 

of force significantly passed the area of the plate. (This situation is caused by a small 

net vertical force, F, and moment F Yc such that Yc > Y2Lp .) An interesting circling 

effect occurs as the rower begins to slow his progress and the force becomes positive 

(pushing on the plate). Now at the drive, the rower's heels are well off the plate. 

While there is no easy way to indicate elapsed time on plots, the 'comet' function on 

MA TLAB showed that the centre of force quickly tended towards the centre of the 

plate as the compressive force increased suggesting that the full foot quickly comes 

into contact with the plate. The trace shows that the rower gets his feet nat to the 

plate and applies the largest magnitude force with a centre of load at around 60-7Omm 

above the centre of the plate. 
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Figure 3.18 Y -Coordinate of centre of force vs. applied normal force for the subject 'sb' at three 

different values of foot stretcher angle. 



83 

Shown in Fig. 3.19 is a Y - coordinate vs. normal force plot in which the direction of 

time has been drawn in. 

Figure 3.19 The general direction of time for Y -coordinate vs. Force plots. 
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Figure 3.20 X-Coordinate of centre of force vs. applied normal force for the subject 'sb' at three 

different foot strctchcl' angle. 

As previously mentioned, the X - coordinate of normal force was found to be almost 

constant during ergometer rowing. This is not to say that 'interesting shapes' were 
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not generated, as shown in Fig. 3.18. Each rower tended to have signature profiles 

that varied with the changing foot stretcher angles. 

While the nonnal force and coordinate data obtained using the sensor was found to be 

good, it was disappointing that the shear characteristics of the sensor were so poor. 

The next section explores the reasons for this poor performance. 
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3.9 Sensor Analysis & Improvement 

Thus far the sensor design, calibration, method of operation and sample results have 

been discussed. It has also been stated that the sensor did not function exactly as had 

been boped in that shear was not reliably measured. In this section the reasons for 

this poor ped'ormance are suggested and possible methods of improving functionality 

are discussed. Prior to this, a geometric visualisation of least squares estimation is 

developed that helps in the understanding of both how the sensor was intended to 

work, and how it failed. Unsnrprisingly, the characteristics of the sensor are 

contained within the coefficients of the C matrix generated during calibration. The 

structure of these matrices is explored and it is shown how the low accuracy model of 

shear response can degrade the other estimates, regardless of the accuracy of the other 

column vectors. 

3.9.1 Algebraic/Geometric Least Squares Derivation 

Least squares estimation is very easy to understand if it is simply stated that it is the 

linear estimate that minimizes some quadratic function of the error, but this does not 

ful1y expJain the geometric concepts involved. ' A simple 3D case will now be' 

explained so that geometric concepts can be exploited. In this case, tenninology is 

skewed towards our application: we have a measurement vector V that we wish to 

approximate using a linear combination of the column vectors of a coefficient matrix 

C. The coet11cients of the vectors of C,fl andfz, fmm the vector F 

(3.21) 

If (and only if) the vector V lies in the subspace spanned by the column vectors of C 

(tile column-space of C), then it is possible to find values of fi andfz such that 

CF=V (3.22) 
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This will not normally be the case, i.e. V will usually lie outside the column space of 

C, this is the situation shown in Fig. 3.21. 

v 

Column space of C 

Figure 3.21 The geometry of the estimation problem. The column space of C cono;ists of all linear 

combinations of C1 and C2, and the measurement vector, V, lie.o; out.o;ide this space. 

In this case the best that can be achieved is the estimation of V by a linear 

combination of C1 and C2 such that the length of the enor (V -CF) is minimised. The 

length of the error vector is minimised when CF is that vector resulting from the 

orthogonal projection of V onto the column space of C. 

v 

Figure 3.22 The least squares estimate, formed by the orthogonal projection of V onto the column 

space of C. 

When J<' is chosen in this way, it is clear that V -CF is orthogonal to both C I and C2, 

and in general is orthogonal to the entire column space of C. This may be written 

using the scalar product notation: 

(3.23) 
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Since the scalar product a.b can also be expressed aTb, it follows that C?(V-CF) = ° 
and 

[
CjT:(V_ CF)= [0: 
( ' T 0 
~2 

(3.24) 

Manipulation of (3.24) leads to the familiar least squares solution 

(3.25) 

In the actual problem at hand, the voltage vector is in R6
, and we are trying to estimate 

it by an optimal line,U' estimation of the four (6x 1) coefficient vectors Cr, Ctx' CrJ' & 

Cs. The sub-space generated by these vectors is a hyperpJane in R6. The geometric 

interpretation offered by this derivation of the least squares technique helps in the 

understanding of what 'went wrong' with the sensor. The characteristics of the least 

squares estimation are obviously contained in the coefficient matrix, or equivalently 

the column space, that in this work, because of 'poor results, was constmcted in ;) 

number of different ways. 

3.9.2 Coefficient Matrix Generation 

Driven by the guest for better results, three different methods were used to create C 

matrices. Each of these matrices, and the results that they yielded when used with 

purely normal and purely shear loadings are now explained. Following this is an 

attempt to explain why shear output was so poor. 

The first matrix, CnormaI, was created via a least squares estimation using only normal 

data, i.e. tensile and compressive loadings at various locations on the sensor surface. 

When this matrix was used to estimate the loading condition (i.e. mnning the 



88 

calibration data back through the derived coefficient matrix), both the magnitude of 

force and the coordinates of the centre of force were of good quality. (Sec for 

example Fig. 3.14). When the coefficient matrix was used with shear only data, the 

estimated force was close to zero, as it should have been, while the coordinates of 

loading, which were undefined, were large and arbitrary. The nature of the coordinate 

estimates in response to purely shear loading is easy to explain since the pair (x,y) is 

estimated by dividing the second and third elements (Fx and Fy) of the estimated load 

condition vector by the first clement (F). When the first element is estimated to be 

small, as it is when no normal loading is applied, dividing by this element results in a 

magnification of the error in the estimate of Fx and Fy. While this explains that 

magnification takes place, it does not explain what is being magnified, i.e. why the 

estimate of Fy is greater than F (as must be the case for magnification to occur). A 

possible reason for this is a moment caused by uneven application of shear force 

during calibration. Another reason is suggested once required concepts have been 

introduced. 

Before the rig was modified so that shear and normal forces could be applied 

simultaneously the method of creating a C matrix with both normal and shear 

'capabilities' was to concatenate the results of a shear calibration to the norma] force 

calibration. Thus the (6x 1) vector Cshem' resulting from a shear calibration was joined, 

to the previously described matrix Cnormal to form c',uper = [Cnormal Csheal'J, where the 

subscript 'super' is used to reinforce the fact that this matrix is built on the 

assumption of superposition. When Csuper was applied to normal force data, it was 

found that the force was estimated with medium accuracy, the force coordinates were 

estimated very poorly and shear of considerable magnitude was often indicated where 

none was applied. In the second instance, where Csuper was used on shear data, 

normal force was estimated well, i.e. it estimated a force very close to zero, and shear 

was close to being correct, but the estimated coordinates of force fluctuated violently, 

presumably for the same reasons as stated above. Recall that the shear response of the 

sensor was found to be directional, i.e. the response in one direction bore no 

resemblance to shear in the opposite sense. This could potentially be overcome using 

the assumption that the direction of shear force is dependent upon the sense of normal 

force. More precisely, the shear force during compressive loadings, such as the drive, 

will always be towards the toe, while shear during tensile forces, if it exists, will be in 
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the other direction. This assumption can be used to dynamically update the C matrix 

by first calculating the sense of the normal force using C,lOrmal then applying the stated 

assumption and including the relevant Cs vector. 

The final matrix, CCllIubined, was created using a least squares fit on data obtained 

during combined (shear and normal) loadings. This approach gave results that were 

poorer than the previous two methods in response to both shear and nOlTIlal loading 

data, although, again, the nOimal force estimate was usually accurate. 

These were the main methods used to generate coefficient matrices. Some 

alternatives were considered for increasing the accuracy in specific loadings. For 

example, if the centre of force was estimated to be in the front left corner of the sensor 

plate, a new C matrix generated by data only from that area of the plate could be used 

to refine the estimate. This potentially increases the accuracy because the 

performance smfaces of the plate are not exactly linear. When a small quadrant of the 

plate is used, a linear fit should be more accurate. The other way in which a more 

accurate solution could be found is to first estimate the force using a general C matrix 

and then use a matrix based only on data similar to the estimated force to improve the 

estimate. This method would allow for variation of the performance surfaces with 

respect to load. During calibration, no great fluctuation in the normalised 

performance surfaces was observed, but at higher levels of load, some deviations may 

occur. 
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3.9.3 Coefficient Matrix Properties 

Now that the results of the methods used to generate the C matrices have been 

discussed, it remains to try and relate the results obtained to the matrices themselves. 

To do this we return to the geometric principles at the introduction of this section, and 

also explore the structure of the matrices employed. 

Regardless of the method of generation of coefficient matrix, C, it was found that the 

estimate of normal force was generally good. The results from using Cnormal on 

normal force data were of high quality, suggesting that the vectors of these matrices 

were accurate. The estimates of these vectors were also very stable with time, i.e. 

over a period of a few months of testing and various calibrations the numerical values 

of the elements of the vectors changed very little. This also adds weight to 

assumption that these three vectors are 'correct'. 

In comparison, the response of the sensor to shear was found to be non-linear (and 

therefore had low accuracy with a linear fit), directional and time varying. This Jast 

component of uncertainty must surely be due to unintentional variation in loading 

condition. Disappointingly the channels that were included principally to monitor 

shear did not have good response to shear. This fact, and the directionality are 

illustrated by the results of shear calibration in two directions shown in Table 3.3. 

Also given is the C s vector of Ccombined. Note the large discrepancy benveen the 

numerical values. 

1 2 I 3 4 5 6 

Positive -0.0038 -0.0120 -0.0003 0.0137 0.0020 -0.0098 

Negative -0.0006 0.0053 0.0038 -0.0083 0.0000 -0.0001 

Combined -0.0203 0.0250 -0.0047 -0.0129 0.0009 0.0010 

Table 3.3 Generated shear coefficients for positive, negative and combined calibrations. The 

bold columns relate to the 'shear' channels. 
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Regardless of what caused the sensor's poor shear response (some suggestions are 

given below), the translation of the effects of shear to a linear representation was an 

inaccurate process. The low accuracy of the C~ vector translates to a low accuracy of 

shear estimation, but does not directly explain why coordinate estimation and normal 

force estimation were adversely affected to varying degrees. The phenomenon of 

estimate degradation due to the inaccuracy of the shear coefficient vector is now 

explored. 

Recall equation (3.24) expressing the orthogonality of the column space of C to the 

orthogonal projection of V onto it encountered during the least squares derivation: 

or 

(3.26) 

Using the scalar product, this (3.26) can be rewritten 

C/,Cr Cf,C rr Cr·C fr Cr·C
" 

F Cl·V 

Cf·Ct:r Cf,;,Cf,; C ;:,.C j}> Cf,·C< Fx Cr,·V 

C/,Cf C wC j)' Cf)"Cj). Cj)'.C< Fy CwV 
(3.27) 

, y 

Cr,C s Cfl;'C S CD,·C< Cs·C". S C".V 

which explicitly shows the way in which the vector Cs is manifested in the least 

squares solution. It is clear that the degree to which the inaccuracy of Cs affects the 

estimates of F, Fx and Fy is contained in the scalar products Cj;Cs, <;X.C,I' and C/J"C". 

respectively. If the vectors are orthogonal then the error in Cs does not contaminate 

the estimation of the other parameters. In general, also, the smaller the included angle 

between C· and another coefficient vector, the greater effect C,I' has on the associated 

parameter estimate. An investigation of the orthogonality of the columns of C for the 

formulations described above is shown in tabular form below, where all values appear 

twice for clarity. The values are the included angle between the two indicated vectors 

divided by n12, i.e. orthogonal vectors will have a value equal to unity. Significant 

deviations from unity indicate that the involved column vectors are not orthogonal, 
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and hence the accuracy of the parameters with which these vectors are associated is 

affected by the accuracy of the second vector. 

C( C{:, C/)J Cs 

Cf' - 1.0196 0.9942 1.0738 

C/\. 1.0196 - 1.0160 0.7208 

CjjJ 0.9942 1.0160 - 1.2335 

Cs 1.0738 0.7208 1.2335 -

Table 3.4 Included angle between indicated vectors divided by nl2 for CcolllbillCl1 

Cr Cll Crv Cs 

Ct - 1.0334 0.9944 0.9789 

Crt 1.0334 - 1.0460 0.9320 

Cry 0.9944 1.0460 - 0.6511 

C,,' 0.9789 0.9320 0.6511 -

Table 3.5 Included angle between indicated vectors divided by nl2 for Csul'er (shear positive) 

Note that: 

l1li the vectors C/; Ci~' and CrJJ are nearly mutually orthogonal in both cases 

l1li Ct and Cs are almost orthogonal in both cases 

l1li C,~ and CD' are significantly removed from orthogonality in both cases 

l1li Cs and C/i are significantly removed from orthogonality in the combined 

loading case 

These results show numerically why the estimates of coordinate arc greatly degraded 

by including a shear vector shear in the C matrix. Geometrically, these comments are 

easily translated. Each of the column vectors in C represents a direction of increase 

due to a particular loading. For example the vector C,. is oriented such that it points in 

the direction of increased normal load, F, i.e. if an increasing normal load was applied 

at (0,0) the direction of increa.<;e in R6 would be Cj ; and the magnitude of the load 

would be given by the ratio of the magnitudes IIVII/llej l!. The triple Cj ' Ctx and CnJ 

are three near orthogonal vectors in R6. This orthogonality was predicted early in the 

chapter, where the complementary nature of the signs of the responses to a normal 

I 
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loading at arbitrary coordinates was observed. The vector Cs, while almost 

orthogonal to Cr is oriented so that it has non-negligible components in the direction 

of Crr and Cti,. Recall the least squares estimate is obtained through the orthogonal 

projection of the measurement vector on the column space of the coefficient matrix, 

i.e. the subspace defined by linear combinations of Cj ; Cfx , Cry and C,. Since Cs has 

components in the same direction as Crt and Cry, when V is projected onto the 

subspace there is an ambiguity that is heightened by the poor accuracy of c,~ (i.e. the 

presence of un-modelled but deterministic components in V) and the presence of 

nOIse. 

In summary, the response of the sensor to shear, as it has been loaded proved to be 

such that it could not be well model1ed linearly. Further, the linear model that was 

fitted to the response was not in the anticipated 'direction' in that the clements of the 

vector that were expected to be large were not. If the vector relating the response to 

shear had been in error and also, by some chance, orthogonal to all other vectors, its 

inaccuracy would not affect the other estimates. As it is, the erroneous Cs vector 

'soaks' up some of the projection that would otherwise be distributed between Crx, Cli' 

and estimation error, i.e. the component orthogonal to the column space of C. It is 

possible that the true response of the sensor to shear is not orthogonal to the other 

vectors. If this is the case and the vectors are all well modelled then there will be 

little error. 

As the sensor is, it yields good results in response to purely normal loadings in that 

the load and coordinates of load are estimated to a reasonable level of accuracy. 

Since the shear response was not modelled well it is impossible to accurately state to 

what extent the presence of shear effects normal load condition estimation during 

combined loads. The results obtained from the ergometer trials, however, yielded 

results that were consistent with intuition. If it is desired that the sensor's combined 

loading characteristics be accurately quantified, some modifications will need to be 

made. 
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3.9.4 Sensor I1nprovement 

Clearly, to improve the sensor's performance, its shear response must be more 

accurately determined. Before discussing methods by which the shear response could 

be improved some general comments are made on the C matrix and the effects that 

good shear modelling would have. 

3.9.4.1 The 'Ideal' C IVlatrix 

If the sensor had behaved as planned, the third and sixth elements of the calculated 

shear vector would have been large, with all other elements (corresponding to the 

response of the normal channels to shear loading) small. This would increase the 

orthogonality of the shear vector with respect to three other coefficient vectors, since 

none of the other channels have significant components in these directions. In 

addition, if the sensor had functioned as was desired, there would not be such a large 

error in c.~ and hence, the small amount of error propagation would not be 

problematic. 

In an ideal situation a square (6x6) C matrix would be used, since this would allow 

for 'pedect' estimation of the loading conditions, i.e. the measurement vector, V, 

would always lie in the column space of C. One cannot, however, simply add two 

arbitrary columns to the coefficient matrix. The columns, for the inverse of CT C to 

exist must be linearly independent. In physical terms this means that additional 

parameters associated with the new columns must be selected so that the vector 

response of the sensor to parameter variation is distinct from existing column vectors. 

In particular the vector must be non-zero. Even if a full square matrix could be 

generated, the estimation error would still only be 'theoretically' zero. The word, 

theoreticall y is used because of potential errors in both the measurements vector and 

the coefficients matrix. If the number of unknowns (colTesponding to the number of 

columns) is anything less than the dimension of the measurements vector then there 

is, additional to elTors in C or V, an estimation error. This estimation error is not 

purely a function of the discrepancy between the dimension of the column space and 

the dimension of the vectors to be minimized, but also of the form of the coefficient 
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matrix and more particularly the accuracy of each of the column vectors and their 

relative orthogonality. 

3.9.4.2 Improving Shear Response 

Inherent in the discussion of improving shear response is identification of possible 

causes of the originally poor characteristic. 

It is possible that a portion of the error in Cs was due to the way in which shear was 

applied. Both methods had the potential for a simultaneous application of bending 

moment that would alter the outputs. The bad repeatability and directionality could 

aJ so be a function of the sensor constraints, i.e. the way in which the sensor is 

fastened to the calibration rig. To tml y find the sensor's response to shear loading the 

transducer could be mounted on a reliable load cell set-up, or a force plate. The latter 

suggestion would allow for very accurate dynamic calibration of the sensor. 

The small magnitude of the shear response could be improved, thereby increasing 

signal to noise ratio, by making the sensing beams thinner. This would not drastically 

alter the response of the other four channels due to the definition of the second 

moment of area for bending in each direction. There is enough room, considering> 

strain gauge placement, for easy removal of almost 2mm from the width of the beams. 

Higher gauge factor strain gauges, such as polymer varieties, could also be used. 

Another possible minor modification to the sensor would be an increase of the width 

of the slots that define the sensing beams so that it would be possible to fix strain 

gauges to both faces of the clements. It is thought that a possible contribution to the 

poor shear response was the placement of strain gauges on adjacent beams. Reasons 

for this are: the possibly asymmetrical shear distribution and location of the gauges 

and different distances along the beams. 

If the shear response of the sensor cannot be improved by the discussed methods, then 

it is possible that a compound sensor could be designed. Such a unit could be 

designed by mounting the existing sensor, or a subtle variation, on the 

magnetoresistive shear sensors discussed in the foot force measurement review 
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section. The method of function would remain unchanged; the output of the shear 

sensors would simply be substituted for the outputs of the shear sensing channels. 

There would be the option of increasing the dimension of the space, for example 

using a shear sensor in each corner would result in eight channels in total, or a single 

sensor could be placed at each end, maintaining the original dimension. If the shear 

sensors can be designed so that they have either negligible, or well modelled, 

response to normal loadings, as well as good shear response, then the compound 

sensor would be likely to yield very good results. 

While the preceding section has briefly explained ways in which the shear response of 

the sensor can be improved, there is also room for improvement in the normal force 

estimation. Investigation of the deformation caused by even the simplest case of 

central normal loads shows that the ideal situation considered at the beginning of the 

chapter was a great oversimplification. This is discussed briefly in Chapter 6. 
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3.10 Conclusions 

The design, calibration and function of a foot force sensor that is theoretically capable 

of both normal and shear force measurement has been described. 'TIle structure of the 

sensor was enforced through the sensing requirements, spatial constraints and desired 

general ity. 

While the sensor had good characteristics in response to normal loadings the shear 

facility was very poor. 

Least squares estimation is used in both the cajibration and function of the sensor, and 

an investigation of error propagation due to this method has been made. 

Suggestions for improvement of the sensor have been made. Modifications are 

generally concerned with the increase in accuracy of the sensor's shear response. It is 

proposed that a sensor hybrid is perhaps the most attractive option. 
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Chapter 4 

While the rower pulls his oar through an arc during the rowing stroke, only the force 

in the direction of motion of the boat has impact upon the motion of the boat. There 

are therefore portions of the stroke where it is more e1Ticient to create a greater force. 

Thus, to investigate the efficiency of the stroke, it is necessary to measure the rotation 

of the oar. Other kinematic characteristics of the stroke that should be measured are 

the size of the arc subtended during the stroke and the sequencing of the oar 

movement with the motion of the seat and the force at the foot-stretcher. 

All the aforementioned aspects of the stroke require only the measurement of the 

angle between the loom of the oar and a normal projected from the boat 'parallel with 

the plane of the water'. Rather than being a simple hinge, allowing only one degree 

of freedom, the oarlock permits fuLl rotation; only translation of the oar is prevented. 

During the rowing stroke, in addition to the previously described angle, the oar is 

rotated so that it rises out of the water during the recovery and is submerged into the 

water for the catch. It is also rotated about its own axis during feathering. Just like 

any general three-dimensional motion, to fully describe the rowing stroke requires 

three angles. These three angles can be quantified as the yaw (sweep angle), pitch 

(tilt of loom with respect to the horizontal) and roD (rotation of the oar about its own 

longitudinal axis). Many insights into rowing technique could be gathered from 

investigation of the rotation of the oar. 

This chapter gives a brief history of mu· angle measurement to measure the sweep 

angle (yaw). Following this, a new sensor combination capable measuring the three 

oar angles is developed theoretically. These sensors were manufactured, but results 

were poor, for reasons that are elaborated upon in later sections of this chapter. 

Methods by which these problems could be overcome are fully detailed. 
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4.1 Oar Angle Measurement Review 

Atkinson's 'Rowing Indicator' [5J, [6J described in Chapter 3, was capable of 

measuring both oar force and sweep angle. It in fact produced, as output, a chart 

plotting force against rowing angle. In Atkinson's original version [5J, a pencil 

rotating with the gate drew onto specially configured charts. His later method was 

much more mechanically sophisticated. 

With the exception of Atkinson, all researches who have measured oar angle have 

used a rotary potentiometer in one form or another [27], [39J, [64J. The advantages of 

the potentiometer in this application are that they are compact, relatively cheap, 

require only very basic signal processing and can be obtained in splash-proof 

configurations and non-contact varieties. The shortcomings of the potentiometer are 

that it measures only one angle, and that it must of course be fixed somehow so that it 

measures the rotation of the oarlock with respect to the rigger. 

Candidate sites for oar angle measuring potentiometers are limited and include: the 

oarlock cavity (using a shaft type potentiometer), with the potentiometer fixed inside 

the cavity, with the hole pressed onto the pin; above the oarlock (probably 

necessitating an elongated pin. An alternative to these sites where the potentiometer 

is directly driven by the rotation of the oat'lock is to situate the sensor on the rigger, 

distinct from the oarlock and drive it using some sort of belt. Such a method, the 

'rubber band goniometer' was mentioned by Gerber [27]. , 
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4.2 Sensors Applied to Measure 3D Oar Rotation 

Since it was already decided that an attempt would be made to measure all three 

angles of the oar, none of the previously used methods of measuring oar rotation were 

suitable, and a new method was devised. Later in this section, it is described how the 

output of a sensor such as a rotary potentiometer could be used in conjunction with a 

general 3D 'orientation sensor' to resolve certain ambiguities. 

The new method, as developed in the following sections measures the rotation of the 

oar by finding the relative rotation matrix that transfOlms measurements of the earth's 

magnetic field and a general acceleration field, from an orthogonal set of sensors 

mounted on the oar to a corresponding set fixed to the boat. The sensors employed 

are magnetoresistive (Honeywell HMC 1 021,1(22) and accelerometers (Analog 

Devices AD2(2). 

Magnetoresistive (MR) sensors are a relatively new technology, so a brief description 

of their construction and method of operation is now given. Each axis of an MR 

sensor consists of a Wheatstone bridge made up of NiFe thin film deposits on a 

silicon substrate. These sensing clements are oriented opposite to each other in pairs. 

When the magnetoresistive clements are subjected to a perpendicular magnetic field, 

the magnetisation vector within the clements is rotated. The resistivity of the 

elements depends on the angle between the electric current in the element and the 

magnetisation, thus each axis outputs a voltage proportional to the strength of the field 

perpendicular to the axis. 

microcircuits are shown below. 

General characteri sties for the HMC 1 02111 022 

I 
Field Range I +/-6 Gauss 

I Field Resolution 85u Gauss 

Bandwidth Over 5 MHZ 

I 
Sensiti vity 1.0 mV/V/Gauss 

Linearity +/-0.5-1 % full scale I 

Table 4.1 lIMC 102111022 MR Sensor Characteristics 



Sensor output va magnetic field 
Output is repeatable in field range ~1:20 Oe 
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Figure 4.1 HMe 1021/1022 typical sensor output 
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The earth's magnetic field is well within the linear range of the sensor, at 

approximately 1 De or 1 Gauss, as shown in Figure 4.1. From this point onwards, 

each axis of an MR sensor is regarded purely mathematically as an axis that maps the 

incident magnetic field to a scalar output via a linear transformation. This is more 

fully described in the folJowing sections. 
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4.3 Sensor Design and Construction 

Sensor clusters consisting of triallial MR sensors and accelerometers mounted inside a 

common enclosure were used in this work. A brief description of these sensors is 

given below. 

4.3.1 MR Sensors 

3-Axis sensors consisting of a HMCI022 two-axis MR microcircuit and a 

HMC I 021Z single-axis MR microcircuit were constructed so that a 3D representation 

of the earth's magnetic field could be measured. The orientations of the axes within 

the microcircuits and the 'pin outs' are shown in Figure 4.2. 

OlJT· 1 • OFFSET- {AI 1 16 OFFSET) (A) 
VLJFlIIJGP 2 OUT+ (AI 2 15 SfR- (A) 

SlR+ 3 
Die VBRIDGE (A) 3 1<1 S/R+ (A) 

GND 4 

EJ 
OUT- iA) <\ 13 GND (!3) 

SiR- 5 OUT· (B) S 12 OUh(8) 
OF[7SET+ 6 VBI110GE (8) 6 11 OFFSfT (8) 
OFFSET· 7 GND(A) 7 10 Or~F'SEl+ (13) 

OUT+ 8 SiR+ (9) 8 g SIR· (TI) 

Figure 4.2 Pin-Out Diagrams for HMCI021Z (left) and HMCI022 [34] 

---~ -- 10 ... 1 ~lD 

~~1~-;~--~A-~···~···~··.~9~· 
6 

1 

Figure 4.3 Approximate Dimensions of HMCI022 (left) and HMCI021Z [34] 

The two-axis sensor was mounted flat to the board, while the HMC1021Z was 

mounted with its axis orthogonal to the plane of the board. This gave a set of 3 

'orthogonal' axes. Orthogonal appears in quotes because all the microcircuits were 

mounted 'by eye'. This had consequences that are fully discussed in later sections. 
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Till' circuitry on thc board (Jesigncd hy Electronics Tcchnician .lulian Philips ) was 

\ l'J"\ simple. basically consisting of bridge supply and output amplirication . The pins 

ill the ahove diag-ram marked SIR are 'Set/Reset Straps' and can he liseJ to reset the 

circuit if saturation occurs. (Saturation due to large incident rields can reverse the 

polarity (lIthe sen si nt! t~ l e lllents . ) 

Til L' lria x i~tI sCIlSor is shO\vll helmv in F ig 4.4. The external dilliensiuns ur the hoard 

\.\ as C!JOSCI\ to ~ ive a ti ~ht rit in a photographic 35ml11 film canister, as this W;\S at the 

I i me con slt/crcci to he a cheap method or housing the sensors. Problems with sensor 

micntation. due 10 the curved s urf~lce of the canisters, lead to ~1 new housing design. 

Figure 404 Triaxial i\IR sensor. The single axis sensor is seen projecting from the lowel' right 

l'Onll' l'. Thl' dual axis Sl'nsOl' is the milTO-l'in:uit in the lower lc.ft corner. 
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4.3.2 Accelerometers 

Dual-axis solid-state accelerometers manufactured by Analog Devices were used to 

create a three-axis accelerometer. Two boards joined along a common edge had one 

dual axis accelerometer each (the two axes are in the plane of the microcircuit). 

Again, the microcircuits and the boards were mounted without a special jig. 

The boards on which the sensors were mounted were then glued into a plastic 

enclosure, without any jig to ensure that they were square with respect to edges of the 

enclosure. As mentioned previously, these approximate methods of mounting lead to 

problems. While it would surely have been sensible to create jigs to mount the 

sensors properly, there were a number of factors that prevented this. Among these are 

the cost of producing a jig of useful accuracy, and the time this would take to produce, 

offset against the desire to quickly create a new sensor methodology. Additional to 

these excuses, there will always be some degree of enor in the mounting of the 

sensor; even if the microcircuits art( mounted perfectly, there is no guarantee that the 

axes within the sensor are 'true', thus it is actually more useful to combat these errors 

in an ad hoc sense, i.e. finding the error and then compensating rather trying to 

eliminate the error during manufacturing. Thus, by being initially sloppy, and paying 

the consequences, a much more useful technique was developed! 
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4.4 Introduction to Measurement of 3D Rotations 

The following sections develop the theory required to use the output of the previously 

described sensors to measure relative orientation during general 3D motions. The 

results from the field of theoretical kinematics are taken [rom various texts [11], [29J, 

[47] & [48] and have been combined so that only the useful material is present. The 

subject matter in its pure sense is far removed from rowing, but in practicality, the 

described technique will be useful in an almost endless array of areas where motion, 

human generated in particular, needs to be measured. The aim of this work is to use 

vector observations of the earth's magnetic field and a 'general acceleration field' to 

discern the relative orientations of two objects from which the observations were 

made. 

Before the problem of attitude estimation is discussed, an amount of theory needs to 

he laid down. In particular, theoretical spherical kinematics, discussed in Section 4.5, 

has many essential, and beautiful results. Section 4.6 provides a geometric bridge 

between spherical kinematics and attitude estimation, showing the minimum 

information requirements to uniquely discern attitude. 

Attitude determination, that is, estimating the relative orientation of two objects using 

vector observations, in this case the orientation of the oar with respect to the boat, has 

applications in many fields, and thus many solutions to the problem have been 

proposed. A review of existing methods, including the derivations of the algorithms, 

of attitude determination is included in Appendix A2. In Section 4.7, a simple new 

method of attitude determination that simulations have shown to out-perform a11-

comers in our application is derived. 

Having sufficient theory to solve the problem, the next section of the chapter, Section 

4.8, is concerned with the actual application of accelerometers and magnetoresistive 

sensors in the role of generating the required vector observations, still at a theoretical 

level. Section 4.9 gives some more practical details concerning the use of the sensors 

with tbe new attitude estimation algorithm. 
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Next, in Section 4.10, the problems that have been alluded to in the previous sections, 

concerned with the non-orthogonality of the sensor axes, are discussed. While these 

problems cannot be entirely eliminated physically, a new method of calibration is 

proposed, which 'orthogonalises' the axes of the sensors. 

The output of the attitude estimation is not in a form that is immediately useful to 

rowers or coaches, thus some simple processing is needed to transform the output to 

physically meaningful angles. This is the subject of Section 4.11. 
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4.5 Spherical Kinem.atics 

Spherical kinematics is concerned with rotations of bodies in three-dimensional space. 

The displacements of spherical kinematies have the property that one point (normally 

taken as the origin) remains stationary, and thus the paths of all points on the body as 

it rotates are constrained to lie on eoncentric spheres, with the stationary point as their 

centre. 

In the ease of the oar, the problem for which this system was designed, the oar is 

constrained from translation at the oarlock, while all other motions are possible. It is 

possible to place one non-rotating frame at the oarlock and one on the oar such that 

the origins of the two frames are always coincident, thus the motion of the oar with 

respect to the boat is one consistent with the requirements of spherical kinematics. 

The more genera] multi-body case can also be considered as one of spherical 

kinematics as long as the body does not involve sliding joints, e.g. the upper arm 

rotates relative to the shoulder, while the lower arm rotates relative to the elbow (and 

hence the upper arm). 

4.5.1 Rotation Matrices 

Say the vector, r, represents a field that is being 'measured' in two bases, M andF. 

The vector r is constant, while the column matrices, TM and TF that represent the 

coordinates of the vector in M and F vary as the orientation of the two bases change. 

Consider F to be fixed and aligned with the global frame so that the unit vectors of F 

are [i, j, kJ. Then 

r=xFi+YFj+zFk. (4.1 ) 

where rF = [XF YF ZF]T. M, with defining unit vectors [mx, my, IDz] is arbitrarily 

Oliented with respect to F such that 

(4.2) 
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Equating (4.1) and (4.2) gives 

xFi + )iF j + ZP k = XMIDx + YM IDy + ZMIDz (4.3) 

If the scalar products of this equation with i, .1, k are taken, the resulting equations are, 

respectively: 

XF = XMIDx.i + YM IDy.i + ZMIDz.i 

)iF = XM"IDx.j + YM IDy • .1 + ZMIDz.j 

Z,F = XM IDx.l{ + JIM IDy']{ + ZM IDz.l{ 

This can be written in matrix form as 

lX
P -l m,.i 

ID)'.1 m,.ifM J 
YF - IDx·J IDy.j IDz·j )1M 

z'F ID . .l{ my.k mz·k ZM 
" 

or 

(4.4) 

(4.5) 

(4.6) 

Note that the matrix, A, is formed by three columns that are the scalar products of 

each of the unit vectors of M with the unit vectors of F. The matrix therefore has as 

its columns, the coordinates of the unit vectors of M with respect to F. It is clear, 

then, that knowing the matrix that relates a vector that is measured in two bases is 

tantamount to knowing the orientation of one basis with respect to the other (and 

therefore the relative orientation of two bodies in which the bases are fixed). This is 

not to say that the problem of orientation estimation is simply to find a matrix that 

relates the vector rM to rF, as the matrix is in general non-unique. This problem is 

described in the following sections. 
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If rather than forming the matrix to relate the vector measured in M to the vector in F, 

the converse is undertaken, the result is 

XM:::: XF i.nlx +)'F j.nlx + ZF k.illx 

YM :::: XF i.illy + YF j.illy + ZF k.illy 

Zlvf:::: XF i.mz + )'F j.illz + ZF k.mz 

leading to: 

[ ~~M 1 = [m .~ 
) M my.1 

Z\1 m .. i , <, 

or 

ill .. j ., 
illy.j 

illl,.j 

(4.7) 

(4.8) 

(4.9) 

where the commutative property of the scalar product has been used in the writing of 

B. Note that since rF :::: Ar}lti and rM:::: RrF it follows that rF:::: ARrp, i.e. AU = 1, 

or U = A-I. Investigation of the matrices A and B shows that B = AT. Thus 

(4.10) 

This is the property of orthogonal matrices. It is easily shown that orthogonality of 

the rotation matrices is required for displacements to be rigid, i.e. the distance 

between two points is invariant under a rotation. 

Orthogonal matrices with a determinant of + 1 are known as rotation matrices. (Every 

orthogonal matrix has a determinant of either + 1 or -1. The matrices with a 

determinant of -1 are retlection matrices). 

The rotations associated with the rotation matrices may be considered in two ways, 

either: 

• the rotation of a vector in a fixed basis or 
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.. the measurement of a vector in two bases that are oriented such that their 

origins are coincident. 

The second visualisation is the more natural in this work for reasons that will become 

obvious. The maths is the same for both visualisations; only the sign convention 

associated with rotations is different. (The above development was based on [11J, [29J 

and [47]). 

4.5.2 Cayley's Formula, the Rodrigues' Vector and the Axis Angle 
FOlmulation of the Rotation Matrix 

Regardless of how the rotation is visualised, Euler's Rotation Theorem: the 

displacement (~f' a body with one point fixed is a rotation about an axis through that 

point, is valid and usefu1. Since the rotation matrices have been shown to represent 

rotations, it follows that cach rotation matrix is associated with an axis and angle of 

rotation. 

4.5.2.1 The Rodrigues' Vector and Equation 

Any vector that is collinear with the direction of -rotation remains unchanged by the 

rotation matrix 

x=Ax (4.] 1) 

where X is a vector of arbitrary magnitude along the axis of rotation. Cayley's formula, 

which is now derived, shows that every orthogonal matrix can be defined by three 

parameters. Knowing these three parameters is equivalent to knowing the associated 

rotation matrix and therefore the relative orientation of the frames in which the vector is 

measured. 

Consider the rotation R = Ar. Since the magnitude of vectors are invariant under 

operation by rotation matdces, IIRII = Ilrll, (11R112 = IIr112) which can also be written: 

R.R ~ r.r = O. ( 4.12) 
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Note that 

(R - r).(R + r) = R.R + R.r - r.R - r.r = R.R r.r = O. (4.13) 

The first and last elements of this chain of equalities show that the vectors (R r) and 

(R + r) are orthogonal. This is shown geometrically in Figure 4.5. 

R-r 

t R 

~ R+l' 
~~----------------~. 

r 

J<"igure 4.5 The orthogonality of R·r and R+r when R=Ar 

Now (R - r) = (A - I)r and (R + r) = (A + I)r, so that r (A + Irl(R + ('). 

Combining the first and last equalities gives 

where 

(R - r) = (A - I)(A + Ir!(R + r) 

(R - r) = B(R + r), 

D :::: (A - I)(A + IY!, 

(4.14) 

(4.15) 

Defining s = (R - r) and t = (R + r) (which have been shown above to be orthogonal) 

(4.14) may be rewritten, 

s = Bt. (4.16) 

thus the matrix D is seen to have the property that the vector Bx is orthogonal to x that 

IS, 

x.Bx =0, (4.17) 



112 

where x is an arbitrary vector. Expressing the clements of the matrix product (4.16) 

as a sum gives 

Si = LbijtJ for i = 1,2,3 
j 

(4.18) 

where bij is the element in the ztII row and /h column of B. Thus the scalar product 

(4. 18) may be rewritten 

"t." b .. t. =0. L,.rL,. UI 
j 

Expanding (4.19) leads to 

(4.19) 

tj(b]]tl + b12t2 + b13t3) + t2(b21 t[ + h22t2 + b23t3) + t3(b3J t1 + b32t2 + b33t3) = 0 

t/ blJ + t/b22 + t1
2bn + t1t2(b12 + b21 ) + t1t3(b]3 + b.ll ) + t2t3(b23 + b32 ) = o. 

or 

1 --;; L (bii + b ji )tJj = 0 
- i.j 

(4.20) 

Equation (4.20) reveals, that for an arbitrary vector, t, the orthogonality of t and Bt 

can only be assured if B is skew-symmetric, i.e. bij = -bij and bu :::: O. Skew symmetric 

matrices have the form: 

B=[ l~ 
-by 

-b z 

o (4.21) 

and the property that BT = -B. The three elements of B are named so that the matrix 

product Bt is the same as the vector product b x t, where b :::: [hx hy hz]T. The vector, 

b, is known as the Rodrigues' vector. Using the original definition of B (4.15), we 

can find an expression for the rotation matrix A (Cayley's Formula): 

B=(A-I)(A+lyl 



B(A + I) = (A - I) 

BA +B = A- 1 

1 + B = A - AB = (I - B)A 

A = (I - Brl(l + B). 
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(4.22) 

Since B is defined by three parameters, the elements of the vector b, it is seen that the 

rotation matrix A is indeed defined by just three parameters. Further, note that due to 

the properties of the matrix B, the equation (4.14) may be rewritten as the Rodrigues' 

Equation 

(R .- r) = b x (R + r) (4.23) 

This is the equation required for the method of orientation ealculation employed in 

this work. The remaining pmi of this subseetion explores the equivalence to the 

axis/angle formulation, which is useful in the next section. (This development was 

based on [11J and [47]). 

4.5.2.2 The Relationship Between the Rodrigues' Vector and Axis of Rotation 

Returning to the definition (4.11 ) of the axis ofrotation: 

(A - I)x = 0, (4.24) 

where x is a vector eoJJinear with the axis of rotation. Using Cayley's formula (4.22) 

to substitute for A 

[(I - Brlcr + B) - r]x = 0, C4.25) 

and premultiplying (4.25) by (I - B) gives: 

[(1 + B) - (I - B)]x = 2Bx = O. (4.26) 

Reeall that Bx = b X x, and lib X xii = Ilbllllxllsin8, where 8 is the included angle 

between the vectors band x. Hence (4.26) states that (for non-zero b) the vectors b 
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and x are parallel and therefore the Rodrigues' vector, b, is along the axis of rotation. 

Define the unit vector along b as s. It has now been shown that 

III Only three parameters are required to fully specify a rotation in 3-space 

III The components of the Rodligues' vector can be used to specify a rotation 

These facts imply that within the definition of b, the Rodrigues' vector must be 

inf0111lation concerning the angle of rotation. Since this vector has been shown to be 

collinear with the axis of rotation, the only 'degrees of freedom' left in the vector are 

its magnitude and sense. It seems logical that the magnitude of the vector must 

contain the information. This is now shown to be the case. 

Consider the rotation of a point with position vector r, through an angle ~ about the 

unit vector s to yield the vector R. Construct a plane through the points rand R (the 

terminal points of rand R) that is normal to the axis of rotation. This plane intersects 

the axis at the point so, with associated vector So as shown in Figure 4.6 

8 

80 

o 

Figure 4.6 Rotation of r to R about s and the construction of a plane normal to s, through the tips 

ofr and R. 

A view normal to the plane shows two vectors R-so and r-so, of equal magnitude 

separated by an angle,~. This situation is shown in Figure 4.7. 
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R-so 
R - r 

R + r - 2so 

~/2 

Figure 4.7 A view of the rotation from r to R from a plane normal to the axis of rotation. 

Using simple trigonometry it is seen that tan«(jJ/2) = IIR - rll/IIR + r - 2soll, thus 

IIR - rll = tan((jJ/2)IIR + r - 2soll, (4.27) 

which can be used to form a vector product. To do this requires that we find a vector 

of the same orientation and magnitude as R-r. A vector parallel to R-r, would result 

from the cross product of s (out of the page in Fig. 4.7) and (R + r - 2so). Since the 

vectors sand eR + r - 2so) are orthogonal, the definition of the magnitude of the 

vector product gives 

lis X (R + r - 2so)11 = IlslIll(R + r - 2so)11 = II(R + r - 2so)11 (4.28) 

To obtain the vector R-r, this vector product must be multiplied by the scalar tan«(jJ/2), 

(R - r) = tan«(jJ!2)s x (R + r - 2so). (4.29) 

Note that the axis of rotation, s, and the position vector of the intersection of the axis 

with the constructed plane, So, are collinear, hence s x So = 0 and this equation may be 

rewritten, 

(R - r) = tan«(jJ/2)s X (R + r). (4.30) 
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Recall Rodrigues' equation (4.23) (R - r) = b X (R + r), comparing this with the 

previous equation shows that 

b = tan( <1>12)s, (4.31) 

where <1> is the angle of rotation about s. This is the result that relates the Rodrigues' 

vector to the axis and angle of rotation. (A similar development can be found in [11]). 

4.5.2.3 Axis/Angle Formu1ation of the Rotation Matrix 

It is possible to use Cayley'S fonnula (4.22) and the relationship between the 

Rodrigues' vector and axis of rotation (4.31) to derive an axis/angle representation of 

the rotation matrix. This, however, requires a large amounl of manipUlation, and it is 

considered to be much more useful to derive the result from a graphical approach, 

which is basect upon [29]. 

Consider a vector r rotated about s (unit vector) through an angle <1>, to yield R. 

r 

Figure 4.8 Two views of a general rotation. The vedor R is obtained by rotating I' about s, 

through the angle 1\>. 

The two vectors, r X s and r-s(s.r) are of the same magnitude (the radius of the circle) 

and are orthogonal. The component of the vector R orthogonal to s, defined as Ro: 

R = s(s.r) + Ro (4.32) 

can be seen to be gi ven by 
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R(J = (r-s(s.r))cos<jl - (r X s)sin<jl (4.33) 

as shown in Fig 4.8. Combining (4.32) and (4.33) an expression for R is therefore 

R = s(s.r) + (r-s(s.r))cos<jl - (r X s)sin<jl. (4.34) 

To use this expression as the definition for a rotation matrix it must be possible to 

extract the vector r from all terms to the right hand side of the equation. Telms of the 

form s(s.r) can be rewritten as SST r. The only other non-trivial telm is r X s. Using 

the previously defined skew symmetric matrix definition, a matrix S is defined such 

that Sr = s X r = -r X s. Using these notations, (4.34) may now be rewritten 

T T . R = [ss + (J- ss )cos<jl + Ssm<PJr 

Note that 

while 

= [Icos<jl + ssT (1 - cos<P) + Ssin<jl]r 

=Ar 

SxSy 

,,2 
"y 

S·2 Sx S ), SxSz -, )' 

S2 = 5\.Sy _ s2 s2 
SyS, 21 x <. 

SXSl S)' S Z Sy 

(4.35) 

Since s is a unit vector the diagonal telms of S2 can be rewritten s/ - 1, s/ - 1 and S1,2 

- 1, meaning thal 

(4.36) 



Using this (4.36), (4.35) may be rewritten, 

A = Icos~ + (82 + 1)(1 - cos~) + 8sin~ 

= I + 8\1 - cos~) + 8sjn~. 
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(4.37) 

Thus, given the axis of rotation and the angle of rotation about that axis, it is possible 

to generate the associated rotation matlix. At this point, sufficient tools have been 

developed to proceed to the actual aim of this section: orientation/attitude estimation. 
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4.6 Calculation of Relative Orientation 

As previously discussed, the aim of this work is to use vector observations of a field 

from two bodies to find theiT relative orientation. The previous section showed this to 

be equivalent to finding a rotation matrix that relates the two vector measurements. 

This section shows, using geometric concepts, that it is impossible to uniquely define 

tbe relative orientation of two bodies using the observation of a single vector quantity 

from the two bodies. In otber words, it is shown that given two vectors of the same 

magnitude tbere are an infinite set of rotation matrices that relate the two vectors. 

4.6.1 The Disc Argument 

vVhen a vector is rotated about an axis, the component of the vector along the axis 

remains constant. This being the case, given a pair of vectors, one a rotation of the 

other, the axis of rotation must have the same included angle with both vectors. This 

condition yields a unit disc of possible rotation axes that bisects the angle between the 

two vectors. Each of the infinitude of axes has an associated angle of rotation, and 

when the axis and angle are combined, using the expression (4.37) of the previous 

section, different rotation matrices result. The result of the non-uniqueness of the 

rotation axis is that there are an infinite group orrotation matrices, A, that fulfil the 

relation: 

(4.38) 

4.6.2 The Cone Argument 

Another explanation of what will be referred to as the non-uniqueness problem can be 

given by the 'cone argument' as follows. Consider IlxM11 = IIxFIi = 1. It must be 

possible to find a matrix A such that XF = AXM, where the columns of A are the unit 

vectors of M with respect to F (i.e. A = [XM Y M ZM] where X M is the unit vector 

representing the orientation of the X-axis of M W.r.t F etc.). The equation XF = AXiH is 

a compact expression of three scalar products, which using the properties of 

orthogonal matrices (AT = A-I) can be written 



XkJl = XMoXF 

XM2= YMoXF 

X.lv/3 = ZMoXF 

(4.39) 
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where XM = [XMl XM2 XM3] T. Consider the first of these reI ations. Since both vectors are 

of unit magnitude, this equations states that the included angle of the X-axis of M and 

Xr is arcos(xMd. Vectors, XM, that satisfy this requirement form a cone with XI? as 

longitudinal axis. The same argument can be used to show that each of the axes of M 

lie on cones that share XF as their axis. Aside from lying on the cones, the axes must 

form an orthogonal right-handed system. Since it is possible to find one rotation 

matrix A that relates XF and XM it can be seen that there are an infinite set of matrices 

that fulfil the requirements. The set is formed by rotating the original frame 

(arbitrarily defined), M, about XF. The rotation of the initial solution about XI? results 

in three cones, corresponding to the possible solution spaces of XM,YM and ZM. 

Using either the infinite set of rotation axes or the cone argument shows that it is 

impossible to uniquely and consistently relate two vectors based only upon the vectors 

themselves. 

If the non-uniqueness problem is to be resolved, -additional infonnation is required. 

The minimum information that can be used to make the solution unique is any pair of 

angles between the axes of F and M. In the rowing problem, one of these additional 

angles, say the sweep angle, could be provided through use of a potentiometer. 

Alternatively, multiple vector observations can be made from each frame. 

Considering two vector observations from each of the bodies the disc argument is 

modified. In possession of XM, YM, XF & YF we seek a unique rotation matrix that 

satisfies XI? = AXM and YF = AY1H 
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4.6.3 Two Vector Observations 

Potential axes of rotation lie on the intersection of the discs that bisect the angles 

between the pairs (Xl', XM) and (Yp, YM). If x and y (the vectors that are measured in 

the two frames) are non-collinear then under most conditions the discs are distinct and 

intersect along a line through the origin, giving two possible values for the axis of 

rotation: sand -s, see Figure 4.9. The two axes are associated with angles of <p and -¢ 

and therefore generate the same, unique, rotation matrix. 

s 

Discs of possible 
rotation axes. 

Figure 4.9 The intersection of two unit discs of possible axes of rotation dermes two possible axes 

of rotation sand -so 

What may seem a counterintuitive result is that even if the discs do coincide it is still 

possible, as long as x and yare non-collinear, to identify the relative orientation of 

two bodies. To understand this requires a more thorough investigation of the 

formation of the discs. 

Recall that the disc is formed by the requirement that the axis of rotation has the same 

included angle with any given pair of vectors, one a rotation of the other. 

To find a method by which the axis of rotation can be identified, when the discs are 

coincident requires that we investigate the situations under which this occurs. This is 

undertaken geometrically. Recall the discs bisect the angles between the vector pairs 

(Xl', XM) and (YF, YM). Clearly, for the discs to be coincident requires that there exists 

a single plane that bisects the angles between these pairs. This plane must also pass 

through the origin, since it also bisects any scaJed versions of the vectors. 
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The problem is approached, somewhat 'backwards', i.e. we assume we know the 

orientation of the axis and angle of rotation and then show the conditions under which 

the discs bisecting the vector pairs are coincident. This is preferable to the 'other 

direction' since the vectors and their rotations must be physically realizable, whereas 

if arbitrary vectors are chosen, it may not be possible that they are related by a single 

rotation. 

Assume the axis of rotation lies along the X-axis, this makes the drawing easier but 

does not cause any loss of generality. We now make use of the idea of a sub-space, 

actually a plane, that passes through two arbitrary vectors, XM and YM and the axis of 

rotation, S = X. The plane including XM contains all vectors of the form aXM + ~s. 

Upon rotation, the plane maps to A(axM + ~s) = aAxM + ~As = axl' + ~s, that is, the 

plane that passes through the two vectors XM and s becomes the plane including Xl' and 

s. This situation is shown below in Figure 4.10. The case for two arbitrary vectors, 

XAt and Y M is also shown in Figure 4.11. 

s=x 
Figure 4.10 The plane including the axis of rotation, s, and the vector Xl\{ rotates to form the plane 

including sand Xp 
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Figure 4.11 The planes generated when two arbitrary vectors, XM and YM are rotated about the X

axis. 

Two discs of candidate axes of rotation, Dx and Dy, bisect the planes created by the 

x's and y's respectively. The only condition under which Dx and Dy are coincident is 

seen to be when XM, YM and s all lie on the same plane. In this situation the axis of 

rotation lies at the intersection of the planes containing (XM, YM, s) and (Xl', YF, s). 

This is since the intersection is the invariant direction, and using the definition of the 

planes, i.e. if CiXM + ~s :::: ~s, then A(axM + ~s) :::: A(~s) = ~s. This is shown in Figure 

4.12 for an arbitrary axis of rotation. 

Figure 4.12 The case where XF, YF and s form a linearly dependent set. 

This geometric method of identification of the axis of rotation does not work for cases 

in which (XM, YM, s) are linearly independent (do not lie in a single plane). 

The only case in which taking two vector measurements wiJ] not lead to a unique 

solution is when the vectors are collinear. This is exactly equivalent to the case in 

which only one measurement is taken. Conceptually this leaves a single disc, or an 
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infinite number of planes that can go through each of the 'vector pairs' (XF = Y F) and 

(XM = Y1vf). 

It may seem (hat two completely different methods are being employed to find the axis of 

rotation for the two cases (XM, YN], s) linearly dependent and independent. However, all 

that is different is the method by which the initial defining relations are applied. It is not 

proposed that the above-mentioned methods, or their mathematical translations are used 

to calculate the axis of rotation, The diversion was simply made to prove that even if the 

discs of potential axes of rotation are coincident, it is still possible to find the axis of 

rotation. 

For the interested reader, the mathematical 'translation' of the disc method in the linearly 

independent case is easily reduced to finding a unit vector that is orthogonal to both (X,1Id -

x,,) and (YM - YF), which can be accomplished through normalising the vector product of 

these two 'observation differences'. This is impossible in the linearly dependent case, 

since the observation differences are parallel, and the vector product therefore results in 

the zero vector. 

These methods only allow for the estimation of the axis of rotation. In possession of 

the axis it is, however, possible to find the required angle of rotation, which is unique 

within added integer multiples of 21(; due to an agreed sign convention ('right hand 

rule'). 

The method that is actually used in this work to estimate orientation, simultaneously 

calculates the axis and angle of rotation, using the previously introduced Rodrigues' 

vector, introduced in Section 4.5. It is more robust to sensor noise than the 

mathematical translations of the above methods. 
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4.7 Relative Orientation Estimation 

While it is theoretically possible to find the rotation matrix using the geometric 

approaches implicitly outlined in the previous section, it must be remembered that we 

are dealing with sensors that will have noisy outputs. Error in the vector observations 

will cause the discs to rotate, meaning that the intersection, which is a function of the 

orientation of the two discs, will be removed from the ideal. Rather than calculating 

the orientation exactly, we are therefore reduced to estimating the orientation so that 

some optimality criterion is fulfilled. 

Orientation estimation has applications in wide ranging areas from aerospace to 

computer vision. A number of approaches that have been used are reviewed in full 

detail ill Appendix A2. A new method, that of estimating the Rodrigues' vector, is 

presented below. This method is computationally inexpensive, allows relative 

weightings of measurements and was found to either have accuracy greater than or 

equal to the reviewed methods in the case at hand. 

4.7.1 A New Method of Orientation Estimation 

A feature of all the reviewed algorithms in (see Appendix A2) is that for n~3 it is 

impossible to weight one observation above another. A method of estimating rotation 

from n?2 observations that uses only a 3x3 matrix inversion and allows differential 

weighting of a sort is now presented. This algorithm has not been found anywhere in 

the literature and could be quite a useful new addition to the arsenal of orientation 

estimation techniques. 

In the following, to simplify notation, Rand r are observations of the same vector 

from two bases. Recal1. the Rodrigues' equation (4.23): 

(R - r) = b x (R + r) 

where R = Ar, and b is the Rodrigues' vector. Now c X d = -d X c, so 



R - r = -(R + r) X b 

Define a matrix I, so that be = -(R + r) X c, i.e. 

R3 + r3 

o 
- (R) + tl) 

- (R2 + r2 )J 
Rl + tl 

o 

and the vector A = R - r, so that the (4.40) may be rewritten 

A = Ib. 
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( 4.40) 

( 4.41) 

(4.42) 

I is singular (as are all skew-symmetric matrices), so the system cannot be solved 

simply by inverting L. This is proof in itself that a single vector observation is 

insufficient to specify rel ative orientation. Consider two separate vector quantities 

that are measured in the two bases to be related. Let Y = Ay, Ar= R - r, ;\y = Y - y, 

I,. = I ( defined above), and 

Y] + y] 

o 
- (Y1 + Yl) 

(4.43) 

For simultaneous measurements we then have two matTix equations involving the 

Rodrigues' vector 

or combining them (4.44( a)&(b»: 

[ Ar]=[~r]b Ay 1:)' 

(4.44(a» 

( 4.44(b» 

(4.45) 
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L\c == 1: cb ( 4.46) 

Define E == L\c - 1; cb, then the least squares solution minimises 

T ' T ' .r(b) = E E = (L\c - 1. cb) (L\c - 1. cb). (4.47) 

The solution is 

T -I T b = ( 1: c 1: c) 1: c L\c. (4.48) 

If the vector observations are error free, this is the exact solution for b, i.e. there exists a 

b, such that J(b) == O. 

Conesponding to the discussion in Section 4.6.3, the only condition under which the 

matl1x 1: cT 1; c is singular is if the vectors being observed are collinear. If one of the 

vector observations is a linear combination of the other observation and the axis of 

rotation, the case for which the discs of potential axes of rotation are coincident, the 

matrix remains non-singular. 

Typically, measurements of the same quantity will be obtained using similar 

instmments. If one instrument is known to be more accurate than another it may be 

desired tl1at the observations from this sensor be weighted more heavily than the 

other. This is simply achieved using 'weighted least squares', where the aim is to 

minimise 

(4.49) 

The weighted least squares solution is 

(4.50) 

In possession of an estimate of the Rodrigues' vector associated with the rotation, 

there are a number of ways in which the associated rotation matrix can be formed. 

These include: forming the skew symmetric matrix B associated with b and then 
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using the direct consequence of Cayley's formula A::::: (I - B)-I(I + B); llnding the angle 

of rotation by 2tan- l llbll, and the axis of rotation by blllhil and using the axis-angle 

formulation (4.37); or the following closed form expression [37] 

l bi + I 
b,b2 -b3 bIb, + b'1 

A = 3.. bl b2 + b3 b2 + 1 b2b3 -bl -1 (4.51) 
d 

2 

bl b3 -b2 b2b3 +b j bi + 1 

where b ::::: [b l b2 bJ ] and d ::::: llbl!. The theoretical advantages of the new proposed 

method: 'Least Squares Estimation of the Rodrigues' Vector' are: 

1. it always produces a rotation matrix (i.e. orthogonal matrix with det = + 1) 

2. it functions with n ~ 2 measurements 

3. the major mathematical function is a 3x3 matrix inversion (as compared to 

SVD or eigendecomposition) 

4. it is possible to weight observations even for n = 2 

These characteristics can be compared with those of the reviewed methods in Table 

4.2. 

While the advantages appear positive, it was thought that testing should be done to 

confirm the method's utility. The case for which testing was conducted is similar to 

that to be used in this work - that of two noisy vector observations. So that the new 

method could be compared to a large number of alternatives, Black's method was 

used to generate a third observation from the original two. (If this were not done, the 

only method that could be used as a comparison would be that of Arun.) 

Vector observations fltrue and f2h'ue were generated randomly, with fl, f2, Rl and R2 

formed in the following way: 

f, = fl'rue + TIL Rl = Arllrlle + TIl 

R2 = Ar2trne + TI2 

(4.52) 
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where: A is a rotation matrix generated by a random axis and angle of rotation 

n, and n2 are zero mean Gaussian white noise vectors of variance 0', and 0'2 

Using Black's method the third observations arc 

Name 

Brock 

Constrained 

114] 

Arun et al [4] 

Markley & Bar-

Itzhack [45]1 

Brock 

Unconstrained 

[14J 

C(uta & 

Lackowski [16], 

Markley & Bar

Itzhack [45] 

OrthogonaVNon-
Required 

Independent 
Orthogonal 

Measurements 

Orthogonal ~3 

Orthogonal ~2 

Non-Orthogonal :2:3 

I 

Orthogonal 

Main 

Computation 

Matrix Square 

Root 

SVD 

(3x3) Matrix 

Inversion 

(3x3) Matrix 

Inversion & 

Matrh Square 

Root 

(4.53) 

Comments 

A standard 

solution to the 

question 

posed by 

Wahba. 

Can yield a 

reflection 

matrix or a 

rotation matrix. 

Can be made 

orthogonal by 

conditioning 

the 

measurement 

matrices . 

Not guaranteed 

to be the least 

squares 

olthogonal 

estimate. 

TabJe 4.2 Characteristics of reviewed attitude estimation algorithms. 

Note: Any algorithm that requires T1~3 linearly independent measurements can be 

llsed with Black's method of using the vectors defined by the cross product of the 

vectors in each frame. 
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A master function was written to recursively call all the previously described 

functions with the same observations before changing both A and the observations. 

At the conclusion of each cycle the Frobenius norms of the difference between the 

tme rotation matrix and that calculated by each of the methods was calculated and 

stored. For reference, the methods tested were: 

I. Arun's method with two observations (A2) 

2. Arun's method with three observations (A3) 

3. Brock's constrained method (B) 

4. Markley's unconstrained method (MU) 

5. Markley's unconstrained followed by 'Carta Orthogonalisation' (MC) 

6. Least squares estimation of Rodrigues' vector (RLS) 

7. Weighted least squares estimation of Rodrigues' vector (WRLS2) 

8. Weighted least squares estimation of Rodrigues' vector using three 

observations (WRLS3) 

A number of different values for O'j and 0'2 were used. Increasing both indicated how 

robust the solutions were, while having one larger and tuning the weighted least 

squares method accordingly suggested this approach's efficacy. The W matrices were 

chosen to be of the form 

o ] 
w2 1 ' 

(4.54) 

where 1 and 0 are 3x3 identity and zero matrices respectively, and WI and W2 are the 

weights attributed to the measurement of the pairs (rl,R,) and (r2,R2). Obvious 

extensions were made for the three-measurement case. 

At the conclusion of each run, which consisted of 1000 calls to each routine, the 

means and variances of the Frobenius nOl1llS of the matrix differences were 

calculated. Making comparison easier is the fact that the three solutions to Wahba's 

problem (A2, A3, B) yielded exactly the same results. (It is likely, however, that their 

computation times would be different.) This being the case, the comparison was 
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reduced to that of the general Wahba solution, Markley's unconstrained method, its 

Olthogonalised fonn, and the three listed variants on the proposed Rodrigues' vector 

estimation scheme. 

The Wahba solutions (A2, A3, B) were always better than the unconstrained (MU) 

and orthogonalised versions (Me), but only as good as the Rodrigues trio in the case 

of zero or very low-level noise. Olthogonalising the Markley unconstrained estimate 

reduced error in all circumstances. 

In the case of different values for 0'1 and 0'2 it was easy to assign weightings in the 

two-measurement Rodrigues' estimation scheme to achieve consistently lower error 

norms. It was more difficult, although possible, to select a third value to get better 

performance still. The only conditions under which RLS perfonned better than 

WRLS2 and WRLS3, were if different weightings were assigned to the two actual 

measurements when the noise strengths were the same. Even in this condition the 

elTor norms from WRLS2 and WRLS3 were less than that for the Wabba solutions 

(for reasonable weightings). 

This qualitative testing suggests that the best option for our purpose is either RLS or 

WRLS2. The extra computation time and small perforrriance benefit of WRLS3 as 

compared to WRLS2 mean that its choice was not justified. WRLS2 would be the 

algorithm of choice if 'sensible' choices for the weighting matrices could be made. A 

method for choosing such matrices is discussed in Section 4.9. 

Having chosen a method by which vector observations will be processed, the next 

step is to show that the outputs yielded by the previously described sensors 

(accelerometers and magnetoresistive sensors) are suitable in the application. 



4.8 Theoretical Relative Orientation Estimation Using 

Acceler01TIeters and Magnetoresistive Sensors 
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Up to this point, while sensors have been mentioned, it has simply been assumed that 

two independent vector measurements can be gathered. No mention of the 

relationship between these vector quantities and the actual motion has been made. 

This section rectifies this sitl1ation by considering a general two-body configuration. 

The mapping between the physical motion of the bodies, i.e. linear and rotational 

quantities, and the outputs of theoretical sensors mounted on the bodies is then 

derived. 

4.8.1 ProblelnDefinition 

Two bodies, U and L, with associated coordinate frames U and L, are connected at a 

spherical joint. A frame, J, that is at all times parallel to the inertial frame, F, is 

coincident with the centre of the joint. The position vector OF ---70] that measures the 

translation of the joint is denoted by p. The frames J, U and L have coincident origins 

at the centre of the joint. This situation is shown in Fig. 4.13. 

F 

p 
\ 
I 
\ 
\ 
\ 

\ L 
\ 
\ 
\ , , , 

\ 
\ 

---.. 

,~, 

Figure 4.13 A 2D representation of the problem geometry. 
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A point x is fixed in the upper body, U. The coordinate matrices of this point with 

respect to the bases U and J are related by 

X.r= Axu (4.55) 

where A is the rotation matrix that has as its columns the coordinate matrices of the 

unit vectors of U w.r.t.l (and therefore F). Similarly, for a point, y, fixed in L: 

(4.56) 

where the columns of B give the orientation of L W.r.t. J (F). 

Located at both x and yare sensor clusters consisting of triaxial magnetoresisti ve 

(MR) sensors and triaxial accelerometers. The ultimate aim is to find the orientation 

of U with respect to L using the outputs of these sensors. Before this may be 

achieved, the outputs of these sensors in response to a general motion must be 

derived. This analysis is performed first for the MR sensors, and then the triaxial 

accelerometers. Once the relationships have been derived, schemes for selecting 

parameters in the weighting matrix in the orientation estimation algorithm are 

discussed in Section 4.9. 
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4.8.2 Theoretical Output of the Magnetoresistive Sensor Under General 

Motion 

In the following, the triaxial magnetoresistive sensor, M, is assumed to be a perfect 

sensor of the incident magnetic field, E. This means that each axis of M outputs a 

voltage exactly proportional to the component of E perpendicular to itself. Denoting 

the axes of M as the right-handed orthogonal set of unit vectors M = {XM YM ZM} 

(wllere the unit vectors are defined in the reference basis Fl, and a field that is 

orthogonal to E as F, the output of the sensor, M, is given by the voltage vector V,'Y[ = 
[v xM VyM VzM]T. The components of VM fulfil the following relations: 

VxM = F,XM 

VyM = F'YM 

VzM = F.zM . 

(4.57) 

If the field F is assumed to be a constant vector field, an assumption that is soon 

relaxed, translating the sensor without changing its orientation relative to the field will 

not change its output. Further, since the field is assumed to be constant, rotating the 

sensor will always yield a vector of the same magnitude. It is seen then that 

regardless of the displacement experienced by the sensor, only a rotation is sensed, 

and thus even if the sensors are submitted to non-spherical displacements, the output 

vectors will be able to be related by rotation matrices. Note that these comments 

relating to the rotation of a single triaxial MR sensor also apply to their use in a pair, 

i.e. it is always possible to relate the output of two ideal MR sensors via a rotation 

matrix. If the pair is positioned such that the field incident at each of their locations is 

identical, then the field may be time varying without disturbing the function of the 

sensors since the magnitude of the two observation vectors wijl be the same. 

Define the field that would be measured by an MR sensor aligned with] as fj. Since 

the system's motion does not alter the field, the sensors located in U and L simply 

yield an output that is related to f j by the relevant rotation matrix: 

fJ = Afu (4.58(a)) 
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(4.58(b)) 

(4.59(a)) 

(4.59(b)) 

For the estimation of the relative orientation of U and L, we require vector 

observations from each of these bodies related by a relative rotation matrix. The 

relative rotation matrix is easily found by combining (4.58) and (4.59): 

T. ~T 
fl. = B Afu = C fu 

(4.60(a)) 

(4.60(b)) 

This section has shown that MR sensors are theoretically very useful for measuring 

the relative rotation of two bodies. This is since they effectively 'filter out' any 

translational aspects of the motion and derivatives of the angular motion are 

inconsequential; only the angular orientation of the body affects the output of the MR 

sensors. Unfortunately, the situation is not so simple for accelerometers, as the next 

section shows. 
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4.8.3 Theoretical Output of the Accelerometer Under General Motion 

The triaxial accelerometers are considered as ideal sensors of acceleration, where 

measured acceleration is due to both gravity and motion of the sensor itself. Because 

the 'field' measured by the accelerometers is affected by motion, the analysis is 

considerably more complex than that for the MR sensors. Actually, this section 

shows that the general outputs of two triaxial sensors mounted on two bodies 

undergoing general motion cannot be related via a rotation matrix. It is also shown, 

however, that under certain conditions they can be approximately related. 

The first step is to find the velocities and accelerations of points x and y as measured 

in F. Since x (y) is fixed within U (L), the velocities and accelerations of these points 

with respect to their associated frames is zero: 

.. 

Xl! = Xu = Y L = Y L = 0 (4.6J) 

therefore 

(4.62) 

.. .. 
X.! = Axu (4.63) 

T with similar equations for the lower body, L. Using Xu = A X] , (4.62) gives 

XJ = AA TX] (4.64) 

Consider the derivative of the expression of orthogonality: AAT = 1, 

or (4.65) 

which shows that the matdx AA T is skew-symmetric. Denote this matrix, the 

angular velocity nwtrix, by n, and its time derivate by 2 (which is skew-symmetric 

by definition). 

Now 

X] = n Xl (4.66) 
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and 

(4.67) 

or 

XJ = ~+ Q2 JAXU (4.68) 

(Note: strictly the matrices 0 and S should be Ou and Su but since only the case of 

the upper body is considered here, the subscripts are omitted for simplicity.) Equating 

the expressions (4.63) and (4.68) for the acceleration of the point x, in the fixed frame 

it is seen that 

(4.69) 

This matrix relates the coordinate matrix of x, in U, to the acceleration due to the 

rotation of U in 1. Since 

XF= x]+p (4.70) 

where p is defined above, we have 

XF =XJ+p=Axu+P (4.71 ) 

This is the acceleration of x due to the rotation of U and the translation of 1. Two 

changes need to be made before this quantity will represent the output of an 

accelerometer mounted in U at x. Firstly, note that accelerometers register the 

acceleration not just due to motion, but that due to gravity as well. Making this 

correction, the vector representing the sum of the accelerations is 

'. .. 
a F = X F + g = Ax u + p+ g (4.72) 

Secondly, the calculated expression is 'measured' in F, whereas the accelerometer is 

mounted in U, with axes that are in general non-parallel with F. To account for this, 

the vector of acceleration measured in F is rotated to U. Since A is the rotation matrix 
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that relates U~J and the axes of] and F are parallel, the output of the accelerometer 

at x is given by 

(4.73) 

and following exactly the same derivation for the accelerometer in L gives 

(4.74) 

Following the approach of the MR section, it is desired that the outputs of the 

accelerometers be related via a relative rotation matrix. It can be seen that this is 

actually impossible unless the first quantities in the brackets of the two expressions 

are equaL The following development, however, shows that in cases where 

reasonable limits are put on the magnitude of angular acceleration and velocity and 

the accelerometer is placed close to the joint, the first term in the brackets (henceforth 

known as the rotational term) is negligible compared to the second two. 

Alternatively, mounting arrangements, requiring additional sensors, are discussed that 

allow for general motions. 

In the following II . II denotes the Euclidean (2-norm) or the associated induced matrix 

norm. The following propelties of norms are used; 

1. IIABII ~ IIAIIIIBII 

2. IIA + Ell ~ IIAII + IIBII & Ilx + yll :s; Ilxll + Ilyll 

3. IIAxl1 ~ IIAllllxl1 

where A and E are matrices and x and yare vectors. Also used is thc property of 

rotation matrices (and orthogonal matrices in general) that their induced 2-norm is 

equal to one. This has a physical interpretation in that rotating a vector does not 

cbange its magnitude. 

Since A is a rotation matrix, 
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.. 
denote the 'signal' s = p+ g. Consider first the rotational term of (4.75): 

and 

(4.77) 

It was stated earlier that the matrices nand 2: are associated with vectors m and a. 

The structure of the matrices is as follows 

n~l :3 
-m3 OJ2 

0 - OJ1 

- OJ2 OJ, 0 
(4.78) 

0 -0(3 

a
2 

J ,..... 
0(3 0 -0(1 ... -... -

0(2 0(1 0 

where m = [m 1 m 2 m J]T is the angular velocity vector and a = [0(, 0( 2 0( J1 T is the 

angular acceleration (rate of change of angular velocity) vector. These matrices have 

the property that their product with a vector is equal to the cross product of the 

associated vector, e.g. 

ny=mxy (4.79) 

Since, using the properties of the cross-product, the maximum norm that this vector 

can assume is 

lin ylllllnx = 11m X ylllllax = IImlillyll (4.80) 

when Ilyll = 1, this maximum takes the value of the induced norm, and it is seen that 

II n II = Ilmil (4.81) 

and similarly 11311 = Iiali. A similar argument can be used to show that IIn211 = Ilm112. 

This gives 
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(4.82) 

and the (4.76) can be rewritten 

II j\xu II ~ 11(2:+ Q2 )llllxu II ~ (ilall + Ilco112
) Ilxu II (4.83) 

This gives an upper bound to Ole magnitude of the accelerometer signal that is due to 

the rotational velocity and acceleration of the body. Expected bounds on each of the 

quantities can be reasonably estimated through consideration of the motions that are 

to be monitored. The relative sizes of the terms due to s and the rotational term may 

then be discerned by assuming equality in the initial relationship: 

II accu II = II Axu II + Iisil. (4.84) 

Recall s is the vector sum of the acceleration due to gravity and the linear acceleration 

of the joint. Numerical values are now associated with these quantities. The 

following assumptions are made for the expected smooth motion: 

lIall < 1 rad/s2 

Ilmil < 2 rad/s 

Iisil > 7 m/s2 

The other quantity to be estimated is Ilxull, the Euclidean norm of the vector from the 

accelerometer to the joint about which rotation is occurring. The magnitude of the 

rotational term therefore becomes a linear function of the distance of the 

accelerometer from the joint: 

II Axu II ~ 511xull (4.85) 

It is of course of interest that this quantity be made as smart as possible, i.e. the 

accelerometer should be very close to the joint, but this confIicts with the case in 

which more than two bodies are being monitored. In this truly multi-body 

application, it would be preferable to have one sensor on each body, rather than one at 

each 'end' of the body, close to the joints. The obvious choice in this situation is to 

pi ace the sensors midway between the two joints. Approximating the maximum 

length of ahllman limb segment as 400mm, the distance to the joint is half this value, 

and the magnitude of the rotational term is unity. This is unacceptably large when it 

is considered that the signal term could reasonably be expected to be as small as 7 

(when the joint is accelerating directly upwards at 2m/s2). Central placement of a 
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single accelerometer/MR is therefore not recommended for multi-body 

instrumentation. For multi-body instrumentation, an obvious solution is to place a 

cluster at either end of the limb segment, but this introduces a large number of 

channels. Some alternative methods of reducing, or potentially eliminating the 

effects of the rotational term are now discussed. 

While the previous discussion details the minimisation of rotational effects 011 the 

accelerometer through physical placement, it may also be possible to apply a 

sophisticated signal processing technique to do the same job and therefore reduce the 

required number of sensors. Consider, for example, a 'magnitude filter'. The 

magnitude of the output of each of the accelerometers is a function of the linear 

acceleration of the joint and the rotational term associated with the body on which the 

accelerometer is mounted. This being the case, in the frequency domain the spectra of 

the signals from the two accelerometers may share some similar characteristics (due 

to the signal term) and some different (due to the rotational term). It may be possible 

to use the similarity in the frequency domain to eliminate the effects of the rotational 

tenn. The exception to this would be when the spectra from each effect occupy the 

same region of the frequency domain. 

~What might be the most reliable method of elimination of the rotational term is a 

combination of very basic signal processing and the use of two rigidly linked 

accelerometers. Consider a second triaxial accelerometer. placed on a rigid extension 

from the accelerometerlMR sensor cluster. The output of the additional accelerometer 

(acc2) will be the same as that of the first (accI) except for the rotational tenn. If the 

vectors from the joint to the accelerometers are ]1 and h, then ideally 

where 11 is the vector between the two accelerometers. If the vectors ]1 and hare 

collinear (or near to it), the ratio, 111111/111111 can be used to modify a combination of the 

original accelerometer output and the vector difference of the outputs so that the new 

vector is free of the rotational term: 
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acc* = accl - (acc\ - acc2)11)111/11~11 (4.87) 

This is since (accl - acc2)/11~11, the normalised vector difference, gives the rotational 

term that would result by placing an accelerometer 1 unit from the joint in the 

direction of 11 and lz. Modifications need to be made if 11 and 12 (and hence ~) are not 

collinear, although it is probably accurate enough to assume that this is the case. 

Regardless of the method in which the rotational term is made small, the result is that: 

( 4.88) 

so that accu "" ATB accL = CaccL, giving the accelerometer equivalent of (4.60(a)). 

This section has shown that under certain conditions, an accelerometer may provide 

the additional observations needed to estimate the orientation of U w.r.t. L. The next 

section details the exact way in which these observations are used. The basic ideas of 

this section are used in the design of 'weighting matrices' for more accurate 

orientation estimation. 
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4.9 Orientation Estimation Revisited 

Recall that in Section 4.7, a method for the weighted least squares estimation of the 

Rodrigues' vector was derived (4.50): 

(4.89) 

The matrix 2::c (6x3) contains the sum of the vector outputs of the MR. sensors and 

accelerometers (3x3 matrices stacked on top of each other), and the vector ~c (6x 1) 

the differences. Before the data is summed and differenced it is normalised so that it 

is actually possible that a rotation matrix can relate the measurements. Clearly if 

vectors measured by the same type of instrument are of different magnitude, no 

rotation will bring the two into agreement. This normalisation removes any gain 

discrepancy between sensors and also the dynamic effects discussed for the 

accelerometer in the previous section. 

As documented above, it is likely thallhe accelerometer measurements will have what 

can be considered an 'error signal' due to the angular velocity and acceleration of the 

body on which they are mounted. The data from the two sorts of sensor should be 

weighted so that the lower error level information of the MR sensors is 'believed' 

more than that of the accelerometers in the determination of orientation. 

The accuracy of the accelerometer outputs is a function of the motion that the 

accelerometers are undergoing, thus the optimal (in a very loose sense of the word) 

weighting matrix is non-constant. A method to dynamically produce a sensible 

diagonal weighting matrix W is now described. 

Recall that the exact expression for the two vector outputs was given by (4.73), 

(4.74): 

acc U = A T (Ax u + p+ g ) 

accL =B T CBXL+ p+ g) 

(4.90(a)) 

(4.90(b)) 
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Since the magnitudes of the second (signal) terms are the same, the only reason for 

the accelerometers to give outputs of different magnitudes is due to the differences of 

the rotational terms. If the accelerometers give signals of vastly different magnitude 

then it is safe to assume that the first term in one of the expressions is non-negligible. 

Tn the case where the magnitudes are practically the same there are two possibilities 

l1li the effect of the rotational terms is negligible 

.. the direction and magnitude of the first tenns are such that the signals are of 

similar magnitude 

The first possibility is more likely to occur, requiring only low-level angular 

accelerations and velocities. Based on this reasoning, the greater the discrepancy 

between the magnitudes of the two accelerometer signals, the more significant the 

rotational term and the lower the weighting to be attributed to the accelerometer data. 

The MR data is constantly weighted, as the only error assumed to present in the 

output of these sensors is noise. Thus, the chosen weighting (6x6) matrix is block

diagonal 

[I 0] 
W = 0 'Vace 

(4.91) 

with the identity matrix corresponding to the MR data. Waee is defined 

(4.92) 

where c is a positive constant, discussed below. Note that the greater the difference 

between the magnitudes of the two acceleration measurements the lower the 

weighting assigned to the accelerometer data. In the case where cI Ilaccull-lIaccLII [ < 

1, this will result in 'more notice' being taken of the accelerometer data than the 

magnetoresistive sensor data. Unless the MR data has been adversely affected by 

localized magnetic fields, there is no reason for a higher weighting to be placed on the 

accelerometer data, since the accelerometer data is more 'approximate' due to 
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rotational effects. The high weighting of accelerometer data is prevented by checking 

the magnitude of the difference of the vector norms, i.e. if cI Ilaccull-llaccLII I < 1, then 

W = 1, otherwise it is as previously defined. The constant, c, is chosen by 

considering the magnitude of the vector norm difference after which, the data can be 

considered to be practically unaffected by the rotational terms. For example, if it 

were considered that Illaccull-llaccLIII < .05 were a suitable level, then c = 20. For any 

vector norm difference with magnitude greater than .05, the weighting is given by cl 

Ilaccull-llaccLIII, for a difference less than 0.05, the weighting is unity. 

At this point, it is probably beneficial to summarise the method by which orientation 

is to be estimated. The steps are: 

1. Obtain fL, fu, accu, aCCL. 

2. Calculate norms of each of the quantities 

3. Calculate Wacc = l/(clil accull-II aCCL III) 

4. Create weighting matrix, based on wacc<l or wacc21 

5. Normalise all vector quantities by dividing by the associated norm 

G. Form vector Lle and matrix LC using normalised data 

7. Solve for b using weighted least squares 

The exact form of the vector ~c is 

[ 
fu-fL 1 

Ac = 
. accu - ace'L 

(4.93) 

i.e. the MR data is stacked on top of the accelerometer data, and the rotation matrix 

associated with the obtained Rodrigues' vector is the relative rotation matrix C, 

where: 

fu = efL and accu = C aCCE (4.94) 
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Having described now, the theoretical aspects of the use of outputs of accelerometers 

and MR sensors in the least squares estimation of orientation, the next section 

discusses the cal ibration of the sensors. 
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4.10 Sensor Calibration 

This section contains two methods of calibration for the sensors. The first is simple, 

and assumes that the axes of the sensors are orthogonal, and that the sensors are 

mounted orthogonally within their enclosure. This is quite a large assumption to 

make when all assembly, as previously mentioned, was done 'by eye' with no jig to 

ensure accurate mounting. This method of calibration was applied while the author 

was able to access the sensors and had very little time to gather results. After the 

conected results were found to be poor, the second, more comprehensive method was 

derived, while at a distance of many thousands of kilometres from the sensors. Thus, 

the second method remains unproved. Both are included so that it may be seen where 

the original method went wrong, and also so that future workers may apply the second 

method. 

Before describing the methods of calibration, it is perhaps useful that the purpose of 

calibration is properly defined. In this ca<;e, the purpose is to make the physical 

sensors behave as much as possible like their mathematical idealizations. The axes of 

both sensors are modelled as operators that will yield the scalar product of the 

associated field vector with a unit vector collinear with the physical axes. Deviations 

from this ideality include 

I. Constant offsets: output from the axes when either no field is present, or the 

field is exactly orthogonal to the axis. 

2. Non-linear effects: hysteresis and general deviation of the output of the sensor 

from the scalar product model. 

The first possibility is relatively easy to account for, while the correction of the non

linearities of individual axes would be a very time consuming task to undertake. 

While there will always be some degree of non-linearity in the sensor's 

characteristics, it is hoped/trusted that this will be a negligible component. 

In addition to making the individual axes behave as scalar product operators, certain 

requirements are placed upon the collection of axes as a whole. These are 
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1. Uniform gam among axes of the same sensor type: Once the offsets are 

accounted for, the response of two axes of a similar sensor that are collinear 

and of the same polarity should be equal. 

2. Orthogonality: The axes should form a right-handed orthogonal set. 

These two requirements combined ensure that the field that is being measured by the 

sensor is uniquely and accurately portrayed. The orthogonality of the axes also has 

important consequences that are fully discussed below. 

It should be noted that when talking of calibration purely through use of the ambient 

fields (magnetic or gravitational), there is no need to make explicit reference to the 

type of sensor that is being calibrated. While most people know more about the 

gravitational field than they do about the magnetic field, and may sometimes use this 

knowledge to simplify calibration procedures, e.g. the '2g test' when an 

accelerometer's axis is oriented so that it is positive upward and then downward, this 

is potentially dangerous. If the method of finding vertical is not reliable, or the axis is 

not accurately aligned with the enclosure, errors will result. It is better to make no 

assumptions about the fields that are being measured and make the calibration routine 

general. Further, since both the accelerometers and MR sensors are mounted within 

the same enclosure, it saves time if both sensor types are calibrated using the same 

technique. 

Finally, in this calibration it is not necessary that the voltage output of the sensors be 

converted to a physically meaningful number with associated units. It is required only 

that the equivalent sensors in the same orientation yield the same results. Having 

discussed the purpose of calibration, the first, crude method of calibration is now 

presented. 
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4.10.1 Calibration Assuming Orthogonality of Sensor Axes 

This first method of calibration makes three assumptions about the sensor axes. The 

first is the orthogonality of the axes within a single sensor; the second that the axes of 

the two sensors within an enc10sure have parallel axes; and finally that the axes of the 

sensors are parallel with a coordinate frame defined by the edges of the enc1osure. 

Based on these assumptions, when the enclosure is rotated 1800 about any of the axes 

of its associated frame, the outputs of all the sensor axes, except the two (one from 

each type of sensor) parallel to the axis of rotation, should have their outputs remain 

constant in magnitude, while they change polarity. This is the basis of the method of 

calibration, which is now described below for a general sensor. 

Consider the incident field, f, to be arbitrarily oriented with respect to the X-axis (in 

orientation x(l)) of a sensor. The field may be decomposed into two components, that 

orthogonal to x(1) (forth) and the projection of f onto x(1) (fproj). The projection term, 

which is calculated using the scalar product f.x(1), is the output of the sensor. 

Rotating x(1) 1800 about any axis orthogonal to itself gives x(2) = - x(1). The 

projection term is now given by f.x(2) = - f.x(l); i.e. rotating the axis through 1800 

gives two values equal in magnitude and opposite in sign. This is shown 

diagnmunatically in Figure 4.14. 

Figure 4.14 Rotating an axis through 1800 gives values of equal magnitude and opposite sign. 

This intuitive fact treats the sensors as ideal mathematical objects. In reality the axes 

of each sensor has an associated offset so that even when f is orthogonal to an axis, 

the voltage output is non-zero. This offset must be accounted for if the outputs of the 

sensors are to be related by a rotation matrix. This correction may be achieved by 
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either subtracting the offset from the output during processing or altering the offset 

using hardware. The former option was undertaken as it was considered to be both 

faster and more accurate. (The offsets of the MR sensors can be altered using three 

trim potentiometers attached to the sensor boards.) If the offsets are to be accounted 

for, they must first be determined. This is the first part of the calibration process. 

As shown above, taking two readings from a single axis before and after a 1800 

rotation should, in the absence of an offset, give two values symmetrical dispersed 

about zero, thus the offset can be calculated as the average of the two measured 

outputs. 

The characteristic magnitude of an aXIs may be defined as the voltage output 

(measured from the offset) due to a unit field collinear with the axis. For the sensors' 

outputs to be relatable via a rotation matrix, each axis must have the same 

characteristic magnitude, or the outputs must be modified so that the effects of the 

individual characteristic magnitudes are accounted for. While it would be difficult to 

calculate the characteristic magnitude as it is defined, it is a simpler task to ensure that 

each axis has an identical characteristic magnitude. All the latter requires is that the 

processed output of all axes are similar when the axes are subject to a similar field. 

Consider, for example, taking the output of the X-axis of a sensor, and then rotating· 

tbe sensor so that the Y-axis has the orientation that X used to occupy. Ensuring 

similar characteristic magnitudes simply means that the deviations of the measured 

outputs of the X and Y-axes from the known offsets are identical. In this work the 

similarity of the axes' response was achieved by normalising all the axes, i.e. finding 

the magnitudes of the responses to a standard field and then dividing the axes' outputs 

by these magnitudes. Since the magnitude can be calibrated using the same data as 

was required for the offset determination, calibration can theoretically be completed 

using six tests (two for each axis). 

There are potential problems with using only two tests that may be reduced by using 

more tests. Firstly the direction of the axes might be such that reversing the 

orientation causes only a small change in output. This would occur when the field is 

close to being oI1hogonal to the chosen direction. The smaller the actual change in 
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the magnetic field, the greater the effect of measurement error in the determination of 

offset and magnitude normalisation. Also, when using only two tests, the exact 

orientation of the sensor is of high importance. If more tests are used, errors In 

orientation (assuming a symmetrical spread about the mean) tend to 'average out'. A 

preferable method of calibration uses six tests for each of the axes of the sensor. The 

six tests correspond to three orthogonal axes in both directions (as shown in Figure 

4.15). 

+3 

-1 

-2 +2 

+1 

-3 

Figure 4.15 The six orientations of each axis llsed in calibration of accelerometers and MR 

sensors. 

When using six tests, the offset is given simply as the average of the values of each 

output. This is because each pair of tests has outputs that should be symmetrical 

about the offset. Using this three-dimensional approach allows for a more thorough 

definition of the magnitude of the sensors response to the incident field. The 

magnitude of the incident field, as measured by an axis is given by the Euclidean 

norm of the output (measured from the offset) in three orthogonal directions. Rather 

than using the deviations from the offset in three directions, e.g. + 1, +2 and +3, the 

fo]]owing expression is used 

Mag = Vz{([+1]-[-1])2 + ([+2]-[-2])2 + ([+3]_[_3])2}l!2 (4.95) 
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where [+ 1] indicates the value measured when the axis is colJinear with direction + 1 

etc, 

As well as an offset and a characteristic magnitude, each axis has a polarity that must 

be correctly determined if the axes of the sensor are to form a right-hand coordinate 

system. This polarity can be due either to the orientation of the chip on the board, or 

the wiring of the sensor. While the definition of a positive axis is arbitrary, all axes 

must be treated similarly, A simple method using only two of the six directions is to 

arbitrarily say that [+1] > [-1], i.e. the output when the sensor is in the +1 direction 

should be greater than that when it is in the opposite direction. If the recorded data 

for a particular channel gives [+1J < [-1], then the previously calculated normalising 

factor is made negative. If this method is used, it should be ensured that the chosen 

direction entails a large change in voltage when reversed, The minimum number of 

tests that can be used so that each axis of a three-axis set occupies all six positions 

was found to be nine. This minimum was used in the interests of saving time. 

L z 2. 

~ 
3. Z 4. Z 

X 

X 
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Figure 4.16 The nine orientations of the enclosure frame during calibration 

As previously mentioned, this method of determining axis offset and magnitude 

demands orthogonality of the sensor axes. The actual calibration implicitly requires 

this as it uses the fact that rotating the enclosure about one of its axes is equivalent to 

rotating the sensors about one of their own axes. Since this is assumed for all three 

axes, each of the axes must be parallel with the associated axis of the enclosure frame. 

This applies for both sensors within the same enclosure. If the axes are not 



153 

orthogonal in this way, then, assuming the X-axis of a sensor has components [a. b, c] 

in the enclosure frame, rotating about the Z-axis of the enclosure frame gives the axis 

new components of [-a, -b, c] in a fixed frame with which the enclosure frame was 

previously aligned. In the six orientations [1]-[6] for which the output of the X-axis is 

recorded, the components of the axis in the fixed frame are: 

[ 1 ] : [a, b, c] 

[2]: [-b, a, c] 

[3]: [-a, -17, c] 

[4]: [b, -a, c] 

[5]: [b, c, a] 

[6]: [b, -c, -a] 

In each of these configurations, the output is of the fom1 

(4.96) 

where [mx, my, /11z] are the components of the vector representation of the axis in the 

fixed frame, and f = [f~, fy, fz] is the field in the fixed frame. Summing the six outputs 

gives: 

(0 - b -a + b + b + b2fx + (b + a - b - a + c - C2fy + (c + c + c + c + a - a2fz + 6L1. 

= 2ff, + 4cfz + 6L1. (4.97) 

Whereas under the assumption of orthogonality the sum gives 6L1.. Similarly 

erroneous results are generated by applying the previously described method for 

finding the characteristic magnitude of the axis. Clearly, the problems caused by non

ortllOgonai axes are many. Firstly it leads to errors in the calculation of axis offsets 

and characteristic magnitudes. During the actual operation of the sensor, non

orthogonality also causes problcms, even if the offsets and axis gains are correctly 

determined. Two of the problems are to do with consistency within and between 

sensor clusters. Even if the axes of the accelerometer and MR sensor are orthogonal 

themselves, if the two types of sensor are arbitrarily oriented with respect to each 
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other within the enclosure, the vector observations are being made from different 

bases and hence cannot be used in the proposed method of estimating orientation. If 

the accelerometer andMR sensor axes of each cluster are parallel, but arbitrarily 

oriented within the enclosure, then a simpler type of error results. The discrepancy 

caused by this enor in orientation is theoretically a constant rotation matrix that 

relates the orientation of one cluster to the other (in the ideal case, this is the identity 

matrix). 

The following method of calibration makes no assumptions about the orientations of 

the axes within the enclosure, yet theoretical1y yields data that would be obtained if 

the sensor axes were orthogonal and parallel to the enclosure frame. 
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4.10.2 Calibration Assuming Axes Non-Orthogonal 

Consider three non-orthogonal axes, ffij i = 1,2,3 of a field sensor fixed in a cubic 

enclosure, which itself has an orthogonal coordinate frame [Xc Y c Zc] (the axes of 

which are parallel with the edges of the cube and forming a right-handed system). 

The enclosure frame is initially aligned with a fixed global coordinate system [X p Y p 

Zp]. The field, f, has unknown components [f~JyJz] in the fixed frame. Consider first 

the axis ml which has unknown components [a, 17, c] in the enclosure frame. The 

situation is shown in Figure 4.17 

ZC=ZF 

XC=XF 

I 
I 
I 
t 
t 

f 

'f' 1 z , 
17 1 f~ 

Figure 4.17 The orientation of m1 and f in the enclosure and fixed frames, which are shown as 

coincident. 

Ideally, the axis would give an output proportional to the scalar product: 

af~ + N~ + c.f~, (4.98) 

However, there is an unknown offset on the output of the axis that must be 

determined, and the output is therefore given by 

CI = af~ + b.f~ + (fz + D., (4.98) 

where D. is the unknown (assumed constant) offset. If the axis is rotated about Zp by 

180°, the axis now has components, as described in the previous section, [-a -17 c] in 

the fixed frame, and the output in this configuration is therefore given by 



(4.99) 

Similarly rotating the original configuration about the XF and YFaxes gives, 

respecti vel y 

C:1 =afx - bly - clz + L1 

C4 =-afx + bly - c;f~ + L1 

(4.100) 

(4.101) 
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It is seen that by adding together the outputs collected with the axis in these four 

configurations, the result is simply 4Ll, i.e. averaging the recorded data gives Ll (Of at 

least an approximation of L1). There, is more information in these tests, however, than 

the value of Ll. Writing the scalar relations in the following matrix form: 

1 1 1 .r,a c1 

-J -1 1 1 Iyh c2 

1 -1 -1 1 j~c C 3 

(4.102) 

-1 1 -1 1 L1 c 4 

Ad=c (4.103) 

Since A is non-singular it is possible to calculate d, which contains infOlmation about 

the orientation of ml in the enclosure frame. If the enclosure is reofiented in the fixed 

frame so that the components of the axis in that frame are [c, a, bj, which is achieved 

by making Xc = Y F, Y c = ZF and Zc = XF and the same rotations are performed, then 

the matrix equation becomes 

1 1 Ixc e1 

-1 -1 fl'a e2 (4.104) 
1 -1 -1 I)J e, 

.l 

-J -1 1 L1 e4 

Similarly orienting the enclosure so that [b, c, a] are the coordinates of the axis in the 

fixed frame, i.e. Xc = Zr, Yc = XF and Zc = Y F, then the equations are 
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I 1 ftb h\ 
-I -\ 1 1 fyc h2 

== (4.105) 
1 -1 -j 1 fza h3 

-J 1 -] ] L1 h4 

From these twelve tests, the results are three estimates of L1, (of which the average is 

used), and the following products, written in matrix form: 

l'::: 
ail' 

af l ld,. ~~: . (4.106) 

cf cf cfz ~ \. • ,1' 

Thus, three scalar multiples of the desired coordinate matrix are furnished, i.e. fxmt, 

f~ml and .f~ml' Performing similar operations for the other two axes of the triaxial 

sensor, the results are estimates of the axis offsets and the scaled representations of 

the axes: (f~m2,fym2,fzm2) and (f~m3,jym3,fzm3). 

Ideally tl1e vectors represented by the coordinate matrices fxmi' !ymi,fzmj, should be 

collinear, with lengths and sense dictated by fx;fy, fz.Due to a large number of 

factors, including orientation errors (i.e. errors made during rotation of the enclosure) 

and sensor noise, the vectors will not be collinear. There are two pieces of 

information in the representation mi = [ai, bi, q], the orientation of the axis with 

respect to the enclosure, and the gain of the sensor axis. Ideally, all axes would have 

the same gain, but this is not a safe assumption due to manufacturing variabijity. If 

the outputs of the sensor axes are to be related using a rotation matrix, the 

characteristic gain of each axis must be calculated and accounted for. While it is not 

possible to find the exact gain of each axis, without precisely knowing the field in 

which the sensor is located, it is easy to define the gain within a multiplicative 

constant, and if this is done consistently, this is sufficient. A method for finding the 

gain that uses all the collected information is now described. The sum of the norms of 

tl1e vector outputs is seen to be: 



158 

(4.107) 

The positive scalar, F, is common for all axes, therefore, if we assume that Ilmdl = gj= 

/, then 

(4.108) 

Using this value for F, the characteristic gains of the other axes may be found by 

(4.109) 

The Ilumerator is simply the sum of the norms of the three calculated scaled versions 

of the coordinate matrices of mi. It should be remembered that if two triaxial sensors 

are to be used in an application they must both be calibrated in the same magnetic 

field. If this is not the case, the value F may be different for the two sensors and 

hence the calculated gains will not be consistent between sensors. 

Now that both the offsets and gains of each axis have been determined, the issue turns 

to the orthogonalisation of the sensor axes. The first step in this process is the 

normalization of the three coordinate matrices representing the orientation of the axes 

in the enclosure frame. The resulting unit vectors are denoted Ui, i.e. 

(4.110) 

The vectors Ui are in general not orthogonaL Orthogonality is required if the fields 

are to be able to be measured uniquely. Therefore, the next part of the process is the 

orthogonalisation of the vectors so that a linear combination of axis outputs can be 

used to give the same output as would be the case if the sensor axes were truly 

orthogonal, but still arbitrarily oriented within the enclosure. This orthogonalisation 

is achieved using the Gram-Schmidt process and transforms Ui to ni. First, one of the 

vectors is chosen a<; the reference, in this case Uj. Next a unit vector, n2, is created by 

removing the component of U2 in the direction of nj = Uj and then normalizing the 
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resulting vector. Similarly, 113 is created by removing the components of U3 in the 

directions of III and 112 and then normalizing, i.e. 

III =UI 

112 = (U2 - (U2.l1dl1l)/lIu2 - (U2.Ul)lllll 

113 = (U3 - (U3.112)n2 - (U3.11dl1])/llu3 - (U3.112)n2 - (U3.11l)lltll 

(4.111(a)) 

(4.111(b)) 

(4.111(c)) 

At the conclusion of this process, [nl 112 113J is an orthogonal set of unit vectors. 

While there is no guarantee that the set will be 'right-handed', this is likely since the 

physical axes have been arranged in this way and the Gram-Schmidt process simply 

removes the components of the vector representations that are non-orthogonal to the 

other vectors in the frame. Should it be found that the set is not right-handed, i.e. nl X 

112 = -113, then the components of 113 can be negated, without affecting the 

orthogonality of the set, and the frame will then be right-handed. 

The matrix composed of the unit vectors, llj: 

(4.112) 

is the rotation matrix that expresses the orientation of the orthogonalised sensor axes· 

in the enclosure frame. The final step in the process is to rotate this Olihogonalised 

frame so that it coincides with the enclosure frame. This is required for a number of 

reasons. Firstly, two triaxial sensors are located within each enclosure, and it is 

required that the vector observations are referred to a common frame. It is also 

physically useful to have the enclosure frame as a visible reference to the true 

orientation of the sensors (or at least the transformed versions of them). 

The derived rotation matrix, N, relates the coordinate matrices of vectors measured in 

the arbitrarily oriented Olihogonal frame (ra) to the enclosure frame (re) , i.e. 

(4.113) 
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Hence, knowing the orientation of the orthogonalised sensor within the enclosure 

frame and the output that this sensor would have is equivalent to having an 0l1hogonal 

sensor mounted collinear with the enclosure frame. 

While the method of determination of N has been described, no mention has been 

made of the method of calculation of r a, the output that the arbitrarily oriented 

orthogonal sensor. The processing of the outputs of the actual sensor, which is now 

described, runs in parallel to that applied to the vector representations of the sensor 

axes. 

After subtracting the calculated offsets from the axis outputs, each of the corrected 

values, denoted 111j i ;::: 1,2,3, are divided by the calculated gains: 

(4.114) 

where Uj is the output associated with the m'bitrarily oriented unit vector Uj. This 

would give the outputs of all the sensor axes if they had the same gain, but were still 

arbitrarily oriented and non-orthogonal. The next step is the processing of Ui to 

produce the theoretical outputs of the orthogonal, but arbitrarily oriented sensor, the 

part of the processing associated with the Gram-Schmidt process and the unit vectors 

nj. Just as with the physical axes, the outputs of the theoretical axes is given by the 

scalar product of the vector representation with the fieJd vector, Le. l1j ;::: ni.f. 

Recalling the definitions of nj, tllls gives the following relations: 

n I ;::: n I .f ;::: U j .f ;::: U 1 

n2;::: n 2.f;::: (u},f - (u2.nl)nl.f)/llu2 - (u2.nl)n111 

;::: (U2 - (u2.nl)nl)/lIu2 - (u2.n t)ndl 

(4.1l5(a)) 

(4.1 15(b)) 

113;::: n3.f;::: (U3,f - (U3.n2)n2,f - (U3.n l)n j J)jllu3 - (U3.n2)n2 - (u3.n dnlll 

;::: (u) - (U3.n2)n2 - (U3.nt)nl)/llu3 - (U3.n2)n2 - (u3.nt)ndl. (4.115(c)) 

Whi Ie these calculations may look a little complex, they can be rewritten in the form 

11.1;::: Ut 

n2;::: (U2 - C2jnl)IN2 

(4.116(£1)) 

(4.1l6(b)) 
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(4.116(c)) 

where Cij = uj.nj and N2 and No, (the norm terms associated with (4.115)) are constants. 

At this stage, the /Ii are the outputs that would be obtained if an orthogonal sensor 

were arbitrarily oriented within the enclosure. The final step is to multiply the 

coordinate matrix [nJ 712 Tl3]T by the rotation matrix N. This gives the output that 

would be obtained if three orthogonal axes of the same gain were oriented so that they 

were collinear with the orthogonal enclosure frame. 

Use of this method of calibration should improve the results gathered by the sensor 

clusters. Once good results have been collected, the issue turns to methods by which 

they may be usefully presented (the rowing coach who has discussed Rodrigues' 

vectors with his athletes is rare!). 
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4.11 Data Presentation 

While the actual output of the new orientation estimation procedure is the least

squares estimate of the Rodrigues' vector, the relative rotation matrix can be easily 

calculated (as previously shown), Still the rotation matrix is not an ideal method of 

presenting results to the rowing community, more processing is clearly required. 

Recall that the relative rotation matrix has its columns the orientation of the axes of 

one basis with respect to the other. In the situation where it is the motion of one 

object relative to another that is of interest, this means that by judicious placement of 

sensor clusters the presentation of results can be simplified. In the case where one 

cluster is fixed to the oar so that one axis, say the Y-axis, is collinear with the 

longitudinal axis of the oar and the second cluster is oriented so that when the oar is at 

a 'zero position' all axes of both clusters are parallel, then the second column of the 

relative rotation matrix gives the orientation of the axis of the oar-shaft with respect to 

the boat. The orientation of the longitudinal axis of the oar gives two of the three 

angles required to exactly specify the orientation of the oar. The third angle is the 

rotation of the oar about its own longitudinal axis, the feathering of the oar, which 

must be determined using either of the other columns of the rotation matrix. 

Based on the structure of the calculated relative rotation matrix, the results could 

clearly be presented graphically. In addition to a line representing the Y-axis 

(collinear with the shaft of the oar), either the Z or X-axes would have to be added so 

that feathering could be observed. While this method of presentation would be 

aesthetically pleasing, it is unlikely that sufficient infol111ation could be gleaned by 

coaches/athletes. It is thought that numerical representation of the oar angles is a 

more suitable method of presentation, or at the least that three separate plots of the oar 

angles are generated. 

There are a number of conventions used to express the orientation of an object using 

three angles, including manyEuler angle variants, but to be useful to the rower/coach 

the angles must be physically meaningful. Such an angle system, based on that 

presented by Zatsiorsky and Yakunin [70], is used in this work. The angles measured 

are: 

a: the swing angle created by projecting the loom of the oar onto the horizontal plane 



y: the angle of the oar with respect to the horizontal 

~: the rotation of the oar about its axis (feathedng) 

163 

'fhe situation is shown in Figure 4.18, which is followed by descriptions of methods 

by which the three angles may be determined. 
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Figure 4.18 The orientation of the oar-mounted cluster with respect to the boat-mounted cluster, 

and the positive definitions of a and y. 

Since the Y-axis represents the shaft of the oar in the boat coordinate system, 

projecting it onto the horizontal plane is simply using the first two components of the. 

second column of the relative rotation matrix. The angle between this projection and 

Yboat is found using the dot product. Defining the unit vector in the direction of Yboat 

as Yboat and the projection of the unit vector representing the oar onto the Xboat,Yboat 

plane as Yoa/'Y = LVoar(1) Yoar(2) 0]1' (i.e. the vector created by the X and Y components 

of Yoar and zero for the Z component) 

.) II x'YII Your(2 = Yoar cosu (4.117) 

(4.118) 
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Since cosine is an even function, the sign of alpha must be determined by another 

method. Arbitnu'ily assigning a positive when Your is forward of Yboar as shown in 

Fig. 4.18, a may be fully defined by 

y 

lal = acos( ()'oar(2)/(Yoar(l)2 + Yoar(2)2) 112) 

a == lal if Yoar(l) < 0, else a == - lal 

(4.] 19) 

The tilt angle is also calculated using the projection You/,Y, This time, however, the 

angle is found usi ng the dot product of Yoar with Yoa/'S: 

You1"YourX ,Y == IIYoarIIIlYou/,'YIl cosy 

Ily oar xSI12 == Ily ou/"Y II cosy 

cosy == IlYoa/'YIl (4.] 20) 

Again, the sign of the angle must be detennined through consideration of the elements 

of Ycmr. In this case, if the Z component of Your is positive (Yoar(3) > 0), then the tilt is 

defined positive, i.e. 

Iyl == acosllYou/,slI (4.121) 

y == Irl if Your(3) > 0, else y == - Iyl 

It may have been noticed that ~ is not included in the previous diagram. This is 

because its definition and determination is a little more involved than those for a and 

y. Following Zatsiorsky and Yakunin, [3 is the angle between Zoar and an 'auxiliary 

axis', Z\ that forms the angle y with Zbout. This clumsy sounding definition is 

110pefully clarified in Figure 4.19. 
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Figure 4.19 The auxiliary axis, Z", and the feathering angle, p. 
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The purpose of the auxiliary axis is to negate the part of the rotation due to pitching of 

the oar, which would be included if the scalar product of Zboat and Zoar were simply 

used. The auxiliary axis lies in the plane defined by Yoar and Zhoat and has the same 

included angle and sense with Zboal that Yoar has with its projection onto the Xhoal,yboal 

plane, i.e. y. This fact can be used to create zo, by treating Zboat and the unit vector in 

the direction of Yoa/'Y as the basis for the plane in-which ZO lies. The new unit vector 

in the direction of Yoa/'Y is denoted yO and is found by normalising Yoa/,y, i.e. yO = 
Yoa/'Y/II Yoa/'Y II. Reference to Fig. 4.19 shows that ZO has the same relationship with 

Zboat that Your has with yO, and that the relationship of Your with Zbont is the same as ZO 

and _yo. Thus, ZO can be written as 

(4.122) 

Upon the calculation of this unit vector, the feathering angle can be determined by 

(4.123) 

Again due to the even nature of the cosine function, extra information is required to 

assign a sense to~. This can be achieved by finding the sign of the cosine of the 
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angle between ZO and the cross product of yO and Zboat, i.e. if the cross product of yO 

and Zboal is defined as xu, i.e. 

( 4.124) 

where XO clearly lies in the Xboab Ybout plane, and forms a right handed orthogonal axis 

system with yO and Zboal, then ~ can be said to be positive if ZOaL"xo is positive (the 

included angle is less than 90 degrees) and negative otherwise. 
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4.] 2 Discussion 

While it is believed that with the new calibration method in place, the data yielded by 

tbe sensors, in combination with the relative orientation algorithm, should yield sound 

results, this will have to be verified by a future researcher, as the length and breadth of 

the Pacific Ocean now separate the author from the apparatus. It is hoped that 

research is continued in this area, as there are many applications for this technology, 

in sports and biomedical engineering in particular. 
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Chapter 5 

The ultimate rowing performance indicator is not the peak force generated during the 

stroke, the stroke 'shape', or the acceleration profile of the rower within the boat, but 

the culmination of all these effects, the actual motion of the boat. From a systems 

point of view, up to this point only the inputs have been measured. The boat motion: 

displacement, velocity and acceleration are the outputs that the rower is trying to 

control through his technique. 

Obviously, the time taken to cross a 'piece' of race length, say 2km, conveys overall 

performance, but there are very many interesting effects within the general motion 

that warrant investigation. Such effects include those caused by the motion of the 

rower, such as periodic speed variation. 

This chapter describes a method of measuring the motion of the system's centre of 

mass. This is achieved through individual measurement of the kinematic parameters 

of the two substantial system components: the rower and the boat. 

Since the rower's bulk is centred more or less over the seat, measurement of the 

1110tion of the seat is a good indicator of the motion of the rower's centre of mass. An 

optical rotary encoder was chosen to measure the seat displacement. This 

necessitated the design of a mounting bracket to force the encoder wheel to run on the 

chosen surface. To determine velocity and acceleration from the displacement signal 

requires differentiation. This can be problematic due to the quantisation noise on the 

output signal. A simple method of real time differentiation using a Kalman filtering 

approach is discussed and results are presented. 

Two sensors are used to measure the motion of the boat: an accelerometer, and a 

submerged impeller. The outputs of these two sensors are fused using a Kalman filter 

of very similar design to that used as a differentiator for the seat motion. 
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The first part of this chapter reviews methods that have previously been used to 

measure rowing seat displacement, both on and off the water (in boats and on 

ergometers). After justifying the selection of the rotary encoder for the task, the 

design of the mounting bracket is described. Fo]]owing this is a section on the design 

of Kalman filters for use as a differentiator of random 'periodic' signals. Numerous 

otber techniques of numerical differentiation are also explored. After the presentation 

of sample results, attention is turned to the problem of measuring the motion of the 

boat. While the accelerometer used is exactly the same as that described in Chapter 4, 

some details regarding the additional sensor, a commercially available submerged 

impeller are required. The simple modifications required to transform the Kalman 

'differentiator' to a basic sensor fusion technique are then described. 
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5.1 Seat Motion Measurement 

5. J.1 Sensing Requirements 

The displacement, velocity and acceleration of the seat are all parameters of interest, 

thus all three must be able to be determined from the output of the transducer used to 

sense the motion. It was considered, however, that as a base requirement the 

displacement should be available in real-time. This is because it is more easily 

interpreted than the velocity and acceleration, i.e. a direct correspondence can be 

drawn between the motion of the rower and the data on the screen, whereas in the 

cases of acceleration, more 'processing' hal) to be peli'ormed in the mind of the 

observer to negate the effects of boat motion. It was also considered that such a 

'transparent' signal could act as a check to prove that the system was working. 

5.1.2 Previous and Considered Methods 

Seat motion does not seem to have been a priority for previous researchers, as until 

very recently it has not been measured. This is strange when it is considered that the 

motion of the rower(s) within the boat has a large impact on the vessel's progress. 

Three very different methods have been used. Martin et al [50J analysed film of 

rowing motion and used the observed beginning and end of seat motion as indicators 

in the study of the effect of stroke rate on the velocity of the rowing shell. It is 

conceivable that such a system could be used to actually measure the position of the 

seat, although this would be problematic since a camera would have to operate at aLI 

times, creating a large computational burden if the camera were computer driven. 

Also the film has to be analysed after it is collected to yield any results (unless some 

real-time computer vision system is used, which would probably be expensive both 

computationally and monetarily.) 

More recently, Rosow [58], [59] used a rotary potentiometer to study the motion of 

the seat on a rowing ergometer. It is not stated, but it is presumed that a geared wheel 

attached to the potentiometer ran on the surface of the ergometer beam. Farquhar [24J 
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used a similar approach, with the potentiometer replaced by a rotary encoder. The use 

of encoders in the measurement of seat movement is considered below. 

Another method of using a potentiometer, implemented by Loschner and Smith [43J, 

to measure seat displacement is to drive a potentiometer via a cable attached to the 

seat. A spring-loaded drum unit that houses the potentiometer prevents slack in the 

cable that would cause measurement error. This method is also discussed below. 

McBride [46] used a 'Hall-effect sensor' and 'magnetic track' to measure seat 

displacement. It is not stated whether the sensor is incremental, i.e. pulses are 

counted, or whether the magnetic track allows for actual position measurement. 

Certainly the non-contact approach of the sensor makes it attractive, but the lack of 

information meant the approach was not considered further. The methods of 

instrumentation that were considered are now described. 

At first it was thought that a non-contact sensor would be the ideal solution, since this 

would not impede the motion of the seat. To this end an ultrasonic displacement 

sensor was considered and a Banner Q45-UL was obtained for trial (Fig. 5.l). This is 

an analogue sensor, produced for industrial applications operated on a time of arrival 

basis, with stated operating range of 100 to 1400mm, tesolutionof 0.25mm and 

repeatability of 0.1 % of the sensing distance. This range is acceptable since the 

movement of the seat is limited by the tracks, which are approximately 800mm in 

length. The characteristics of the sensor were dependent upon both the material and 

physical size of the implemented reflector, with a 30mmx30mm aluminium plate 

recommended. The Q45-UL has attractive features, such as a programmable sensing 

window and splash proof casing in addition to the non-contact modality. In operation 

the sensor would be mounted a distance greater than 100mm behind the extreme rear 

seat position and a reflector would be fixed to the rear of the seat. 
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FiglllT 5.1 TIll' Uannn Q45-LL Ulrasonic Sensor 

Cjualitatin: testing of the ()45-UL was underLaken. with the sensor output levcl 

vicwed on an oscilloscope. The amount of fluctuation and noise on the signal' \vhcn 

the sensor ami refi ecLor Werc sLationary appeared Lo be hi ,!! h. The process or 

dillcrcillialion that would he required to estimate veloe ity and aceeleration magnifies 

;111] 11()1:,l' Ull tile d i:-;plaeel1lent s ignal. Another potential prohlem is the sensor 

Illi ~ lakenl\ idcl1til·ying. another surrace as the reflector and returnin g an erroneous 

~ I t'- Ilal. All of thesc prohlems could prohably ht: overcome throu gh the carcl'lIl 

placelllent or th e rdlccLor and good ,<-;ignal processing, hut aL a eo:-;L or ~ SXOo . it was 

decided that the price \-vas too high ror the required amount or work, Also. in some 

l 1(l~l tS. particularly singles, therc is very lillie room hehind the extreme Lravel or the 

:'L'<lt. Ille~lIling tlIaL lI10unting the sensor woulll he diilicull. 

.\11 ;liternalive non-con[;\ct mclhod or measurlll g the seaL ll1ocion IS 10 use 

;ILTc iemlllcters. Measuring acceleration rather than position means that rather than 

IL'(]uirin ,!! tile noisy dillerenliation process, the signal is integrat ed to give \'e locity and 

Jlo :-; itioll. Wliereas integratioll call be said Lo average the dlects or signal noise (ove r 

tile ,~ llnrt term at leas t) . it cerl;linly does nOL eliminate it. The rirst and second inLegral 

or a \"hile noise :-;igllal arc ca lled random walks and ramps respec ti ve ly. Examples ui 

tliese Ili lcllonlend arc shoWIl in h gure 5.2. i\ mclhod or reducing the erfcet of the 

i\ltL'gl~ltl'cI signal noise is to periouil'ally reset the integrator ,It a particul,lr point. [n 

thl' L';tSe of monitoring scat l11otion thi s can he achievL:u through the lise or a limit 

~w ilcll. In reality thi s c()uld he a reed sw itch ~lctivated hY;l magnl't on the undcrsiue 

(llthL' .~c al. ThL' p() ~ iti()n woulu be reset eaeh time the ~witch is activated. 
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Figure 5.2 A Gaussian white noise random signal and the first two integrals (cumulative sums), a 

random wall' and a random ramp. Note the vastly different scales for unit divisions in the plots: 

for the original signal, the division is unity, for the random walk, the division is 50 and for the 

mmp, it is lxl05 

To trial several methods of measuring seat motion using an accelerometer, a test rig 

was set up. An accelerometer and optical encoder were attached to a sliding rowing 

seat and sampled during representative motion. The output of the encoder was used 

for two purposes, firstly to act as a reference to appraise the integrated signal of the 
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acceJ.crometer and secondly to act as a 'virtual limit switch'. After sampling, the data 

was imported into a function written in MATLAB that: 

1. cOllverted the encoder and accelerometer outputs into compatible units (m and 

m/s2) 

2. identified the zero crossings* as defined by the encoder and made a vector 

with sampling instants corresponding to the locations of the zero crossings 

3. doubly integrated the accelerometer signal using the Simpson rule and reset 

the displacement at each instant contained in the 'reset vector'. 

*When the instrumentation was started, the value of the encoder was set to zero, thus 

zero crossings are associated with instants where the seat is in the same position at the 

culmination of sampling. 

Trials showed that between resets, the integrated accelerometer output diverged from 

the encoder signal considerably. An obvious method of minimising this effect is to 

increase the number of limit switches. A set-up that consisted of three magnets on the 

seat and five limit switches was conceived, as shown in Figure 5.3. The spacing 

between magnets A&C is such that two reed switches may be simultaneously 

activated. If only one switch is activated it is known that magnet B must be directly 

over that switch (the extreme switches (-2&2) are placed so that it is impossible for 

the opposing extreme magnets (C&A) to activate them). Using this method it is 

possible to identify the position B as one of nine discrete possibilities. 

~ 

I 
IB Ie 

I 

-2 -J o 1 2 

Figure 5.3 The seat, with three reed switches attached, traverses the tracl{, which has five evenly 

spaced magnets on it. 
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Results obtained through integration and resets using an obvious extension of the 

aforementioned computational method are shown in Figures 5.4 & 5.5. Each time the 

integrators are reset, a spike results in the output. Filtering can reduce this effect, but 

as shown in Figure 5.6, this introduces a delay to the estimated signal. 

Integrated and Reset Accelerometer Si gnal 
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FigUl'c 5.4 Typical results obtained by integrating and resetting accelerometers, using the three 

switch, 5 magnet approach. The circles indicate reset points. 
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Figure 5.5 Two more examples of the results obtained using the reset accelerometer approach. 

The upper plot is the same as Figure 5.4, with the reset indicators removed, while the lower plot 

shows a close up of the spikes caused by resetting. 

Filtered Reset Integrated Accelerometer Output and Encoder Signal 
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Figure 5.6 The delay introduced by filtering the integrated and reset output. 

While the results of integration, reset and filtering of the accelerometer output were 

encouraging there were three problems, the first of which is the lag introduced by the 

filtering. Since timing of events was of interest it was desirable that Jag be avoided. 
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This is actually a small problem when the magnitude of the delay caused by filtering 

is considered. The second problem has not yet been mentioned and is concerned with 

the motion of the boal. Since the boat is undergoing motion the acceleration measured 

by the accelerometer on the seat is a combination of the boat motion, seat motion and 

gravity. It was considered that compensating for the motion of the boat would incur 

too much computational burden to produce a seat displacement signal in real time. 

Lastly, the method of resetting the integrators at known positions does not aid in the 

estimation of velocity. Thus, while position may be found by this method, velocity 

would require another procedure. Such a procedure could be setting the velocity to 

zero every time the estimated position experiences a maximum. This would by 

necessity be a post-processing measure. While the accelerometer and switch method 

was abandoned, it was found, as a matter of interest, that the reed switches by 

themselves could emulate the motion of the seat to a high degree of accuracy using 

cubic splines. Examples of this are shown in Figures 5.7 & 5.8. 

Cubic Spline Interpolation and Encoder Signal 
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Figure 5.7 Cubic spline interpolation of the reset points (indicated by circles) and the encoder 

output. 
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Cubic Spline Interpolation and Encoder Signal 
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Figure 5.8 Position estimates achieved by cubic spline interpolation of limit switch data. The 

differences between the interpolant and the encoder data are only evident at some of the turning 

points. 

On the basis of these results, various attempts were made to devise a real time cubic 

spline interpolation scheme. Two algorithms were designed, both of which were 

initialised in the same way, by creating an initialising cubic and then enforcing 

continuity. This is probably most easily understood by considering Figure 5.9. 

Position fixes, corresponding to instants at which reed switches are closed glve 

temporaJ-spatial coordinates (tj,di). At every instant, noisy acceleration measurements 

are available. Four conditions are required to specify the initial cubic interpolant, 

5'1 (t). At 12 these conditions are available, Le. the positions and accelerations at tJ and 

t2. Using these conditions is equivalent to giving the endpoints of the curve, as well 

as the second delivative of the curve with respect to t. 
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Figure 5.9 An illustration of the implemented cubic spline method. Position fixes di occur at 

times ti and interpolants Si are created between the coordinates (tj,di) and (t;+bdi+l)' 

The initial interpolant is of the form: 

(5.1) 

Consider the seat to be in between position fixes at an arbitrary time t (t2 ~ t ~ t3). The 

only information available at t is the acceleration, a(t). It is possible to create a cubic, 

S'2(t), to approximate the motion, using this value of acceleration by imposing 

continuity of S'2(t) with SI(t2). This continuity involves the actual value of the new 

cubic S' 2(t) at f2, as weJJ as its slope and 'curvature' (velocity and acceleration). At 

each consecutive sampling instant only one coefficient of the cubic has to be 

recalculated, that corresponding to the (t - t2)3 term, since all others are fixed by the 

continuity requirements. As soon as the seat reaches position d3 , the initialising cubic 

becomes S2(t), which is calculated in a way entirely analogous to S\Ct), using (t2,d2), 

(t3,d3), a(t2) and aCt3) (where a(tD is the acceleration at tj). The continuity of S '3(t) at 

t3 is then used to specify all but one of the coefficients, which is calculated using a(t). 

This method suffered from the fact that the value of the interpolant at t depended only 

on the value of three values of acceleration, the two that specified the initialising 

interpol ant, and that at t. If, in patiicular, a value of acceleration used to generate the 

initialising cubic had a large amount of error, the interpolating cubic was of poor 

quality. This is in contrast to numerical integration schemes where the (assumed) 

zero mean nature of noise signals is somewhat 'averaged out' through summation 

over short periods. 
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A second algorithm was designed that differed only in the way in which the cubic 

term of the function is calculated. The method was to impose a particular slope 

(velocity) at the point of interest rather than a 'curvature' (acceleration). To 

determine the required slope necessitates numerical integration of the acceleration 

measurements. The numerical integration begins at the initial point of the 

interpolating cubic (e.g. for S'](t), the integration begins at t3), at which point the 

initial value is found by evaluating the differential of the initialising cubic (S2(t2 )). 

While this approach did mean that more values of acceleration were taken into 

account in the determination of the value of the interpolant between position fixes, it 

did not change the fact that only two are used to determine three of the coefficients of 

the cubic, thus errors in these two measurements are propagated and magnified into 

the estimated position. 

The problem with both the above schemes are similar, there are not sufficient 

acceleration measurements used in the determination of the initialising cubic to 

'average out' the effects of signal noise. A method by which this may be overcome is 

to specify the initialising cubic using the position fixes and the velocity (obtained by 

numerical integration) at the end points. If this approach was combined with the use 

of the second of the above-mentioned methods, the estimate may be of much better 

quality. EssentiaIJy a position estimate is being obtained through single integration of 

noisy acceleration data, thus the error can be expected to behave as a periodically 

reset random walk. This is in comparison to regular numerical integration schemes in 

which the required double integration results in a random ramp type error. The 

downside of the spline approach is a slightly higher computational burden (due to the 

calculation of the spline coefficients). 

While this approach is appealing, and may warrant further investigation for a simpler 

case, it suffers from the same problem as the regular use of accelerometers and limit 

switches - the requirement of accounting for the motion of the boat and the possible 

influence of gravity. The reason that simple spline interpolation using only the 

position fixes worked so well is the continuity imposed during the calculation, i.e. the 

velocity and acceleration are continuous at given data points. The smooth nature of 

the seat displacement signal makes it ideal for this type of interpolation, while other 



<lpplicltiol1s m<ly produce signals where the acceleration is not so -'vve ll-bdlaved·. 

SilllT it \Va,,, thought that accelerometers woulJ be too difficult to work with in this 

;IJlpl icatioll. transducers that would yield displacement directly were explored. 

The usc of a C<lble potentiometer and optical encoder were considered concurrently. 

,\11 identified suitable cable-type potentiometer was thc LX-PA from Unimeasure, at (l 

co" t oil JSS 16() (see Figurc :), 10). The main adv3nt;lge 01" the pote ntiometer over the 

l'lll'miL'r is tilat it has a sil1lple analog output as compared to the encoder. which 

reljuire ." a di g ital input card with encocler capabilities, The disadvantage of tile cabl!e 

type sensor is the possibility or slack in tile cable during the recovery, i,e, the seat 

IlH1Villg at a rate higher than the drulll can retract. Since there was already an encoder 

a\ 'a ilablc for usc (that used hy Farquhar l24l) the cost of the potentiometer was 

compared to that of the necessary digita ~ VO card, Further. it was round that a card 

designed ill-hollse. the U niversal Pulse Processor (UPP), had the required capabilities 

dlld cuuld he used at lillie cos!. It should he noted th;ll a digital VO card was alsu 

Ill'cessit;lted by the usc of other sensory devices (impeller speed sensor and healt rate 

lInit). 

Figllre 5.10 The LX-PA Cable Displacement Sensol' 

5. 1,3 Chosen Conc.ept 

I II til e intcl'ests of minimising: required computer time while maintaining (l real timc 

seal posit iOIl signal it was cOllsidered that a position sensor, l~,g, encoder or 

potelltiulllclcr. that did Ilot significantly alter the characteristics of the motion of the 

SClt would he the Illost sensible option, (The magnetic system used by McBride may 

lx' optilllal in th;ll it offers a real time position signal using a non-contact sensor, but 
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no precise information was available on this at the time.) Based on the economic 

advantages discussed in the previous section, a rotary encoder was chosen. 

The main issue with using a rotary encoder to measure position is ensuring that there 

is no slip between the wheel of the encoder and the surface on which the wheel is 

running. The method by which this is normally ensured, and the method employed 

here, is to create a significant force between the wheel and the surface and use a high 

grip smiace on the wheel. Two potential running surfaces for the encoder wheel were 

identified, the deck of the boat and a small lip on the seat track, present to prevent the 

seat from lifting from the track. The latter site was chosen as it seemed that this was 

almost standard from boat to boat, and also, due to the tilt of the track on which the 

seat runs, the distance between the seat and deck varies considerably during the 

stroke. This difference in distance would have made design of a mounting bracket 

difficult. 

A bracket was designed to fit under the seat and push the encoder wheel onto the track 

(see Figures 5.11 & 5.12). This was an interesting design problem due to the tight 

spatial constraints and the requirement that the bracket be adaptive enough to fit a 

variety of seats. The main part of the bracket was designed as a single piece to be 

manufactured by EDM (Electro Discharge Machining). Each end of this part rests on 

the top of the seat axles. Socket head cap screws tightened onto the axles prevent 

translation of the bracket with respect to the seat in the direction of motion. The plate 

011 which the encoder is mounted runs on two brass screws and is pushed downwards 

by two compression springs, thus providing the force required to prevent slipping of 

the encoder wheel. Blocks can be inselted between the main part of the bracket and 

the upper piece to accommodate for larger distances between the top of the axles and 

track lip. 

While the main problem with using a rotary encoder to measure linear displacement is 

ensuring that the encoder wheel docs not slip, there is another problem associated 

with using the encoder to generate velocity and acceleration estimates. This is due to 

the fact that the encoder does not yield a continuous waveform, but a quantized signal, 

which can be thought of as a noise contaminated signal, and this 'noise' is magnified 

by the required differentiation. 
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Fi~ure 5.12 Solid'VOI·ks@ gencrated views of the eJll:oder mounting hracket. 
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5.2 NUlnerical Differentiation of Encoder Signals 

If a rotary encoder could be continuously sampled while the shaft underwcnt 

continuous angular velocity motion, the conditioned signal of the encoder would 

appear as a staircase approximation to the true displacement. The depth of the steps is 

dependent upon the resolution of the encoder, Le. thc number of pulses per revolution. 

In actual application the encoder is attached to a counter card. Simplistically, the card 

counts pulses accounting for direction changes and outputs the number represcnting 

the net number of rotations (and parts thereof) to a particular register. The value 

contained in the register is then sampled at regular intervals. The quantisation of the 

encoder can cause problems at both extremes of speed. When rotation is very slow, 

sampling may bc such that no pulses are recorded for certain intervals. Converscly 

when rotation is occuning at high speed a large step occurs in the output data. 

Assuming that no slip is involved, an encoder does provide the exact position at the 

instant at which a pulse is emitted. It is rare howcver that a pulse coincides with a 

sampling instant, and thus a position error is introduced, which is dependent on the 

avcrage velocity over the period and the time between the pulse and the sampling 

instant. Carpenter ct al [15J reviewed a number of different algorithms used to 

estimate velocity given encoder measurements 'mainly from a frequcncy domain 

perspective. Two interesting methods are the 'least squares filters' and the 'trained 

least squares filters'. In the former method, a polynomial of order m is passed 

through n points using a least squares fit. In possession of the polynomial, the 

velocity is simply the derivative of the polynomial at the sampling instant of interest. 

In the second method, filter coefficients are generated by running the least squares 

filter on representative data. In this way a time-invariant filter is generated. 

Independent experimentation showed that if the filter is being used on real-time data 

thcrc is a difficult trade-off bctween filter lag and noise attenuation, i.e. increasing the 

order of the filter yields smoother results, but a] so introduccs considerable lag. Post

processing the data using approximating polynomials centred on the data point of 

interest yielded good results. 
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Differentiating an encoder signal to get velocity and acceleration estimates is a special 

case of numerical differentiation, that of differentiation of noisy signals. The amount 

of literature in this field is large, most of it in mathematical numerical method 

journals. The results in these articles are prohibitive in their mathematical 

sophistication. 

An interesting alternative to normal or modified numerical differentiation is the use of 

a 'Real Time Fourier Series' as proposed by Tang et al [63]. In this method a finite 

length of data terminating at the current sample is represented as a truncated Fourier 

series and differentiation is performed analyticaJJy on the individual terms. The 

effects of high frequency noise are reduced by the truncation of the series, i.e. if 11 

points are included in the data series, then the first 11-1 spectral components are 

calculated. A recursive fonnula for the computation of the Fourier series coefficients 

is presented. While this is an attractive idea, the authors state that the calculation of 

the Fourier series coefficients is a time consuming task that makes it unsuitable for 

real time use on current computers. 

The method of numerical differentiation used in this work employs a Kalman filter 

(KF). A few previous instances of the use of optimal estimation theory in numerical 

differentiation were identified, which is not to say that it is not much more. 

widespread. 

A few brief comments are probably required to indicate the way in which a Kalman 

filter aids numerical differentiation. (A probably excessively full derivation and 

description of the Kalman filter algorithm is included in Appendix A2). A discrete 

time state space model is derived so that the states 'resemble' the position, velocity 

and acceleration of the seat when the model is driven by white noise. Such a model is 

shown in Fig. 5.13, where i'!. represents a unit delay, CD is the state transition matrix, r 

is the noise coupling matrix, w(k) is the white noise input, and x(k) is the state 

(position, velocity and acceleration). 

Rather than being able to measure aD of the states, there is only a noisy measurement 

of the position, z(k), which is modelled as a scaled version of position with additive 



186 

white noise, v(k). The aim of the Kalman filter is to optimally estimate the state of 

the system, based on the measurement and the assumed signal modeL An alternative 

fonn of tbe filter would be to model the dynamics of the rower's sliding motion and 

use the force produced at the feet and that at the oarlock as inputs to the system. Even 

in this 'deterministic' case a white noise input is still required. 

System/Signal Model 

w(k) 

r-----------------------------~-----------
I I 

: x(k+ 1 x(k): 
I I 

I I 
I I 

~----------------------------------- ______ I 

Measurement Model 

I 
I 
I 
I I , __________________ 1 

,Figure 5.13 The discrete time state space model used in the Kalman filter 

z(k) 

The discrete-time Kalman filter state estimate at the k+ Ilh instant, IS given by the 

equation: 

A A A 

x (k+ llk+ 1) = <D x (klk) + K(k+ l)[z(k+ 1) - 01> x (klk)] (5.2) 

/\ 

where x (klk) denotes the estimate of the state at instant k based on all measurements 

up to and including k and K(k+ 1) is the recursively calculated Kalman gain matrix at 

k + 1. The calcuJ ation of I\.(k) involves three equations, that are not shown here (see 

Appendix A2). The estimate equation has exactly the same form as any other 

estimator, and is very easily interpreted. Before the measurement at k+ I is made, the 

best estimate that can be made is the propagation of the estimate at the klh instant 

using the state transition matrix. Once the measurement becomes available, this a 

priori estimate can be corrected using a weighted residual, i.e. the difference between 

the measurement and the propagated estimate. 

What differentiates the Kalman filter from other estimators is the definition of the I\. 

matrix. This gain matrix is calculated to minimise the mean square error of the state 

estimate. The statistical information that is required to yield this optimal form is 

included in the covariance matrices of the system and measurement noise processes, 
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Q and R. The noise covariance matrices are usually set roughly using knowledge 

about the noise processes, e.g. the variance of noise expected from a certain sensor, 

and then tuned to give good performance. Once the model of the system is fixed, i.e. 

the state transition and noise coupling matrices have been designed; the Q and R 

matrices are the only degrees of freedom available to the designer. Without 

complicating matters by introducing the equations by which K is calculated, it can be 

stated that when R, the measurement noise covariance matrix, is small compared to 

Q, the system noise covariance matrix, this "tells' the filter to 'believe' the 

measurements more than the propagated estimates, and K is altered accordingly. For 

those who are interested in the derivation of the Kalman filter, a full development is 

included in the appendix. 

Before progressing to discuss previous methods through which Kalman filters have 

been applied to the differentiation of signals, and the development of a differentiator 

for periodic signals, a couple of notes are required. In the case where Q and Rare 

constant matrices, it is possible to find K, the static Kalman gain, through solution of 

an algebraic Riccati equation, and the filter algorithm is reduced to a single invariant 

equation [26]. 

While the optimality of the Kalman filter algorithm is obviously attractive, the abuse 

of the Q and R matrices as tuning factors and the difference between the ideal and 

implemented models means that the optimality is unlikely to be realised in the 

application at hand. Even in this disabused state the Kalman filter is of great utility, 

as is shown in the following sections. 
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5.2.1 Previous Approaches to Numerical Differentiation Using Kalman 

Filtering 

Three papers concerned with numerical differentiation using Kalman filters were 

found. As the Kalman filtering algorithm is fairly standard, the main diffcrences in 

the approaches are in the models used in the filter, i.e. the choice of the <D and r 
matrices, or the corresponding continuous time A and G matrices. Two of the p'apers 

[12], [25] used very similar models even though one was designed for general use and 

the other was created specifically for the differentiation of data obtained in tracking 

points of the human body as recorded by video cameras. The third paper [8], by 

Belanger, is concerned specifically with the estimation of angular velocity and 

acceleration given shaft encoder measurements. Surprisingly the approach of this 

paper is not relevant to the problem at hand and hence is not reviewed in detail here. 

The approach taken by Belanger to justify his choice of model is asymptotic analysis 

of a general state space model in companion form as the sampling period tends to 

zero. Through this he arrives at a model that is similar, although a little more 

simplistic, to those described below. 

The first step in the application of the Kalman filter to numerical differentiation is to 

design a random sequence that models the signal or one of its derivatives. This is 

where Bortolami [12] and Fioretti [25] have slightly different approaches. Bortolarni 

suggests that a discrete time model of the derivative of acceleration can be adequately 

described by the first order Gauss-Markov model 

(5.3) 

Fioretti is perhaps a little more conservative in suggesting that the N+ 1 th derivative of 

the signal of interest has this model, and that if poor performance is experienced with 

the origina1 design, the order of the filter should be increased. In continuous time 

formulation, Fioretti's approach basically means that the N+lth derivative of the 

signal is a white noise process. 
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Both approaches use a single noisy position measurement 

(5.4) 

where CBorlolulIli = [1 00] and CFjorelti = [l 00 .... J. 

Bortolami used his model in a Kalman filter, while Fioretti used a Kalman smoother. 

Using a smoother rather than a filter, i.e. using past, present and future values of 

output, rather than just past and present to approximate Xk can reduce the error 

variance of the estimate. (Incidentally, it seems that BortoJami made an error in the 

diseretisation of his model in that he did not modify his 'noise input' matrix.) 
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There were two proposed modifications to the previously reviewed methods, although 

only one was ultimately adopted. 

The major difference in the filter is due to the fact that quite a lot of information is 

known about the seat displacement. Later it will become clear that it is local 

knowledge of the waveforms, e.g. maximum frequencies of oscillation, rather than 

global characteristics such as the gross frequency of the seat motion that aid in the 

design of the fil tel'. More comments will be made on this below, but for now it 

suffices to state that a 'periodic random variable' model is more suitable than the 

Gauss-Markov variants implemented by previous researches, as described above. 

Apart from the model 'within the filter', a second proposed modification was a 

method by which measurements 'enter' the filter. It was found however that this 

method yielded little performance benefit for the increased model size. This proposed 

modification is fully described below. 

The continuous time kinematic equations relating distance, d, velocity, v, and 

acceleration, ce, can be written in state space form as: 

(5.5) 

For use in a Kalman filter (before discretisation), the model should be of the form 

x=Ax+Gw (5.6) 
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where w is a white noise process. Since the motion is known to be low frequency, it 

is unlikely that modelling the derivative of acceleration as a white noise process will 

give good results. To yield a model in the required form, the state of (5.5) is 

augmented, e.g. 

d 0 0 0 d 0 

v 0 0 1 0 v 0 
+ w (5.7) 

a 0 0 all a12 a g1 

a 0 0 a21 a22 a g2 

where one state, ex, has been added. The new state does not have any physical 

meaning, but has been added simply so that the model has a white noise input while 

allowing a better model of the derivative of acceleration. This method of 

augmentation is sometimes known as a shaping filter, where the input noise, W, is 

shaped to statistically resemble a known process. The main part of the design of the 

Kalman filter was in this case the design of this shaping filter, the a's and g's of the 

above state space equation. This is now described for the particular case in which the 

output of the shaping filter is to be a random oscillatory waveform. Upon the 

completion of the design of the shaping filter, a discretised form of the continuous 

state space model is applied in a discrete time Kalrnan filter. 

Stochastic modelling, which consists of designing a system that gives a desired 

response to a random process input, can be considered in either the time or frequency 

domain. These closely related approaches are briefly explained for the special case in 

which the input to the system is a white noise process. Additionally, what appears to 

be a new method of checking the nature of a signal generated using a discrete time 

state-space model in response to a white noise input is presented. 
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S.2.2.11\Jodelling a Periodic Random Variable 

The aim of this section is to design a linear time invariant (LTI) system that will 

generate a signal with periodic 'tendencies' in response to a stationary white noise 

input. This signal will be known as a periodic random variable, although the output is 

not strictly periodic, but oscillatory with a prescribed base frequency. The designed 

model is to be incorporated into the state matrix of a discrete Kalman filter. Since the 

signal is random, it is impossible to actually specify the output of the system; the best 

that can be done is to indicate the output's statistics .. In particular, specifying the 

mean and autocorrelation of the output gives a large amount of information about the 

expected signal. Both discrete and continuous time concepts are used at different 

times to make the mathematical relationships simpler and to appeal to the mechanical 

engineer's intuition respectively. 

When the input to a discrete LTI system is the stationary white nOIse random 

sequence {w(n)}, the output sequence is a wide sense stationary sequence (the mean 

is constant and the autocorrelation sequence is a function of a single variable 

Ryy(n,n+lTl) = E[y(n)y(n+m)] = Ryy(m)). Further, the autocorrelation of the system 

output is given by a scaled version of the autocorrelation of the impulse response of 

the system. The developments of these facts are·in standard signal processing texts 

[7], [54]. Mathematically stated, the output autocolTelation in response to a genera] 

stationary random input sequence {w(n)} is given by the convolution sum: 

~ 

R J'Y 0n)= I,Rl\'W 011 -l)::V) 
[=-~ (5.8) 

where c(l) is the autocorrelation of the system impulse response sequence 

co 

cV)= I,hVC)1(z+k) (5.9) 
k=-co 

and Rw",(m-l) = E[w(k)w(k+m-l)]. In the case where {w(n)} is zero mean stationary 

white noise sequence, the autocorrelation function Rww(m-l) = aO(m-/), i.e. a unit 

impulse at In = 1. This simplifies the above convolution sum to give 

co 

R),y 011)= I, 00n -I)::(l)= c0n}:r. (5.10) 
1=-00 
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This result enables time domain design of systems to give outputs of desired 

autocorrelation in response to white noise excitation. In the case at hand, an output 

signal with periodic tendencies is desired. Using the fact that the autocorrelation of a 

periodic sequence has the same period as the original signal [51], it is seen that the 

impulse response of the designed system should be oscillatory with a base frequency 

similar to that of the desired stochastic signal. The simplest system with an 

oscillatory impulse response is of second order. The design of an oscillatory second 

order system is obviously possible in discrete time, using the Z-transform, but it is 

believed that most readers will be more familiar with continuous time and the 

associated Laplace tranSf01TI1. While the above relations for the output 

autocorrelation are for the discrete time case, there are entirely analogous results that 

relate the autocorrelation of the input and output sequence in continuous time. 

Alternatively, since the model is going to be implemented on a digital computer, the 

continuous time model can be discretised and then the aforementioned autocorrelation 

relationships can be used. Regardless, the impulse response of a general second order 

system is given by an exponentially decaying sinusoid of frequency OJn(l-( 2) and 

decay of OJ"t;, where OJIl and ( are the natural frequency and damping ratio 

respectively. Examples of this response for (j) =1 rad/s and varying ( are shown in 

Figure 5.14. The autocorrelation functions of the impulse responses are shown in 

Figure 5,15. The autocorrelation sequences are o'nly shown for positive shift values 

(since they are symmetric about zero) and have been normalised to have unit mean 

squared value (value of autocorrelation at zero shift). 
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Figure 5.14 Impulse responses of second order systems with m=1 and 1:;=0.001, 0.01, 0.1, 0.20.5 

and 0.7 (from top left to bottom right) 
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Figure 5.15 Autocorrelation of impulse responses of second order systems with cil:1 and t;,=0.001, 

0.01, 0.1, 0.2 0.5 and 0.7 (from top left to bottom right). These represent the theoretical 

autocorrelations of the output of the second order systems when the input is white noise. 

Because the decay of the autocorrelation shows how dissimilar the signal is to itself as 

shift increases, the decay of the impulse response, which is control1ed by choice of S, 
impacts on the variability of the generated signal. The faster the decay, the less 

similar shifted versions of the output signal are to each other. In the case of zero 

damping, i.e. a pure oscillator, the autocorrelation function indicates that the random 

signal should be entirely periodic. This is of course impossible, but it is true that the 

larger the value of S chosen, the higher degree of variability the random signal will 

5000 
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show 'period' to 'period'. Designing a model in the time domain therefore consists of 

choosing the approximate desired frequency of the generated signal, ill, and then 

choosing a value for S that reflects the desired randomness of the signaL (Note that 

the choice of S does have an effect on the frequency of the impulse response 

oscillation and also therefore on the output random signal.) There are many ways in 

which the designed system may be represented, but since it is desired that the model 

be implemented as part of a discrete time Kalman filter it should eventually be 

transformed to discrete time state space model. Knowledge of ill and S allows the' 

construction of a transfer function 

(5.11 ) 

This transfer function is then simply converted to continuous time state space, with Xl 

as 'position', and X2 as 'velocity': 

(5.12) 

(5.13) 

This model is finally converted to discrete time state space using a zero-order hold 

transformation. The discrete formulation does not have a convenient closed form. A 

range of generated outputs for the values of 0) and S previously considered are shown 

below in Figure 5.16. Note that since these plots are generated by the discrete state 

space formulation, the outputs are sequences and should therefore not be plotted as 

being continuous. They have been plotted as such for clarity. Note that the deviation 

of the signal from pure oscilIation increases with S. 
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Figure 5.16 Signals generated by second order systems with m=1 and l;=O.OOI, 0.01, O.l, 0.2 0.5 

and 0.7 (from top left to bottom right) when input is unity variance white noise. 

In the frequency domain, the development of the equations is entirely equivalent to 

those in the time domain to the point where the autocorrelation sequence of the 

system output is shown to be equal to the autocorrelation of the system's impulse 

response (5.10): 

Ryy(m) = crc(m) (5.14) 

Taking tbe Fourier transforms of both sides leads to [54] 

(5.15) 

where Py)'(eiCil
) is the power spectral density of the output sequence and H(eiCil) is the 

system's frequency response function, This result shows that the spectral distribution 
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of power in the output sequence is exactly the same as that of the square of the 

system's amplitude frequency response function (excluding the multiplicative 

constant of the noise power). Since it is desired that the output signal he periodic, the 

bulk of the power of the output signal should be centred at the desired frequency. 

This indicates that there should be a peaking behaviour in the system's frequency 

response. Again this leads to the choice of a second order function, since it is a [ow 

order system that exhibits a peak in the frequency domain. 

In the time domain S was seen to have the role of roughly indicating the randomness 

of the signal. In the frequency domain the parallel is that S controls the peak of the 

frequency response function. The smaller the value of S, the higher and narrower the 

peak is, and thus the smaller the range of the 'pass band'. Note also that the choice of 

S impacts upon the power of the generated signal since it controls the height of the 

peak at OJ. The basic trend is that the lower the value of S, the higher the power of the 

generated signal. This is evident in Figure 5.16, where the signals with low S are seen 

to have amplitude higher than that of those with high S. In the time domain, the 

impulse response of a system with low S lasts a lot longer than a system with high S. 
This means that the mean-squared value of the impulse response is higher for a 

system with low S. This effect was masked in the plots of the impulse response 

autocorrelation functions because all the mean-squared values were normalised to 

more clearly show the effects of S on the decay of the autocorrelation. The 

amplifying role of S is secondary to that controlling the randomness (or equivalently 

the spectral composition) of the generated signal, and can easily be cancelled out by 

altering the power of the input sequence. 

It should be noted that below the natural frequency of the system, the spectrum, while 

110t amplified to the same extent as the 'pass-band', is not attenuated and thus these 

low frequency components will always be present in the output. Plots of IH(d~12 for 

the previously considered values of OJ and S are shown in Figure 5.17. 
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Figure 5.17 Second order system power spectrums for 0)=1 and ~=O.001. 0.01, 0.1,0.20.5 and 0.7 

(from top Left to bottom right). 

Since the model is to eventually be transformed into a discrete time representation, it 

seems sensible that the full design procedure take place in this format. Toward this 

aim, the following result was attained. (The methods described above. i.e. the 

autocorrelation and frequency domain methods, are well known in the literature, 

whereas the author derived the following method.) This method is not completely 

useful as a design tool since it involves the solution of a discrete Lyapunov equation. 

While this makes the technique less useful for design, it can be used as a simulation 

tool, as it does show the evolution of the state autocorrelation matrix. This is 

advantageous since the cross-correlation between the states of the system is shown. 

Also, the possibility of multiple inputs is covered easily. This is the situation 

considered in the development below. Consider the discrete time state space model 

(5.16) 
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where {wd is a zero mean stationary white noise vector sequence with covariance 

matrix Q. (The time index is indicated by the subscript k to make the presentation 

more clear.) Since the slationary sequence is being processed by a linear time 

invariant system, Xk, is also a stationary process. By finding the expression for the 

state at m>k-l in terms of the state at k-l, e.g. 

Xk;:::: AXk-l + BWk-l 

Xk+l ;:::: AXk + BWk ;:::: A2Xk_1 + ABwk_1 + BWk 

Xk+2;:::: AXk+l + RWk+1 ;:::: A
3
xk_l + A2Rwk_l + ABwk + BWk+l (5.17) 

The following general expression is found: 

A "l+l AIlIB Am-IB An B Xk+1ll ;:::: Xk-l + Wk-l + Wk + ... + Wk+1I1-2 + Wk+I1l-1 (5.18) 

The correlation between the state at k and the state at k+m is given by 

(5.19) 

This can be simplified using the fact that Xk-l is uncorrelated with Wj j ;::: k-l, and since 

T T . T T fwd is a zero mean sequence, i.e. E[Xk-lWj B ] ;::::E[Xk_JJE[wj]R ;:::: OJ 2 k-l. Thus 

[ '1'-., (A B (AII1+1 AmB )T] E XkXk+1ll ] ;:::: E[ Xk-l + Wk-]) Xk-l + Wk-l 

E[A T(AIlI+l)T B '1'B'1'C·A"1)'1'] ;:::: Xk-IXk-l + Wk-1Wk-l _ (5.20) 

Denoting the correlation matrix of the state vector, x, by R, e.g. R(k,k+m) = 

E[XkXk+mT], and the correlation matrix of the noise process by Q (which is equivalent 

to the covariance matrix since the noise sequence is zero mean): 

(5.21) 

Since the state vector sequence is wide sense stationary, the autocorrelation function 

should be a function only of the difference between the two arguments leading to the 

following statement 
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(5.22) 

In particular, for m=O, 

R(O) = AR(O)AT + BQBT
, (5.23) 

which is a Lyapunov equation, the solution of which is the 'mean squared matrix' 

R(O). The solution R(m) can be expanded into the form 

(5.24) 

which is seen to be equivalent to 

(5.25) 

The matrix R(m) has the following structure for a two state system: 

(5.26) 

where RJ2Jm) is the cross-correlation of the states at a difference of m. There are 

situations in which it may be of benefit to design states that are uncorrelated, and 

using this method, this may be possible, although knowledge of the behaviour of the 

Lyapunov equation would be required. The evolution of the autocorrelation matrix of 

the second order system for the previously covered values of (0 and S are shown in 

Figure 5.18. 



Evolution of Autocorrelation Matrix Elements w=1 zeta=0001 
I 0 r;-8\,,'~~Ti0::-:-'7\7\-7f1\~7:::::::;C:;::;:-

RUCk) 
(unitless) 

_ I 0 '--"--~--"--"------"-"-~ ... :L..'._~-'-"--'---"'-"_--'.J 
o 200 '100 500 8001000 

Shiftk 
Evolution of Autocorrelation Matrix Elements wc 1 zeta=O 100 

0.1 ~----,---~-~---;::,===::::==:: 

RUCk) 
(unitless) 

-005 

_01L-_~ __ -L __ ~ ___ L-_~ 

Q 200 400 600 800 1000 
Shift I, 

Evolution of Autocorrelation Matrix Elements w=1 zeta=0.500 
0.02 

00 

':\~ RUCk) 
(unjtless) 

·(01 

-Q.02 
a 200 ~oo 

-~-- R11 
R12 

.. __ . R12 
- R22 

600 800 1000 
S/iiftk 

202 

Evoiution 0; Autocorrelation Matrix Elements w=1 Z8t8=0 010 

RU(k) Q:~/\I; 
(unitless) : iii \ . 

-0.5 '\ V: ': 

'1\;\J·· \! 
o 200 400 Goa 800 looa 

Shin 1< 
Evolution of Autocorrelation Matrix Elements W=I lOta=0.200 

o 061-~--~-~---;:====:::;l 
........ ~ R11 

004 

0.02 
RUCk) 
(unitless)O 

-002 

200 400 600 
Shift k 

... R12 
R12 

- R22 

800 101)0 

Evolution of i'.utocorre!ation rvlatrix Elements w=lzela=O 7:10 
0015 h----,---~-~---r==.::===;l 

R"Ck 0:: ~\ 
Ij) ~, . 

(unhless)o \ "",:. '"",' ~---------
, .{ 

-0.005 :./ 

.001 L--_~ __ ~ __ ~_---,-'---_~ 

o 20a 400 600 800 1000 
Shift k 

Figure 5.18 The evolution of the elements of the state autocorrelation matrices of second order 

systems in response to white noise excitation. 

In Fig 5.18, the autocon'elations have not been normalised, and thus it is possible to 

see the effect of S on the power of the output sequence. Note the periodic nature of 

the cross correlations in the highly oscillatory cases. The low value of cross 

correlation at zero shift, combined with the similar autocorrelation functions show 

that the two states are close to being shifted versions of one another. 

Having considered the task of designing a shaping filter usmg both time and 

frequenc.y domain concepts, and identifying a likely model, the generic second order 

system, this shaping filter is now added into the continuous time system equation, i.e. 

the a's and g's of the augmented state space model are determined, at least 

parametrically: 
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d 0 0 0 d 0 

v 0 0 0 v 0 
+ w (5.27) 

a 0 0 0 1 a 0 

0 0 2 -2(m
ll 

a 1 a -mil 

As previously mentioned, tlle value of ( is chosen to represent the degree of 

variability in the signal, whereas mil is the base frequency of oscillation, in rad/s. 

The continuous time model is discretised to give 

(5.28) 

where <D and r do not have elements with closed form. The only measurement actual1y 

yielded by the encoder is the displacement, i.e. 

C = [1 0 0 0] (5.29) 

and this measurement is contaminated by the effects of quantisation noise. This is 

represented by the white sequence {vd. Two alternative filter structures were tested. 

The first artificiaLly generated velocity and acceleratlon signals by the method 

described below. The second used only the position measurement. This artificial 

generation of measurements is the second departure from previous works. 

At each instant the filter generates an estimate of the state vector that includes as its 

elements position, velocity and acceleration. It was thought that these estimates could 

be used in conjunction with the measured data to create reasonable estimates of 

velocity and acceleration that could then be treated as measurements. After collecting 

each position measurement, therefore, the following calculations were made 

Z k (2) = ~ [ Z k (1)- ;k-I (1)] 

Z k (3)= ;, [Zk (2)-;H (2)] 
(5.30) 



204 

, 
where: XH 0) is the first clement of the estimated state vector from the (k-l/h instant 

Zk( I) is the measurement of position at the kth instant, zk(2) and zk(3) are the 

'measurements' of velocity and acceleration at the kth instant and T is the sampling 

period. Using three measurements, of course, necessitated a new C matrix 

(5.31) 

as well as a 3x3 sensor noise error covariance matTix R, where in the single 

measurement case, a scalar, R, was used. In assigning values to the matrix, R, it was 

assumed that the 'noises' on the true and synthesised measurements were uncorrelated, 

resulting in a diagonal matrix. In reality the noises are related due to the way in which 

the synthesised measurements are calculated, but the aforementioned assumption 

means that R is always non-singular, and hence no problems are encountered during 

matrix inversion. A diagonal form also obviously makes the specification of R much 

casler. 

To compare the two filter designs, they were run concurrently, i.e. on the same noisy 

simulated position measurements, for a range of different data sets. In aU cases the 

'true' position was a sum of trigonometric functions so that the derivatives could be 

known exactly. Estimation errors for the position, velocity and acceleration were 

collected in vectors during the operation of the filters. At the conclusion of the filter 

operation, the sum of the norms of the three estimation-error vectors for both of the 

filter designs were calculated. These values were used to tune the filter, i.e. pick 

values for R (or R) and Q to minimise the norms, and also to compare the relative 

efficacy of the two designs. It was found that while the synthesised data KF could 

perform better than the single measurement KF, the difference in performance was 

made small when the assumed covariance of the position measurement noise was 

small. It was also found that the filters both exhibited good characteristics with this 

value chosen to be very small (R-O.OOOl). 
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5.2.3 Results from Simulated and Experimental Data 

This section first presents results showing the effectiveness of the designed Kalman 

filter on discretised versions of signals that have analytic derivatives in additive noise. 

This was done so that the approximated derivatives could be compared with the ideal. 

These results are followed by a representative sample of the collected encoder signal 

and the estimated derivatives. 

The first simulated position signal is det) = 10sin(t) + sin((1.5)t). Added to the 

position signal is a Gaussian white noise sequence with variance 0.01. The results 

below used a Kalman filter with OJ = 1, S = .01, R = 1 e-5 and Q = 0.05. The value of OJ 

was chosen since the main part of the signal is 'unit' frequency, while S was chosen to 

be small since the variation in the signal was expected to be small (actually zero in this 

case). The numerical values of Rand Q were found by trial and error. The 'correct 

value' for R, based on the variance of the measurement noise is 0.01, but in actual 

operation R, like Q becomes a tuning factor. When 'tuning the filter' heuristically, 

increasing Q relative to R instructs the filter to weight the measurements more heavily 

than the propagated estimate and vice versa. Placing too small a weighting on Q (i.e. a 

relativeJylarge number for R since R represents the strength of the noise on the 

measurement) makes the filter 'Jose track' and a large lag is introduced. Conversely if 

too small a value is used for R, the measurements are 'trusted' almost entirely and the 

resulting estimates are not much better than those obtained by using finite-differenci,ng 

on the noisy measurement. 

Figure 5.19 shows the position measurement used in the first trial along with the 

results of finite-differencing. Note that the positions measurement signal appears to be 

'clean' but the noise is significantly magnified when numerical differentiation is used. 
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Figure 5.19 The position 'measurement' d(t) = IOsin(t) + sin((1.5)t) in additive white noise of 

variance = (J.OI, and the results of the finite-differencing procedure. 

The results corresponding to those of Figure 5.19, for the Kalman filter are shown in 

Fig. 5.20. The derivatives are clearly of much higher accuracy than those obtained by 

finite-differencing. A point of interest is the initial fluctuation in the filter outputs 

observable in the velocity and acceleration plots. This behaviour is due to erroneous 

initial estimates (position, velocity and acceleration were assumed to initially be 

zero), and a high value chosen for the state error covariance matrix. 
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Figure 5.20 The position, velocity and acceleration estimates from the Kalman filter for the 

measurement d(t) = 10sin(t) + sin( (l.S)t) in additive white noise of variance :=; 0.01. The true 

values are shown on the same plot'S. 

These results show that the filter works for simulated signals. The design method is 

slightly different when the filter is used on real displacement data. While the seat 

displacem.ent appears to be almost sinusoidal with a base frequency of the stroke 

rating, it is the acceleration that is to be modelled by the output of the shaping filter, 

and since the displacement actually consists of a wide range of frequencies (consider 

a Fourier series of the seat displacement), the higher components of which are 

magnified by the process of differentiation, the shaping filter must be designed so that 

these high frequency components are not lost. This magnification of higher frequency 

components by differentiation can be mathematically displayed very simply. If a 

Fourier series expansion of the seat displacement is considered, there will be an 
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infinite sum of terms of the form Aicos(mit +(/Ji), the derivative of which is mrA;sin(cDtt 

+ ¢i), and for OJ; > I this leads to a frequency component of greater magnitude than 

that in the original signal. The parameter that sets the frequency band of the filter, m, 

must be chosen so that it includes all the 'frequency information' of the seat 

acceleration, without allowing undue measurement noise through. As an aside, it is 

because white noise theoretically has a flat spectrum, i.e. it contains aU frequencies in 

equal quantities, and therefore includes very high frequencies, that signals 

contaminated with white noise have such poor signal to noise ratios when they are 

differentiated. 

A method of designing the filter taking into account the above comments would be to 

find, via an FFI, the frequency spectmm of a representative seat displacement, paying 

particuLar attention to the highest frequency component of any great magnitude, and 

then setting m to be this value. The method employed here, however, is much more 

qualitative; the derivatives obtained using the filter are compared to those using finite 

differencing, and m is varied so that the filter output matches the gross variations in 

the finite difference data, while rejecting the visible noise. The value chosen for m, is 

better to be chosen slightl y too high rather than too low, since if m is set too low, val id 

oscillations within the derivatives are smoothed out, low frequency oscillations are 

introduced where there should be none, and significant delay is introduced. As long 

as m is not set at an unrealistically high level, the filter yields a frequency-limited 

,output that has very little delay. Obviously setting m far too high allows a large 

amount noise through the filter, and the results are degraded. The output of the filter 

is shown in Figures 5.2] & 5.22 for one rower, with m= 1 and 4 ((; = .00(1) 
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Figure S.21(a)&(b) Kalman filter displacement (a) and velocity estimates (b) when (l) = 1 (too 

low). Note the large erroneous oscillations in the estimates. 
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Figure 5.21(c) Acceleration estimates by finite differencing and Kalman filtering with 0) = 1. The 

finite differencing estimate is very noisy, and the Kalman fIltering estimate has a large delay and 

is overly smoothed. 
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Figure 5.22(a) The Kalman fIlter displacement estimate is almost indiscernible from the 

measm'ement for 0) = 4. 
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Figure S.22(b)&(c) The velocity (b) and acceleration (c) estimates generated by finite differencing 

and Kalman filteling for (0 = 4. 
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Figures 5.22(b)&(c) show pleasing results. There is very little delay between the 

finite difference and Kalman filter generated estimates while the Kalman filter 

estimates clearly have a higher signal to noise ratio. It should be noted that the only 

reason that this method of filter tuning was possible is that the noise level in the 

displacement measurement was very low. As previously mentioned, the noise level is 

a function of the displacement, the number of pulses per revolution of the encoder, 

and the sampling rate that is used. The acceleration estimate generated by finite 

differencing shows the high frequency magnification characteristic of the process of 

differentiation, but gross shapes within the signal are still easi Iy discernable, meaning 

that it is possible to qualitatively tune the Kalman filter to mimic the true acceleration. 

If this were not the case, i.e. the noise level on the displacement measurement was 

higher, then it would be necessary to resort to finding the frequency spectrum of a 

typical seat displacement signal, and tuning the filter based on these results. 

As discussed at the very beginning of this section, it is not believed that the Kalman 

filter is generating an optimal estimate of the kinematical variables of the seat 

displacement for a number of reasons. FirstJy, the simple model used within the 

shaping filter to generate a signal 'somewhat like' acceleration and its derivative, 

while ce11ainly a better fit than the reviewed Gauss-Markov variants, will not be 

exact; it was chosen as a trade-off between simplicity and goodness of fit. Secondly,. 

the fact that the quantisation noise of the encoder is not Gaussian white noise will 

cause it to function in a sub-optimal manner. The Kalman filter can be derived under 

the assumption of Gaussian white noise processes, in which case the filter is optimal 

with respect to a large range of cost functions, or a general white noise, in which case 

it is optimal with respect to a quadratic cost function. The smaller the quantisation 

level of the encoder the less effect the non-white noise is likely to have. Even with 

these two caveats, the above results show that the Kalman filter performed well. An 

insight into a method by which the Kalman filter can be used as a frequency limited 

differentiator was also gained. 

Up to this point, while this seclion is concerned with the measurement of the motion 

of the system centre of mass, only the movement of the seat, which approximates that 

of the rower's centre of mass has been measured. The other significant component of 

the system is the boat, the motion of which is now considered. 
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5.3 Measurement of Boat Motion 

Before rowing data was captured it was believed that the motion of the boat would 

have to be considered as two dimensional, with considerable pitching and dipping 

components. This made the analysis more challenging, and if it were the case, the 

measurement of boat motion would surely have received a chapter all of its own! 

However, collected data showed that tilt was only on the order of a few degrees, 

meaning that to estimate the boat motion as being one-dimensional was acceptable, 

and hence the analysis was considerably simplified. 

This section reviews the few methods that have previously been applied to measure 

the motion of a rowing shell before explaining the choice of sensors that were used in 

this work. A pair of sensors was used to estimate instantaneous boat displacement, 

velocity and acceleration. A Kalman filter sensor fusion technique, which is a very 

basic extension of the differentiator developed in 5.2.2 is used to combine the outputs 

of the two sensors. 

5.3.1 Previous Methods 

Aside from Martin, who considered the effect of stroke rate on boat velocity through 

film analysis [50J, two sensors have dominated the area of boat motion measurement. 

These sensors are the accelerometer and the submerged magnetic impeller. These two 

sensors have very different chm'acteristics and measure the boats motion relative to 

two different frames, one moving with the water, and the other fixed on the land. 

Young and Muirhead [69] used a 1 g single axis accelerometer to measure longitudinal 

acceleration during rowing. Velocity was obtained through integration, but no details 

are given as to special signal processing measures employed to eliminate drift. In a 

somewhat more bizarre application of accelerometry, Lin et al [41J fixed 

accelerometers to various parts of the rowing system, including the seat, oars and the 

rower's shoulders during ergometer and on-the-water rowing. The intention of Lin's 
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work was to find characteristics of good rowing, i.e. accelerometer outputs yielded by 

expert rowers, and then compare these results with novices. There is no discussion of 

any transformation from accelerometer output to physical motion. 

The other sensor commonly applied in the measurement of boat motion is a 

submerged impeller [39], [43], [46], [64]. Each of the references citing the use of 

these impelJer, simply state that they were used, without discussing signal processing 

or sensor characteristics, thus little was known about their performance. The 

SpeedCoach is a small commercially available magnetic impeller system that is 

commonly used in rowing training. A magnet is mounted in the impeller, and there is 

a coil pickup mounted inside the boat directly above the impeller. The rotation of the 

magnet creates a current in the coil that is then converted to pulse waveform by a 

high-gain amplifier acting as a comparator. The fa<;ter the magnet spins, the greater 

the changing flux and the higher the frequency of the output pulse waveform. The 

overall system has a small signal-processing/display unit that displays information in 

a variety of forms, including current speed, distance travelled and projected 500m 

times. The distance is presumably calculated by multiplying the number of pulses 

counted by a factor, and velocity is estimated by multiplying the number of pulses in a 

certain peIiod by another constant. 

The company who manufacture the SpeedCoach system, Nielsen-Kellelwan, insist 

that the current of the water in which the boat is moving does not affect the distance 

or speed indicated by the sensor. This strange claim is justified by the statement that 

it is the motion through the water that is measured, i.e. if a boat is allowed to drift 

with the CUlTent, the sensor will indicate a speed of Ornls and a distance of Om. 

Rowing a distance measured on the land upstream therefore gives a different result 

from rowing the same distance downstream. 

Almost all the previous researches who have used impeller sensors such as the 

SpeedCoach have also used accelerometers although none state how, or indeed if, the 

outputs of the two sensors are combined to yield estimates of the boat kinematics. 

Before the method by which the data is combined in this work is described, the 

sensors used are briefly described. 
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5.3 .2 Sensors and Sensor Calibration 

Till' t\\'o sensors that arc L1sed to measure buat motion arc the ADXL210 

accelerometer (Analog Devices) and the SpeedCoaeh impeller (Nielsen-Kellerman). 

Thl' ~ll' l'Clcl"Ometc I', \\1 h ich \vas uscd 1'01' oricntation est i Illation ill Chapter 4. is tri ax ial. 

btlt due 10 the assllmed one-dimensional motion or the boat , only the axis in the 

IOIl!!itudinal direction of the hoat is llsed for the measurement or boat motion . 

(Obviously it is OIlC or the axes of the fixed accelerometer that is used for this 

purposc.) The method or accelerometer calihration is exact~y that described in 

('Ilaptn 4 (the first method). Now. however, the accelcrometer OLltput has a physical 

Ilicaning. and hence l11ust he associated with uilits. Therefore . during calibration the 

gailllilust be calculated ~1S Voits/ll1l/s2
). 

50ml11 

Figure 5.23 The SpeedCoach impeller unit. 

i\ description of the opcrating principle of the SpeedCoach has already been gIven. 

The systelll as a whole comes with built in calihration factors to convcrlthe incoming 

pllises to measures or distance travelled and speed. These parameters arc assumedly 

cakul~llcd hy experimental Illeans and set to whole hatches of the sensors as a 

Ilrl'shippin g operation. It is possible to update the values by rowing with the impeller 

(l V 'J" ~l "llllVdl di,-.;tance anc! . at the l:onclusion of the piece, ' telling' the 

display/processing unit via hutton presses. what the true distance was, The values 01 

tile constants are not given with the sensor. Since the impeller was to he llsed vvitholll 
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the display unit, it was required that the values of these constants, or some more 

accurate set, be determined. This is the process of calibration. The location of the 

impeller within the boundary layer makes it very difficult to calibrate without actually 

mounting on a shelL This difficulty is compounded by the fact that the 'true' 

constants depend to some extent on the location of the impeller on the hull of the boat, 

i.e. placing the same sensor at different locations on the hull will yield different 

results. Ideally, the sensor should be calibrated using a reliable external source, such 

as a radar speed gun. It was intended that such a calibration take place, using the 

Department's Stalker Radar Gun, but questions to the manufacturers of the device 

regarding the interface of their product with a general data acquisition system were 

unanswered. Calibration, therefore was a crude affair, consisting of connecting the 

SpeedCoach display unit to a signal generator producing a square wave and recording 

the input frequency and speed indicated on the display. This approach gave a good 

linear fit (see Fig 5.24) and exposed the factory calibration, but revealed nothing of 

the accuracy of this calibration. Rowing a known distance in still water and 

comparing the indicated and true distances could approximately appraise the 

accuracy. 

In operation the SpeedCoach is used as a distance rather than a speed sensor. Since 

the calculated constant, c, that relates pulse frequency to speed 

Speed = c(Pulse Frequency) (5.32) 

Is reI ating the distance travelled per unit time to the number of pulses counted per unit 

time, the corresponding relationship for distance is 
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Figure 5.24 The data used to determine the constant relating speed to pulse frequency for the 

Speed Coach. 

Distance == c(Number of Pulses Counted) (5.33) 

In the followjng section the means by which the outputs of an accelerometer and a 

SpeedCoach sensor are combined using a very simple extension of the Kalman filter 

developed in the previous section is described. This basic method yields apparently 

sound results. (Apparently, because there is nothing to check the results against, but 

the waveforms are consistent with those of previous researches.) 

5.3.3 Sensor Fusion via Kalman Filtering 

Tl1e traditional approach to sensor fusion using Kalman filtering techniques has the 

sensors' error characteristics included within the state as parameters to estimate. One 

particular technique is to take the difference of two measurements of the same 

parameter from two sources, say a velocity readings obtained through: integration of 

an acceleration measurement, and a speed reading from a Doppler radar. The 

difference between the two measurements wi]] be due to the errors of the Doppler 

reading, and the integral of the error characteristics of the accelerometer. Thus, the 

state of the Kalman filter includes the error characteristics of the two measurement 

sources and is 'fed' by the difference of the two sources. At each instant the estimates 

of the measurement errors are subtracted from the sensor data to yield better estimates 

of the body's velocity and acceleration. 
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This is not the approach taken here, for a number of reasons. Firstly, as in the case of 

seat motion, the general nature of the boat motion is reasonably well known. The 

displacement will be a non-decreasing function, the velocity will fluctuate about a 

positive mean, and for most of the time (once a 'steady-state' has been achieved) the 

acceleration of the boat will be oscillatory with zero mean. Again, it is not the gross 

variations that are modelled, but the local oscillations of the waveform. This 

oscillation lends itself to the same model as was used in the previous section, i.e. the 

motion of the boat can be modelled along with the characteristics of the sensors. This 

is not the case in applications such as inertial navigation systems for aircraft where 

during straight flight there may be no predictable 'dynamics' in the kinematical 

parameters, i.e. all motion may be due to random factors such as turbulence. For 

short periods of time, the output of the accelerometer can be modelled to a reasonable 

degree of accuracy as a quantity directly proportional to acceleration in additive noise, 

thus if the accelerometer output 'enters' the filter as an acceleration measurement, 

rather than as integrated velocity or position, there are no error dynamics to model. 

The goodness of this hypothesis can be tested by observing the output of the 

accelerometer in response to a known acceleration. The simplest possible ca<;e is 

constant acceleration, i.e. subjecting the stationary accelerometer to some component 

of gravity. If the error on the signal is indeed -'white', the autocorrelation of the 

deviation of the signal from the mean will be a 'spike at zero shift' (As can be seen 

from Fig 5.25 the approximation of the accelerometer error as white noise is justified, 

assuming of course that the error is independent of the incident acceleration.) 

Equivalently, the Fourier transform of the output should give a spectrum that is 

constant at all frequencies. In reality, this will never happen exactly, but if significant 

deviations occur, this is when modelling of the error characteristic must be used. 

Typical approaches to use are the applications of Gauss-Markov models, or use of the 

Yule-Walker equations [32]. 
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Figure 5.25 Typical autocorrelation of accelerometer error. If the error were totally 'white' the 

autocorrelation would be a 'spike' at zero shift and zero everywhere else. 

The SpeedCoach sensor, as has already been mentioned measures the speed of the 

boat relative to the water, thus even if the sensor functions perfectly, it will still, in a 

constant current, have a constant error in speed,_ and a linearly increasing error in 

distance. Additional to this error due to the method of sensor operation, rather than 

any defect, will be the sensor characteristics. If the current is very slow, as it is in 

most cases where rowing training is undertaken, then the effect may possibly be 

ignored. Certainly, this should be tried before unnecessarily complicating the filter 

design. Since pulses are counted every sampling period, as they were in the case of 

the encoder, there is the possibility of quantisation error, which was modelled as 

white noise for the encoder. Operating, as it does, on a pulse counting basis, it is 

difficult to see how any drift in the output could occur, provided the impeller is 

operating as intended. Thus, under the assumption of no (or low) current, and in 

possession of no extra information to suggest otherwise, the SpeedCoach sensor can 

also be modelled as a measurement of distance travelled in combination with white 

noise. It would not be a simple task to model the error characteristics of the 

SpeedCoach sensor, this is because of its place within the turbulent boundary layer of 

the boat, a location that also prohibited any real calibration, as previously discussed. 
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In addition to the easily modelled variation of boat motion and the lack of real 

dynamics for the sensor enor characteristics, the situation is simplified by the short 

timescales over which the system will be used. Whereas over many hours an 

accelerometer may heat and therefore have its offset change, it is expected that this 

system will only be used for short periods of time. The conditions in which the 

accelerometer will be operating are also relatively standard. The temperatures will 

not be extreme (rowing is not possible when the water is solid!) and the accelerometer 

is located within an enclosure that is itself sheltered from radiant and convectional 

effects. The combination of these factors mean that the Kalman filter for sensor 

fusion may be of very simple design. 

Just as the motion of the seat was modelled as a periodic process, the motion of the 

boat, which is of course affected by the periodic fluctuation of oar force and seat 

motion, is also modelled as an oscillating random process. Thus, the system matrices, 

the system transition and noise input matrices, remain parametrically similar, Le. in 

continuous form the state space equations can again be written 

d 0 1 0 0 d 0 

v 0 0 1 0 v 0 
+ w (5.34) 

a 0 0 0 1 a 0 

0 0 2 - 2{;{))" a a - {))fI 

where {))n is the base frequency of oscillation (in radians/sec), and {; is chosen to 

reflect the variability of the signal. The difference is in the measurements, where 

previously only one measurement was available, there are now two, distance and 

acceleration, each with associated additive white noise. Thus the measurement 

equations are 

d 

z = [10 0 0 0] v + [VI] 
o 1 0 a ]!2 

(5.35) 

a 
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where VI IS the noise associated with the SpeedCoach furnished position 

measurement, and \12 is that of the accelerometer. It is assumed that the two noise 

processes are independent, and thus the covariance matrix, R, is diagonal, with 

elements RI and R2• As before, the variance of the system noise is Q. The design 

parameters and their criteria for selection for the filter are therefore: 

(Oil - chosen to reflect the highest frequency component of the boat motion 

C; -controls the width of the frequency band of the modelled process, or equivalently 

the variability of the motion from oscillation to oscillation 

Q ~ has dual purpose. Firstly it ensures that the model has enough power to simulate 

a motion of the correct amplitude, and secondly 'tells' the filter how much to believe 

the model in comparison to the measured data. 

R I ,R2 - tell the filter how reliable each of the sensors is at each of their tasks, e.g. a 

large value of R2 (relative to RI and Q) suggests that the accelerometer measurements 

are very noisy, so that the model, and the derivative of the position measurements are 

weighted more heavily. 
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5.3.4 Results 

This section presents results from the Kalman filter sensor fusion technique. "1'0 

show the utility of this method, the signals obtained from direct numerical integration 

and differentiation of the appropriate signals are also given. 

Figure 5.26 shows the data obtained from the Speed Coach impeller, which, as 

mentioned above, was used to measure distance trave]]ed. Also shown are the 

estimates of boat velocity and acceleration obtained using finite differencing, A large 

amount of noise is present here due to the quantisation involved in the measuring 

system, i.e. a finite number of pulses occur during a sampling period. For 

compaTison, the output of the accelerometer is shown in the same plot as the 

acceleration estimate. 
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Figure 5.26 The distance output of the Speed Coach impeller and the velocity and acceleration 

estimates obtained through finite differencing. 

Shown in Figure 5.27 are the accelerometer output and the velocity and position 

estimates obtained through numerical integration. Shown for comparative purposes is 
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the position measurement obtained from the SpeedCoach sensor. The large amount of 

drift in the velocity and position estimates belie the amount of noise on the signal, and 

perhaps also a DC offset in the accelerometer, which could very easily be caused by 

the accelerometer axis being subjected to gravity. 
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Figure 5.27 The accelerometer output and the velocity and position estimates obtained through 

numerical integration. The SpeedCoach position estimate is shown to show the degree of drift in 

the integrated accelerometer output. 

Figures 5.26 & 5.27 have shown that, as implemented, neither of the sensors can by 

themselves reliably record the kinematic parameters of the boat. As already discussed 

in detail, the Kalman filter combines the sensors' outputs to produce 'optimal' 

estimates of the parameters of interest. 

The figures below show what are very believable results. First, in Figure 5.28, the 

acceleration estimate of the Kalman filter is plotted with the accelerometer output. 

They clearly match each other well. Any lag in the KF estimate at this stage would 

40 
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suggest that the frequency of the model needs to be increased, and in fact, this delay 

was used as a measure of adequacy of the filter frequency (as discussed in 5.2.3). 

I 
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Figure 5.28 The accelerometer output, and the Kalman filter generated acceleration estimate. 

While the accelerometer output and KF estimate appear to match very closely, there is 

a difference, as is made evident through the velncity estimate, Figure 5.29, which 

now, after an initial increase, osci11ates about a reasonably steady mean (as compared 

to the integral of the accelerometer signal, which exhibited ramping) .. 

Finally, the position estimate of the KF is shown in Figure 5.30 . The difference 

between the estimate and the SpeedCoach data could suggest that the factory 

calibration of the sensor was a little low. 
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Figure 5.29 The Kalman filter generated velocity estimate. 

Figure 5.30 The Kalman filter position estimate and the SpecdCoach position measurement. 

The results of Kalman filtering as differentiator, for seat motion measurement, and 

sensor fusion algorithm, for boat motion estimation, have now been presented. The 

next brief section combines the estimates produced by these two filters to investigate 

the motion of the system centre of mass. 
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5.4 Centre of Mass 

The following equation of motion for the boat/rower system was developed III 

Chapter J, (1.9): 

(5.36) 

Using the substitution: 

(5.37) 

where amll'!'/, is the acceleration of the rower relative to the boat and aJYJ is the 

acceleration of the centre of mass of the two-body system, (5.36) may be rewritten 

= 112rower(arowr.[" + a})()(Jr) + 1nboa,aboaf 

= (THrower + mbollt)asys (5.38) 

Thus, the acceleration of the system, or the centre of mass of the system (the two 

major components of which are the rower and the boat) is seen to be a variable of 

interest. It is also clear, as was indicated at the beginning of this chapter, that the 

acceleration of the system centre of mass can be estimated through knowledge of the 

boat acceleration and the acceleration of the seat relative to the boat (assuming one 

has knowledge of the masses of the components of the system). The velocity of the 

centre of mass is also of interest, and is perhaps more easily comprehended by the 

viewer. For example, neglecting the effects of drag and oar forces (quite a significant 

neglect!) and considering only the rower and boat in the system, system momentum 

should be conserved. This means that when the rower slides towards the stern during 

the recovery, the boat should move faster in the direction of the bow. When the water 

is reinstated, this effect will still be present, but will be somewhat damped. The 

periodic application of oar force also, of course, causes fluctuation in the boat motion, 

upon which the other effects are superimposed. 
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Along with plots showing the motion of the system centre of mass, this section 

includes plots showing the timing between oar force, seat and boat motion. 
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Figure 5.31 The velocity of the system centre of mass, the absolute velocity of the rower, and the 

velocity of the boat. 

Figure 5.31 shows the velocity of the centre of mass (COM) along with the absolute 

velocities of the rower and boat. Note how closely the velocity of the COM matches 

the velocity of the rower. This is of course due to the fact that the rower is the major 

component of the system. In this case, the rower's mass was lOOkg, while that of the 

boat and all components moving with it (notably ORAC and sensory devices) was 

Jess than 30kg. 
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Figure 5.32 The acceleration of the system centre of mass, the absolute acceleration of the rower, 

and the acceleration of the boat. 

The acceleration of the system components and COM are shown in Figure 5.32, 

While this plot is not particularly aesthetically pleasing, there are a number of· 

interesting aspects to note. Chiefly, nole that the when the rower's acceleration is 

most positive, during the drive phase, the boat actually shows negative acceleration, 

due to the previously discussed momentum effects, This is perhaps more evident in 

plots shown below, 

The timing of events dUling the rowing cycle is displayed in Figure 5.33. As 

expected, the force is applied as the rower slides in the direction of motion of the boat. 

The rower from whom this data was collected was a little out of practice, as can be 

seen from the lack of 
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Figure 5.33 Oar force and seat displacement 

consistency in both the seat movement and force profiles. An area of interest for 

athletes and coaches is the relative timing of both the initiation of seat movement and 

force generation, and the conclusion of force production and seat motion. If force is 

generated before the seat moves, it is mainly the back or arms that are doing work, 

while if the rower continues to move in the direction of motion of the boat after he 

stops pulling on the oars, he has wasted a portion of the stroke. Both of these effects 

are visible in Figure 5.33. 
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Figure 5.34 Oar force, relative seat velocity and absolute boat velocity. 

Very interesting results are shown in Figure 5.34, the relative velocity of the rower is 

shown along with the oar force and the velocity of the boat. Considering the tlrst 

variables, it is seen that the force is initially generated with a fast increase in velocity. 

This may be identitled as the portion of the drive immediately following the catch. 

During the drive development, the velocity decreases, but remains positive during 

force generation. Inconsistencies in the seat movement are easily seen in this plot as 

peaks during the rower's deceleration. Considering now the oar force and seat 

movement with the boat velocity, it is seen, that when the oar force is peaking, the 

boat velocity is actually in a trough. This is due to the previously mentioned 

momentum effects. 
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5.5 Discussion & Conclusions 

The results of the preceding section indicate that the methods used to measure seat 

and boat motion are useful. 

The encoder-mounting bracket was sometimes a little difficult to position but held the 

encoder in position well, the only problems with the encoder's use being the tendency 

of the encoder wheel to slide along the spindle and become disengaged with the track. 

This can easily be fixed. 

Using a Kalman filter as a differentiator for encoder measurements was an interesting 

pursuit. While the high resolution of the encoder lead to relatively accurate velocity 

estimation by finite differencing, the Kalman filter acceleration estimates were 

qualitatively seen to be of better quality than those obtained by standard numerical 

differentiation. The design of system transfer matrices so soon after working with 

rotation matrices allowed some interesting comparisons. The matrices chosen for the 

shaping filters are effectively 2D rotation matrices with a small amount of decay 

added. 

While previous researchers. have mentioned the use of impellers in combination with 

accelerometers in the measurement of boat motion, none have discussed how, or 

indeed if, the data from these two instruments are combined. The simple Kalman 

filter presented in this chapter appears to be a useful sensor fusion technique. 

While only a small attempt was made to analyse the collected results, it is clear that 

there is significant scope for research in the area of the timing of the events dUling the 

rowing stroke and the biomechanical implications of this timing. 
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Chapter 6 

Many encouraging developments were made during this work. Perhaps a more robust 

system could have been created, but the work was a development exercise and it is 

thought that as such, it has been very successful. The author enjoyed unexpected 

excursions into the worlds of estimation theory and theoretical kinematics along the 

way, and it is hoped, and believed, that these will {Jrove fruitful. 

This brief chapter makes recommendations for further research. Aside from the 

section covering the performance of the data acquisition system, which is presented in 

Appendix A4, the items are discussed in the same order as they were presented in the 

thesis. 
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6.1 Systel11 

Several components of the system hardware limited the utility of the system. Among 

these was the very poor performance of the wireless LAN card. This card was 

specified to have a range of around 100m, but during testing it seemed that a more 

reasonable estimate would be around 10m. This meant that testing was performed in 

standalone mode, i.e. the data acquisition program was started manually and the boat 

was sent off with no feedback to ensure that the sensors were indeed working. This 

would not have been so problematic if all the other system hardware was functioning 

correctly, but unfortunately this was not the case. Output from the Speed Coach 

sensor was very temperamental. Sending it out on two runs with seemingly identical 

operating conditions, it would function very differently; sometimes it would work 

well, at other times there would be no output at all. Tn addition to this, some strange 

effects were sometimes noted on the analog channels, where one channel would 

greatly alter the output of its neighbours. This problem was also sporadic, and despite 

the best efforts of the electronics technicians could not be identified or eliminated. It 

was initially thought that this problem was due to the short length of time between 

consecutive samples of the multiplexer, but increasing this time did not fix the 

problem. Luckily some data runs were free of this problem. 

Apart from problems with system performance and reliability, it is desirable that the 

physical size and mass of the system be reduced. Rowers sometimes looked at the 

computer balanced by the foot-stretcher with suspicion, and both the mass and the 

consequences of capsizing the boat affected their rowing styles. 

An interesting idea, conceived of by electronics technician, Julian Phillips, is 

constructing the sensors to have 'on-board' power supplies, signal processing and 

short-term data capture facilities. This would reduce the mass of the system and the 

seHlp time. The obvious problems are the increased cost, and the synchronization of 

data from the numerous sensors. The former problem will reduce with time, and the 

latter may be overcome by some simple wireless form of communication between the 

sensors, making these 'sm3.1i sensors' a very attractive option for future development. 
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6.2 Oar Force 

The developed oar force sensor is appealing because of its simplicity, wide 

applicability, and the quality of the results it offers. It is recommended that future 

work be directed into improving the design of the sensor, and eliminating the 

mysteriolls long-term drift that was observed. With this drift removed, it is believed 

that tbe oar force sensor could be a useful tool for rowers, coaches and biomechanists. 

6.3 Foot Force 

As mentioned at great length in Chapter 3, the foot force sensors shear force 

characteristics were very poor. Although this is the case, it is believed that the sensor 

jllstifies fllliher work, due to the encouraging normal force and coordinate estimation 

capabilities that were displayed. Improving the shear response could be achieved in a 

number of ways that are now briefly detailed. 

Increasing the dimensions of the slots at either end of the sensor would allow for the 

placement of strain gauges on both sides of the shear sensing beams. This should 

increase the sensitivity and linearity of the shear response. The response, however, 

will never be fully linear, due to the stress state of the beams, caused by the end 

constraints. This can be seen, since when a central downward force is applied to the 

plate, the ends of the sensing beams will detlect downward, but rather than being a 

case of simple bending, additional compressive stress is superimposed due to the 

manner in which the beams join the plate. 

6.4 Oar Orientation 

This part of the work was the most inspiring and also the most annoying. Once the 

sensors are calibrated as described at the end of Chapter 4, the sensors should yield 

sOllnd estimates of relative orientation in 3D space. Among the fields of application 

for this technology are: virtual reality, prosthesis control, haptic interfaces, personal 

navigation and, of course, sports performance measurement. It is hoped that future 

researchers will pursue this technology to its conclusion. The author is currently 
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undertaking work to expand the generality of the sensors hom 'spherical' to truly 

spatial applications. 

6.5 Seat and Boat Motion 

As mentioned in Chapter 5, the use of an accelerometer to measure the motion of the 

seat was ruled out because of the necessity of accounting for the motion of the boat, 

which prior to actually collecting data was expected to be a complex affair. Based on 

the 1 D motion of the boat, and a little hindsight, using an accelerometer in 

combination with the rotary encoder, as described below, would be an interesting 

option. The ID boat motion may even make a variant of the described real-time

spline methods viable. 

If an accelerometer and rotary encoder, were both connected to the seat, the output 

data of these sensors and the SpeedCoach could be combined in one Kalman filter. 

This filter would be a simple extension of that derived in Chapter 5, with two shaping 

filters, one for the derivative of the seat acceleration relative to the boat, the other for 

the derivative of the boat acceleration. Clearly the seat accelerometer measures the 

absolute acceleration of the seat; that is the sum of the acceleration of the seat relative 

to the boat and the acceleration of the boat itself. With the filter designed 

accordingly, the outputs would include all the kinematic parameters of interest for the 

system. 

While the above approach would be more academically interesting, the results 

presented in Chapter 5 were pleasing. 
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6.6 Co]JJJJlents on Possible Studies 

The above comments, and indeed the entire thesis, have been concerned with the 

development of the instmmentation system. The collected data has only been 

analysed so far as to show that the macroscopic features agree with intuition. Once 

the elements of the instrumentation system are developed, a wealth of information 

will be available for wide ranging investigations of rowing. The studies rendered 

possible include both biomechanical studies, of the rowers and their interactions with 

the boat, and the pure mechanical performance of the boat itself. It will, for example, 

using a combination of boat motion, oar force, foot force and/or rower motion data, be 

possible to estimate, using system identification techniques, the drag characteristics of 

a boat during actual rowing, rather than during simulated tests. 

There is also scope for extension or alteration of the instrumentation system. In 

particular, a simpler oar angle sensor, such as a potentiometer, may be applied to yield 

the sweep angle of the oar. Extensions to the system include the use of feedback for 

tile athlete, which may be presented using dedicated goggles with head up display, a 

small touch screen within the boat, or in the simplest case, some audible indications of 

the rowing parameters. 

It is of interest to rowing coaches and athletes that the boat be configured in the most 

optimal way, i.e. the energy of the athlete is used efficiently. There are a number of 

parameters involved in the rigging of a boat, including foot-stTetcher position and 

angle, distance between oarlocks, oarlock height and pitch and oar length, and the 

optimality is therefore a function of each of these parameters. To find the optimal 

combination of rigging parameters would be a large task, but varying single 

parameters at a time and collecting data should lead to meaningful results and 

improved athlete specific rigging. For example, measuring the oar sweep angle and 

the force at the oarlock shows how much of the generated force is in the direction of 

motion, and how much is 'wasted' by compression of the hull of the boat. Altering 

the stroke characteristics by shifting the foot-stretches or oarlock spacing will change 

the oarlock-force/time and oar-angle/time curves, resulting in different efficiencies. 
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Measuring the multi-axial force components in the oar shaft at the same time as the 

oarlock force and rotation will give some indication of the force generation 

mechanisms. In this way, in combination with video of the blade-water interaction, 

the fluid dynamics of the rowing at various stroke ratings could be well investigated. 

When the relative orientation sensor is functional, it will be possible to add extra 

dimensions to the study of the blade-water interaction. Tn particular, the effects of the 

pitch and roll of the oar during the drive will be able to be investigated. The pitch 

will indicate how deep the blade is in the water, while the roll measures how 

orthogonal the blade is with respect to the water. The symmetry of the rower's 

technique will also be able to be studied down to the degree. This tool is not limited 

to rowing studies, and should find applications in diverse fields such as feedback for 

prosthesis control and virtual reality. The further development and miniaturisation of 

tllese sensors is considered to be very worthwhile. 



238 

6.7 Achievenlents and Contributions of Research 

The part of this research that had the most potential; the estimation of relative 

Olientation using accelerometers and magnetoresistive sensors, was unfortunately not 

realised beyond the theoretical development. The developed theory, including the 

revised method of calibration, which takes account of assembly (non-orthogonality) 

errors, should enable the construction of sensors that will accurately estimate the 

relative orientation of consecutive rigid bodies in a kinematic chain connected by 

spherical joints undergoing general spatial motion. With the exception that the bodies 

be non-ferrous (so as not to saturate the magnetoresistive sensors) the applications of 

these sensors are boundless. Within the conceptual developments of the theory, a new 

method of orientation estimation was developed, which was found to outperform aU 

reviewed methods. 

The combination of accelerometer and impeller has been used by previous researchers 

to estimate the position, velocity and acceleration of the boat. In these instances, 

however, no mention was made of the method in which the outputs of the sensors 

were combined. The discrete Kalman filter was shown to be very suitable for this 

purpose. A very similar filter was also used to differentiate a quantized random 

signal. As this filter was being designed, a new (as far as the author is aware) method 

of checking the evolution of the autocorrelation matrix of a discrete-time state-space 

model driven by white noise. This method could conceivably be used to design, given 

required autocorrelation functions, state-space models for random sequences. 

Aside from theoretical developments, two strain gauge sensors were designed. The 

oar force sensor is of a new design, which does not alter the external geometry of the 

oarlock and does not require the rower to use a specially instrumented oar. The 

minimal disturbance to the feel of rowing, and the maintenance of the ability to easily 

alter the pitch angle of the oarlock are pleasing aspects to the sensor's design. In 

addition to fulfilling these design constraints, the sensor is easy to calibrate in a way 

consistent with loading during rowing and yields sound data. A sensor of similar 

design may be useful in other situations in which the compressive force on an axle (or 

shaft) inside a cylindrical enclosure be measured. Examples of such cases are: 
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measuring the loads on the axles of a truck, to ensure that cargo is well distributed; 

measuring the forces on an axle during mountain biking to aid in the design of 

optimal wheels. 

The design of the foot force sensor was based upon commercially available force 

plates. Unlike a force plate, the sensor incorporates the sensing clements into the 

actual structure and has the advantages of relatively low cost and weight. The use of 

least squares estimation techniques in the processing of the outputs of the foot force 

sensor proved to be effective, and was also useful in the analysis of the sensor's 

response, especially its poor shear characteristics. 
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Al Alternative Method for Determination of 

Normal Force and Coordinates for Foot Force 

Sensor 

The method described below assumes (incorrectly) that the four 'normal force 

channels' labelled 1,2,3,4 are not sensitive to shear, and hence the normal force and 

coordinates me estimated without consideration of shear. The method was found to 

give almost exactly the same results as the least squares method that was used in its 

pJ ace, its main disadvantage was the large number of constants that had to be 

determined for its implementation. Even using Maple® to petform the calculus and 

algebra, the method was very time-consuming. 

Recall, from Chapter 3, that the approximate equation for the output of the i 1h channel 

of the foot force sensor is given by: 

(Al.I) 

Treating x and y (the coordinates of the centre of force) as independent variables, this 

equation represents a continuum of 'voltage planes' in R 3
, corresponding to a range of 

f At each sampling instant, each channel has an associated measurement plane , 

which passes through this force dependent continuum of planes. The intersection of 

the i1h measurement plane (parallel to the xy plane) and the i 1h voltage plane continuum 

is the line 

- C'x. Vi - Ie 
y. =--' x+-~--'-

J (' f(' 
'Yi , 'Yi 

(Al.2) 

These lines, for given f give the required relationship between x and y to yield the 

measured ith voltage. The equations of the lines can be rewtitten in a simpler form: 
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(A1.3) 

which makes it explicit, that the force, f, only changes the intercept of the line, i.e. the 

gradient is invariant to force. 

The intersection of the lines at an arbitrary instant is shown below. The intersection 

of lines Yr and )'J occurs at the point (xi} ,Yi})' The diagram approximately reproduces 

the 'sense' of the solution lines in that they are nearly in orthogonal parallel pairs (as 

is discussed in Chapter 3). The intersection of two lines, of course, represents an 

agreement between two channels on the coord.inate of the centre of force for a 

particular I As a consequence of the approximate nature of the planes, and also the 

fact that the lines are in near parallel pairs, an agreement between all four channels, 

represented by an intersection of all four lines, is very unlikely. Intuitively, the best 

agreement between the channels, which are all assumed to be providing valid 

information, is achieved when the area bounded by the four lines is m.inimised. When 

the area is small, the lines representing the coordinates deemed 'allowable' by each of 

the channels will be in closest agreement. 

y 

L-________________ ~~------------~--------------~ X 

Figure Al.I Estimation problem geometry 

A procedure for solution, therefore, is to findJfor which the enclosed area is smallest 

and average the coordinates of the four intersections at this value. This yields, what 

is in some sense, the most likely combination of J, x and y. 
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Consider the problem of minimising the quadrilateral area bounded by four lines of 

fixed gradient and variable intercept. It is evident that the minimisation of the area is 

, equivalent to the minimisation of either of the regions diagonals, as the opposing 

intercepts are dependent upon all four lines. The mathematics required is simplified if 

the minimised function is the square of the length of the diagonal, and as this does not 

affect the result, this is the approach taken. 

Referring to the Figure A 1.1, the square of the length of one of the diagonals is: 

Substituting: 

and, 

gIves 

Xl2 = 
C4 (f) - Cl (f) 

I11J - 1112 

)134 = T113 X34 + C3 (f) 

Y12 = rn, Xl2 + Cl (f) 

(AlA) 

(Al.5) 

(Al.6) 
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V4 C f4 V3 C f3 
~-- ---+--

D= 
fC y4 C)'4 fC y3 Cy3 

+ 

(A1.7) 

This function is then minimised with respect to f (Le. the first differential w .r.t. f is set 

to zero and the resulting equation solved for .f). The resulting expression can be 

simplified to give the following: 

(A 1.8) 

where the constants are obviously algebraic combInations of the constant terms of the 

cxpressions of the equations of the channel performance surfaces. 

Having estimated f, the coordinates of the intersections of the lines are found by 

substituting f into equations of the form as those given above for X34, Y34. The final 

cstimate of the load coordinates is given as the averagc of the coordinates of the line 

intcrsccti 011S. 
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A2 Relative Orientation Estilnation 

The approaches reviewed in this Appendix arc all least squares techniques of 

estimating the rotation matrix. The rotation matrix is not of comse the only method 

by which orientation can be specified. A popular alternative, the use of unit 

quaternions is mentioned in section A2A. While it may seem a little extraneous to 

include limited derivations of previously used methods, it acts to highlight possible 

problems. It is also interesting to see the way in which new mathematical methods 

have altered the algorithms over the last few decades. 

A2.1 Wahba's Problem 

In 1965, Wahba [66], posed the following problem for fellow mathematicians to solve 

(where the notation has been modified for simplicity): 

Given two sets of n points {r], r2, ... r ll } and {RI, R2, ... R Il }, where n ;:::: 2, find the 

rotation matrix A which brings the first set into the best least squares coincidence with 

the second. That is, find A which minimises 

11 2 

IIIR j-Arjll . (A2.1) 
j=! 

There were several replies to this problem. We review here two methods of solution, 

one that was first stated in reply to Wahba, and the other that strangely does not even 

refer to the original challenge. 

Of the replies to Wahba's problem, the most often quoted is that devised by Brock, 

which is now explained in detail. The initial steps of the derivation are common to 

both reviewed methods of solution and consist of transforming the minimum norm 

problem into the equivalent 'minimum trace' problem. This makes the solution 

easier, since the following properties of traces can be exploited [14J 

tr(QR) = tr(RQ) for conformable matrices Q and R 

tr(Q + R) = tr(Q) + tr(R) for matrices, Q and R of the same dimension 
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T tr(Q ) = tr(Q) for any square matrix, Q 

The equivalence of the norm problem to a trace is now shown. For simplicity, 

suppose that we are concerned with the quantity: 

(A2.2) 

If we form a matrix, B :::: [b j b2 ... bn], then clearly 

(A2.3) 

Following this approach, we define measurement matrices R = [R j R2 ... RnJ and r :::: 

[rl ['2 ... ['1/] so that we have the following equality, from (A2.1): 

17 
2 

IIIRj- Arill :::: tr(R-Ar)T(R-Ar) 
j=l 

Defining this cost function as J(A), and expanding gives 

J(A):::: tr(R-Ar)T(R-Ar) :::: tr(RTR - RTAr - rTATR + rTATAr) 

:::: tr(RTR - RT Ar _ rTATR + rTr), 

(A2.4) 

(A2.5) 

where tbe orthogonality of A has been used to simplify the last term. Clearly the cost, 

J, is minimised by maximising the trace of the two middle (negative) terms, i.e. we 

aim to maximise 

(A2.6) 

The method by which this number is minimised is where the differences between 

solutions normally begin. 

Brock's approach is to find the orthogonal matrix A such that the cost, K, is stationary 

with respect to variation in any of the elements of A. Denoting partial differentiation 

with respect to an arbitrary element of A, a, by ( - )*, and using the readily observed 

fact that [tr( - )]* :::: tr[( - )*] 



Differentiating the equation, AA T = 1, with respect to a gives 

A*AT + A(AT)* = 0, 

A* = -A(AT)*A, 

and substituting (A2.8) into (A2.?) gives 

Now, reordering the matrix products within the trace 
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(A2.?) 

(A2.8) 

(A2.9) 

we see that K*(A) is stationary with respect to variation in the elements of A, if 

(A2.II) 

Multiplying on the right by rRT we get 

(A2.12) 

or (A2.13) 

where B = RrT. There are a number of things to note with regard to this solution. 

Firstly for the solution to exist, B must be non-singular, i.e. of rank three. The 

minimum number of measurements that will ensure the full rank of B is three, with 

the requirement that the measurements be linearly independent. Consider first the 

case of two non-collinear vector observations, i.e. R = [RI R z], r = [rl rz], then 

T T B = RJrJ + R2r2 = [err JRl + 1'2IR2) (rJ2R I + r2ZR Z) (r13RI + r23RZ)] 

(A2.14) 
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and the columns of B are clearly linearly dependent since they all lie in the plane of 

R) and R 2. Similarly for three measurements: 

CA2.I5) 

This matrix is non-singular unless R), R2 and R3 all He in a plane, since then the 

matrix is effectively 

B := [(rJJ+r31a)RI+(r21+r31~)R2 (r12+r32a)RI+(r22+r32~)R2 (r13+r33a)R1+(r23 + 

r33~)R2]' 

(A2.16) 

where R3 = aRl + ~R2' Thus the requirement for Brock's solution to be useful is that 

we are in possession of three linearly independent measurements in each frame. 

The second point to note with Brock's solution is that a matrix square root is required. 

The method by which this square root is obtained through an eigendecomposition is 
T now described. The matrix, C = B B, of which the square root is required, is 

symmetric and thus can be expressed, 

C =EAET (A2.17) 

where E is an Olihogonal matrix of eigenvectors and A is a diagonal matrix containing 

the eigenvalues of C. The square-root of C is that matrix D such that 

(A2.I8) 

T· T 2T 1I2T Note that (EAE )(EAE ) = EA E , therefore D = EA E. Brock states that there is 

freedom in calculating the square root of the diagonal matrix A, since each element 

may be either ±(Aa l12
, i.e. 

(A2.19) 
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It can be shown however, as was stated in Carta and Lackowski [16J, that the 

maximum value of K is always assumed when the positive roots are taken. This is 

proved by manipulating the definition of K from (A2.6): 

K(A) = tr(RT Ar + rT ATR) = 2tr(RT Ar) 

= 2tr[RT(RrTrRT) 112 (rRTrlr] 

= 2tr[rRT(RrTrRT) 112 (rRTrl] = 2tr[(RrTrRT)l!2] 

= 2tr(EAII2ET) = 2tr(A1I2) (A2.20) 

Thus K is maximised by choosing aLl positive roots of the eigenvalues of C. This 

method is Brock's' constrained' method. It is constrained in that the generated matrix 

is forced to be orthogonal. An unconstrained method Brock detailed in the same 

paper seems to be more popular with following researchers, principally because of its 

simplicity. Before this, and more modern unconstrained methods are detailed, a more 

recent solution of Wahba's problem is discussed. It is considered worthwhile to 

discuss this second method because 

III it offers solutions when only two vector observations are available 

.. certain geometric insights are offered 

• It is also interesting to sec how a 'new' mathematical method, singular value 

decomposition (SVD) has both simplified the derivation and allowed for a 

more general solution. 

The first steps of 'Amn's Solution' [4] arc the same as those of Brock's in that the 

problem is reduced to that of maximizing (sec (A2.6)): 

(A2.2l) 

where H = rR T. The problem is therefore solved by the rotation matrix, A, that 

maximises the trace of (AH). The singular value decomposition of H is given by 

(A2.22) 



249 

where Q and S are orthogonal matrices and A is a diagonal matrix of non-negative 

clements (the singular values of H). ]f we select A ° = SQT, which is orthogonal, 

since it is the product of two orthogonal matrices, then 

(A2.23) 

which is both symmetric and positive definite. The lemma below shows that this 

choice of A is optimal since tr(A °H) ~ tr(CA °H), for any orthogonal matrix, C. This 

fully satisfies the requirements of the optimal orthogonal matrix since to form another 

orthogonal matrix requires that A ° be multiplied by a second orthogonal matrix. 

While AD is assured of being orthogonal it is not necessarily a rotation matrix since 

the determinant has not been restricted to being +1. The other possibility is that 

det(A D) = -1, in which case A ° describes a reflection. Since the columns of rand R 

are related by a rotation, in the situation in which AD is a reflection matrix it must be 

possible to relate the vectors by both types of transformation. Geometrically it can be 

seen that the requirement for this case is that the observation vectors from each frame 

are linearly dependent. This case has been described in Section 4.6.3. Studying Fig. 

4.12, it is clear that the vectors may be related by a reflection or a rotation. 

If the vectors are linearly dependent, then the matTix H = rR T will not be of full rank 

(it will be of rank 2, unless the vectors are collinear). (Note that H = HT from Brock's 

method.) COlTCspondingly the last singular value of H will be zero, and the SVD can 

be written 

(A2.24) 

where (jj is a singular value of Hand qi and Si are the columns of Q and S. The zero 

singular value means that the sign of the last column vector of S can be changed 

without affecting the decomposition. (Neither does it affect the orthogonality of S). 

Making this change alters the sign of the determinant of AD, i.e, if the matrix is 

originally a reflection matrix, changing the sign of the last vector of S leads to a 

rotation matrix and vice versa. 
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If the measurements are coplanar (which they are by necessity if only two 

measurements are taken) there is no way of telling in advance whether the matrix A 0 

will be a reflection or rotation matrix, it is purely a matter of chance. Once A 0 has 

been calculated one has to check its determinant, and if necessary change a column of 

S. 

As a matter of interest, the reader may compare Arun's method with that used by 

Farrell and Stuelpnagel in the original reply to Wahba's Problem [66]. In this 

method, the B matrix is first decomposed into the product of orthogonal and 

symmetric matrices so that when the eigendecomposition of the symmetric matrix is 

taken, orthogonal eigenvector matrices result. SVD is much more concise in its 

creation of orthogonal matrices. 

Lemma: For any positive definite matrix DDT and any 0l1hogonal matrix C 

(A2.25) 

11 n 

Proof: tr(CDDT
) = tr(DTCD) = 2,d; Cdi = 2,di ·Cdi (A2.26) 

i=l i=l 

By the Cauchy-Schwarz inequality, dt.Cdt ~ II dt II II Cdi II = (di.dall2(d?CTCdall2 = 
di.di . Since each element of the sum is bounded by di.di it folJows that 

(A2.27) 

which proves (A2.25). 

Before considering unconstrained methods, what may be a useful trick is presented. 

This technique was first presented by Black [9], and is potentially useful in situations 

where only two vector observations are available but three are required by the 

orientation estimation procedure. 

In possession of two linearly independent (i.e non-collinear) vector observations there 

are two equations, 

(A2.28(a)) 

(A2.28(a)) 
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Black's method was to state that as well as these two equations there is al so the 

equation that relates the vector that is normal to the two observations in either 

orientation: 

RxB = A(rxb). (A2.29) 

Further, forming the following matrices, 

[R B RxB] = A[r b rxb] (A2.3D) 

it is possible to solve for A simply by inveTting the matrix on the right. The non

singularity of the matrix [r b rxb] is guaranteed since the vectors rand b are linearly 

independent by definition, and their cross product is orthogonal to them both. Black 

also notes that the matrices may be made orthogonal by choosing them as follows 

[Bx(RxB/IIRxBII) B RxB/llRxBl1 ] = A[ bx(rxb/llrxbll) b rXb/llrxbl1 ], 

(A2.31) 

under the conditions that all vectors are normalised. Since the matrices are now 

orthogonal, the matrix inversion is reduced' to transposition. Additionally, 

normalising and 0l1hogonalising the matrices in this way forces the calculated matrix, 

A, to be orthogonal (since the product of orthogonal matrices is itself oI1hogonal). It 

will also always be a rotation matrix since it is impossible for a rcf1cction to be 

associated with full rank measurement matrices. It should be noted that this method 

takes no account of any noise on the vector observations. Also, the cross product of 

two noisy vectors is intuitively 'noisier' than the original two vectors. Thus, while 

Black's method is useful in that it permits the calculation of a rotation matrix in the 

possession of only two sets of independent vector observations, the lack of 

optimization in the computation limits its use in the case of real sensor outputs. 
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A2.2 Unconstrained Orientation Estimation 

Brock's unconstrained method [14] follows the same approach as the constrained 

method described abovc, with the exception that the orthogonality of A is not 

enforced. Rather than present this method, a technique that allows for a more general 

result is introduced. This is a simple variant on the technique of Markley and Bar

Itzhack [45]. The added generality allowed by this method is the inclusion of an nxn 

symmetric matrix, W, that weights the observations to varying degrees: 

.l(A) = trCW(R-Ar)T(R-Ar)]. (A2.32) 

ll1e method of derivation used is called a 'directional derivative', the cost function is 

formulated for a general matrix Ao +EH, where H is a general non-zero matrix and Au 

is the optimal (non-orthogonal) matrix. The derivative of the cost function with 

respect to E is then taken at E = 0 so that the cost is stationary with respect to any 

general variation in Ao. When the cost function 

J(Ao + EH) = tr[W(R-(Ao + EH)r)T(R-(Ao + EH)r)] (A2.33) 

is expanded, it results in terms that are constant, linear and quadratic in E. 

Differentiating and evaluating the result at E = 0, leaves only the coefficient of the 

I inear term, which leaving out some trace manipulations is 

(A2.34) 

Therefore for the cost to be invariant to any change in Ao: 

(A2.35) 

In the case of an identity weighting matrix Ao = RrT(rrTrl, which is Brock's solution 

for the unconstrained problem. Clearly Ao can only be calculated if (rrT) is of fuH 

rank, the requirement for this being that at least three linearly independent 
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measurements are made (or two non-collinear measurements and Black's approach). 

In the case of three linearly independent measurements, r is a square matrix, thus r- I 

exists and 

(A2.36) 

which is exactly Black's solution. Note that this solution is independent of the 

weighting matrix, W, and it is therefore impossible to weight observations differently 

for the case n = 3. For vector observations to be weighted differently requires that 

more than three pairs of measurements be made. Markley and Bar-Itzhack do a 

simple error analysis for the case in which the r measurements are error free and the 

R measurements are sub.iect to zero mean white noise and show that the deviation of 

Ao from Olthogonality is directly related to the noise on the measurements. 

Now that both constrained and unconstrained methods of attitude estimation have 

been presented, one may ask what the benefits of each branch are. The unconstrained 

methods, at least those described here, have the advantage of computational simplicity 

over the constrained methods (matTix inverse vs. eigendecomposition or singular 

value decomposition). Also, in some cases where the vector observations are very 

noisy, it is possible that a non-orthogonal matrix will have less error than the 

corresponding matrix formed via a constrained method. The advantage of creating an 

Olihogonal matrix is the inherent structure. Each of the columns may-be used directly 

to estimate angles of one body with respect to the other. Also, if the matrix is a 

rotation matrix, it is possible to find the associated axis and angle of rotation, which 

may be useful in some situations. When the matrix is non-orthogonal, the columns 

have no particular structure, although they will presumably be 'close' to having the 

orthogonal structure, if the vector observations are indeed able to be related by a 

rotation matrix. With this 'almost Olthogonal' structure it is unclear which of a 

continuum of rotation matrices in the neighbourhood of the unconstrained solution is 

indeed true. If information such as included angles between the axes of the two 

coordinate frames, or the orientation of theaxis of rotation are to be easily gathered, it 

is necessary that the matrix be orthogonaL Driven by the simpler computation offered 

by unconstrained methods, some researches have devised methods by which the 
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yielded non-orthogonal matrices may be 'optimally orthogonalised'. One such 

method is now presented. 
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A2.3 Orthogonalising Unconstrained Estimates 

Carta and Lackowski [16] have presented a method by which unconstrained estimates 

can be 'orthogonalised' using Lagrange multipliers. Denoting the deviation of Ao (the 

optimal non-orthogonal matrix) from orthogonality by the matrix E, i.e. AD = A + E, 

where A is the desired orthogonal matrix, the aim is to minimise 

(A2.37) 

That is, to minimise the sum of the squares of the elements of E (this is the square of 

the Frobenius norm of E). The constraint, which is adjoined to the cost function via a 

symmetric Lagrange multiplier matrix A, ensures the orthogonality of the solution 

matrix A, i.e 

L(A,A) = tr[(A/Ao - 2AoTA + 1 + A(ATA-l)] (A2.38) 

This function is then differentiated with respect to A, using the lUles 

The resulting equation is then set equal to zero to give 

-2Ao + 2AA = O. (A2.39) 

Thus A = AoAI. The inverse of the Lagrange multiplier matrix is found by enforcing 

the orthogonality of A: 

ATA-1=O 

(AoAI)T(AoAI) -1 = 0 

A-IAoTAoA-1 = 1 

(A- [AoTAo)2 = A/ Ao, (A2.40) 
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TIT where the last equality is found by multiplying on the right by Ao Ao. Now A" Ao Ao 

(A TA 112 = 0 0) so 

(A2AI) 

Giving (from (A2.39»: 

(A2Al) 

The matrix square root is found by the same eigendecomposition method as 

previously described (Brock's solution), and again, all positive roots 01' the 

eigenvalues are chosen. While this method does indeed yield an Olthogonal matrix 

from a non-orthogonal matrix, the actual benefit using an unconstrained estimate has 

been lost, since the computation required for the orthogonalisation process is the same 

as that used in Brock's method, which yields an orthogonal matrix directly. 
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A2A Other Methods of Orientation Estimation 

The above algorithms are concerned with the estimation of the rotation matrix, but 

just as there are other methods of specifying an orientation, there are other approaches 

to its estimation through vector observations. Probably most notable among these 

alternatives is the use of quaternions [11], such an approach was taken by Horn [35]. 

This method, which was developed primarily for computer vision applications, is 

applicable to the problem at hand but is not elaborated upon, as it would require the 

introduction of quaternions. 

Another alternative is the computation of the Rodrigues' vector, which was shown in 

Section 4.5 to fully describe a rotation. Only one instance of Rodrigues' vector 

estimation was found in a brief literature search, and the method, which was based 

upon an Extended Kalman Filter algorithm, required both vector observations and 

measurements of the angular velocity through the use of gyroscopes [37]. It was not 

desired that more instrumentation be added, so this method also, was not considered 

fmther. 
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A3 The Kalman Filter 

The discrete Kalman filter is a recursive algorithm that generates the minimum mean 

square estimate of a vector x, given linearly rel ated measurements observed with 

additive white noise and a discrete time state space model for the evolution of the 

state vector in response to a white noise input. This derivation first covers general 

minimum mean square estimation and properties that are required for the 

development of the Kalman filter algorithm. Next the problem is defined and the 

development of the algorithm is completed. 

A3.1 Minimum Mean Square Estimation 

Given a random vector y, we seek a linear estimate of a related random vector ~, i.e. 

Ky + b, such that the sum of the variances of the elements of the estimation error 

vector are minimised. Mathematically stated, let E be the estimation error vector: 

8 = Ky + b -~. (A3.I) 

The covariance matrix of 8 is given by E[(8 - E[8])(E - E[8])T] , which has as its 

diagonal entries, the variances of the components of estimation e1Tor, we therefore 

aim to minimise the sum of the diagonal elements, i.e. the trace of the matrix 

J = tr{E[(8 - E[8])(8 - E[8JlJ} (A3.2) 

Additionally it is desired that the estimate be unbiased, i.e. E[8J = O. The combination 

of the minimum variance and unbiased properties give the minimum mean square 

error estimate, which is equivalent to minimising the length of the estimation error 

vector in n-space. Expanding and simplifying J, 

(A3.3) 
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Substituting for E and expanding the first term of (A3.3): 

trE[EET] = tr{E[KyyTI(T + l(ybT _ KypT + byTKT + bbT _ bpT _ pyTI(T _ PbT + ppTJ} 

=tr{E[(KyyTKT _ 2KypT+ 2KybT + bbT 
_ 2PbT + ppTJ} 

= tr{(J(E[yyT]I(T _ 2KE[ypT] + 2KE[y]bT + bbT 
_ 2E[P]bT + E[ppTJ} 

(A3.4) 

where the linearity of the expectation operator has been used (also property that tr(A) 

= treAT)). Similarly, expanding the second term: 

trE[E]E[E]T = tr{ (K£[y]E[y]TKT - 2KE[y]E[P] T + 2KE[y]l? + bbT 
- 2E[P]bT + 

[P]E[P T]} 

(A3.5) 

Summing (A3.4) and (A3.5) to form] gives: 

J = tr{KE[yyT]KT - 2KE[ypT] + E[ppT] - KE[yJ E[y] TI(T + 2KE[y]E[pT] - E[P]EWT]}. 

(A3.6) 

Defining the covariance matrices Pyy = E[yyT] - E[y]E[y]T and Py~ = E[ypT] -

E[y]E[PJT, Pr1p = E[ppTJ-E[pJE[P]T 1 (A3.6) simplifies to 

J = tr{KPyyKT - 21(Py~ + P~~}. (A3.7) 

The matrix I( for which .I is minimum is found by differentiating] with respect to K 

and setting the resulting equation to zero. 

21(P yy - 2Ppy = 0, (A3.8) 

T where P~y = P y~ . Solving for K gives 

(A3.9) 

In the case E[y] = E[P] = 0, P~y = E[pyT], Pyy = E[yyT] and the result is 
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(A3.10) 

While it is seen that the choice of the vector b does not effect the variance of the 

estimation error, it is required, in the case of non-zero mean vectors, to ensure that the 

estimate is unbiased. Having detennined K, we are now in the position to calculate b 

(see A3.1): 

EI£] = E[Ky + b - ~J = KE[y] -EW] + b. (A3.1l) 

For E[£] = 0, i.e. unbiased error: 

b = EW] - KE[yJ. (A3.12) 

Thus the minimum mean squared error estimate of ~ given y is 

Ky + b = PpyPyy-1(y - E[y]) + E[~] (A3.l3) 

which in the case of zero mean random vectors y and ~ (Ely] = E[~] = 0) results in 

(A3.14) 

This estimate (both the non-zero and zero means cases), which will be denoted by 

E*Wly] has many important properties. 

1. If y and ~ are jointly distributed Gaussian vectors E*Wly] = E[~ly], i.e. the 

conditional expectation, and the estimate is optimal with respect to a large range of 

criteria [38], [2J. 

2. A property of the estimation error, E = E* [~Iy] - ~, that is very useful is that E[EyT] 

= O. Random vectors that have this property are termed orthogonal. This is useful in 

simplifying terms during the derivation of the Kalman filter. The orthogonality can 

be shown by direct calculation: 



261 

E[(E*Wly] - ~)yT1 = E[{PllyPy/(Y - E[y]) + E[~J _ ~ }yT] 

= P~yP y/ E(yy T _ E[y]E[y] T) + E[~]E[y]T _ E[~y T] 

= P~y - P~y = 0 (A3.IS) 

It can also be shown that orthogonality is a sufficient condition for an optimal 

estimate [60]. It is due to the Olihogonality that E*[13Iy] is known as the 'orthogonal 

projection' of ~ onto y. Furthermore, the property of orthogonality can be used to 

derive the filter in a Hilbert space where the inner product is defined using the 

expectation operator [44]. 

3. The notation E* [~Iy I ,y2] implies that the estimate of ~ is conditioned upon two 

random vectors, YI and Y2. This condition is also denoted E*[l3IY], with 

corresponding covariance and cross-covariance matrices Pyy and P~y are as follows 

(A3.] 6) 

A particularly important, and useful, case is that in which Yl and Y2 are uncorrelated. 

In this case the covariance matrix Pyy is diagonal: 

(A3.17) 

since the off diagonal terms are of the form Py1y2 = E[YlY2T] - E[YdE[Y2f and for 

uncorrelated random vectors E[YlY2T] = E[YdE[Y2f". The inverse of this matrix is 

simply the inverse of the matrices on the diagonal. The cross-covariance matrix is of 

the same form as that given above: 

E* [~IY] = P~ypyy-l [(YI - E[Yl])(Y2 - E[Y2])T]T + E[~J 

= P~lylPylYI-l(Yl - E[Yl]) + P~2Y2PY2Y2-1(Y2 - E[Y2]) + E[~]. 
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(A3.18) 

Thus it is seen that 

(A3.19) 

and in general 

E*[l3Iy(,y2, ... Yn] = E*WIYl] + E*[I3lyz] + ... + E* [13 IYnJ - (n-l)EW] 

(A3.20) 

or in the case of Er~] = 0: 

(A3.21) 

This has a good geometrical interpretation, especially when the y's are uncorrelated 

and zero mean (which means the vectors are orthogonal, with respect to the inner 

product defined by the expectation operator). Projecting ~ onto {Yl,y2, ... Yn} in the 

case in which all the y's are orthogonal is the same as the sum of the projections of ~ 

onto each of the individual y's. This is equivalent to finding the components of a 

vector in Euclidean space by taking the scaJar product with each of the coordinate 

axes. 

4. If A is an arbitrary non-singular square matrix, and c is an arbitrary vector, E*r~IAy 

+ c] = E*Wly], i.e. conditioning on a random variabJe y is equivalent to conditioning 

on a linear transformation of y. This can be seen by direct calculation, i.e. let z = Ay 

+ C, then 

z - E[z] = Ay + C - AE[y] - C = A(y - E[y]) 

Pllz = E[W - E[~ ])(z - E[Z])T] = E[(~ - Er~]) {A(y - E[y]) }T] 

= E[~yAT + ~ErYJTAT -EW]yAT + E[~]E[y]TAT] 

= E[~y + ~E[y]T - E[l3]y + EW]E[y]T]AT 

= p~yAT 

(A3.22) 

(A3.23) 



P zz = E[(z - E[z])(z - E[z]l] = E[ (A(y - E[y])} ( A(y - E[y])} T] 

= E[AyyTAT _ AyE[yfAT - AE[y]yTAT + AE[y]E[y]TAT] 

=E[yyT _ yE[y]T _E[y]yT +E[y]E[y]T]AT 

= APyyAT 

n -I - A-TI) -lA-I 
J- zz - yy 
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(A3.24) 

(A3.25) 

E*Wlz] = P~zPzz-1 [z - E[z]] + E[~~] = p~yATA-Tpy/ A-1A(y - E[y]) + E[~] = E*Wly]. 

(A3.26) 

5. If random vectors are related by the general equation ~ = Ac + d, where A is a 

known matrix and d is a vector (a number of properties of which are discussed 

below). The minimum mean square estimate of ~ conditioned on correlated random 

vector y is given by 

(A3.27) 

where obviously Pyy is as before, and l)~y and E[~] are given by 

E[~] = AE[e] + E[d] (A3.28) 

P~y = E[(~ - E[~])(y- E[y])T] = E[{A(c - E[e]) + (d - E[dJ)}(y - E[yJ)T] 

= AE[(c - E[c])(y - E[y])T] + E[(d - E[d])(y - E[y])T] 

= APey + Pdy (A3.29) 

Substituting this into (A3.27) gives 

E*Wly] = [APey + Pdy]Py/(Y - E[y]) + E[~] 

= APeyPy/(Y - E[y]) + AE[e] + PdyPy/(Y - E[y]) + E[d] 

= AE*[cly] + E*[dly] (A3.30) 
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Based on this result the estimator is seen to be linear, i.e. the best estimate of a linear 

combination is the corresponding linear combination of estimates of the components. 

All important case m'ises when d is uncorrelated with y, meaning that Pdy = O. If in 

addition E[ dJ = 0, then 

E~' W Iy] == AE* [ ely] (A3.31 ) 

The definition of the linear minimum mean square estimate and the five propet1ies 

listed above are the main theoretical basis for the Kalman filter. 
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A3.2 Kalnlan Filter Problen1 Staten1ent 

The Kalman Filter is a recursive algorithm that calculates the linear minimum mean 

square estimate of the state of a dynamic system driven by white noise, based on the 

model of tile system and noisy measurements. Using the notation of the previous 

section, the state of the system, x, is equivalent to the vector ~, and the measurement z 

is comparable to y. The slate, x, however is not a constant vector, but is related by the 

discrete time slate space model: 

x(k+l) = <Dx(k) + lw(k) 

z(k) = Cx(k) + v(k) 

(A3.32(a)) 

(A3.32(b)) 

where [ - ](k) denotes the value of a random vector sequence at a discrete instant. 

x(k) 
w(k) __ ~ 1 z(k) 

Figure A3.1 Discrete Kalman filter block diagram 

The process {w(k)} is known as the system noise and has the following properlies 

E[w(k)] = 0 V k 

E[w(k)w(j)T] = Q8jk 

(A3.33(a)) 

(A3.33(b)) 

i.e. w(k) is a zero mean white noise vector sequence (it is uncOlTclated with itself 

from one instant to the next). Similarly, {v(k)} is the measurement noise with 

properlies: 

E[v(k)] = 0 V k 

T E[ v(k)v(j) ] = R8jk . 

(A3.34(a)) 

(A3.34(b )) 
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It is assumed that the measurement and system noise processes are uncorrclated 

E[w(k)vU) T] = 0 V k,j (A3.35) 

and that the initial value of the state is uncorrelated with both {w(k)} and {v(k)} 

E[x(O)w(k) TJ = E[x(O)v(k) TJ = 0 V k (A3.36) 

The model for the system can either be composed in discrete time or a discretised 

version of a continuous model. The above model is not completely general for a 

number of reasons. Most importantly, the model matrices are assumed to be constant, 

and there is no deterministic input. These situations are easily dealt with and are 

commented on below. Extra generality can also be added by allowing the system and 

measurement noises to be couelated, or for the system noise to have a 'feed-through' 

term to the measurements. The above model is all that is required in this work, and 

simplifies the derivation. The general derivation is covered in Anderson and Moore 

[2]. 

In the Kalman filter, at each instant, k, an estimate of the state of the system is 

conditioned on all available data, i.e. zU), j =1, 2, .... , k. For simplicity, and to be 

consistent with almost all Kalman filtering literature, the fa] I owing notation is 

adopted 

" 
E* [x(k) Iz(1 ),z(2), ... ,z(k)] = E*[x(k)IZ(k)] = x (klk) (A3.37) 

i.e. the estimate of the state at the klh instant based on all measurements available up 

to the klh instant. It is stated that the estimate E* [x(k)IZ(k)] is conditioned on Z(k). 

This is suggestive of the fact that in the Gaussian case E* [x(k) IZ(k)] = E[x(k)IZ(k)] 

(as mentioned in the previous section), the conditional expectation. 
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A3.3 Development of the Algorithn1 

Consider the estimate based on all avail able data at the (k + 1 )th instant 

1\ 

x (k+ lIk+ 1) = E*[x(k+ I )lz(l),z(2), ... ,z(k), z(k+ 1)] = E*[x(k+ I )IZ(k+ l)J 

(A3.38) 

The following previously derived properties are now exploited: 

1. the linearity of the estimator 

2. the linear minimum mean squared error estimation error is orthogonal to the 

data on which it is conditioned. 

3. conditioning on a linear transformation of a random vector is equivalent to 

conditioning on the original random vector 

4. an estimate based on Olthogonal random variables is equal to the sum of the 

estimates based on the individual random variables 

Using the first propelty note that 

1\ 1\ 1\ 

z(k+llk) = Cx (k+1Ik) + v (k+1Ik) (A3.39) 

Consideration of the measurement equation (A3.32(b» and the white characteristics 

of (v(k)} (A3. 34) shows that v(k + I) is uncorrelated with z(j) j = 1,2, .. ,k and since it is 

zero mean the linear minimum mean square estimate is zero, meaning (A3.39) 

simplifies to: 

1\ 1\ 

z (k+1 Ik) = Cx (k+llk) (A3.40) 

The predictive error in estimating z(k+ 1) known as the innovatior2 is denoted 

1\ 

ez(k+llk) = z(k+l) - z(k+llk) (A3.41) 
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Using the second property, this estimation error is orthogonal to all the data on which 

it is conditioned, i.e. Z(k). Since el.(k+llk) it is a linear transformation of z(k+l), the 

third property shows that the following is true 

x (k+lIk+J);:: E*[x(k+l)IZ(k+l)] = E*[x(k+1)lz(1),z(2), ... ,z(k), z(k+1)] 

;:: E*[x(k+ 1)IZ(k),ez(k+llk)] (A3.42) 

Finally, the fourth property shows that since Z(k) and ezCk+ 11k) are orthogonal the 

estimate can be expanded to the sum of the estimates based on each of these 

quantities: 

1\ 

x (k+ J Ik+ 1) ;:: E*[x(k+ 1)IZ(k),ezCk+ 11k)] 

;:: E*[x(k+l)IZ(k)] +E*[x(k)lezCk+llk)] -E[x(k)J (A3.43) 

It should be noted that it is customary to show all conditioning as occurring on the 

innovations sequence, rather than the actual measurements, i.e. 

1\ 

x (k+llk+ 1) = E* [x(k+ J)lez(l ),ez(2), ... ,ez(k),ez(k+ 1)] ;:: E*[x(k+ 1 )IEzCk+ 1)] 

(A3.44) 

this bas the conceptual benefit that the estimate is the sum of the projections of each 

of x(k+ 1) onto each of the k+ J orthogonal vectors; conditioning occurs on a white 

zero mean sequence. 'While this is theoretically and intuitively interesting, it is not 

required, since the estimates are generated recursively, as is now shown. 

To evaluate E*[x(k+ 1 )IZ(k+ 1)], is equivalent to calculating the sum of 

E*[x(k+1)IZ(k)] and E*[x(k+1)lez(k+llk)]. The former is known as the predictive 

estimate since it predicts the value of the state at x(k+l) using all prevLOUS 

measurements. The latter is the corrective estimate and uses only the new 

information at the (k+ 1 )th instant. The ternl 'new information' is ambiguous since it 

means both the new measurement and, more correctly, also that part of the new 
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measurement that could not be predicted from all prevIOus measurements. We 

proceed now by evaluating the predictive and corrective estimates. 

Using the linearity of the estimator and the model of the state (A3.32(a)) it is seen that 

the predictive estimate of the state (the estimate of the state at (k+ 1)th instant based on 

infonnation up to the kth instant) is given by 

1\ 1\ 1\ 

x (k+ 11k) = <Dx (klk) + r W (klk) (A3.45) 

Note from (A3.32(b)) and (A3.33) that w(k) is un correlated with z(k), therefore the 

linear minimum mean squared enor estimate of w(k) is E[w(k)] = 0, and 

1\ 1\ 

x (k+ 11k) = <D x (klk) (A3.46) 

Before the second term can be calculated, definitions of estimation errors and the 

associated covariance matrices need to be made. There are estimation errors 

associated with both the predictive and corrected estimate, both of which are zero 

mean due to the unbiased characteristic of the linear minimum mean square estimator. 

The prediction enor is denoted 

1\ A 

e(k+llk) = x(k+l) - x (k+llk) = <D[x(k) - x (klk)] + rw(k). (A3.47) 

The corrected estimation error in the estimate when all possible information is 

included is defined 

1\ 

e(klk) = x(k) - x (klk) (A3.48) 

and thus it is seen (using (A3.32(a)), (A3.45) and (A3.48)) that the predictive and 

corrected estimation errors actually fulfil the difference equation: 

e(k+ 11k) = <De(klk) + rw(k). (A3.49) 



The covariance matrix of the predictive estimation error (which is zero mean) is 

calculated as follows 

P(k+llk) = Ele(lc+ llk)e(k+ llk)T] 

= EI {<De(klk) + iw(k)) {<De(klk) + iW(k) )T] 
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= <DE[e(klk)e(klk)T]<DT + <DE[e(klk)w(k)T]rT + iE[w(k)e(klk)T]<DT 

+ iE[w(k)w(k)T]rT (A3.50) 

Examination of the definitions of the quantities e(klk) and w(k) show that they are 

ullcorrelated, hence (A3.50) simplifies to 

P(k+lIk) = <DE[e(klk)e(klk)T]<DT + iE[w(k)w(k)T]iT 

= <DP(klk)<DT + iQrT, (A3.51) 

where P(klk) is the covariance matrix associated with e(klk) and Q is the previously 

defined system noise covariance matrix. Some more work needs to be done before 

P(klk) can be evaluated, which is actually the last step of the derivation. 

Recall that the filtered estimate is given by (A3.43): 

x (k+ llk+]) = E*[x(k+] )IZ(k)] + E*[x(k)lez(k+] Ik)] - E[x(k)] 

" = x(k+llk) +E*lx(k)lez(k+llk)] -E[x(k)] (A3.52) 

the second part of the estimate, the component conditioned upon the innovation at the 

(k+ J )th instant, is now calculated. Following from the definition of the linear 

minimum mean square estimator: 

E*[x(k+ 1)Iez(k+ Ilk)] = 
cov[x(k+ l),ezClc+ 1)]cov[ez(k+ l),ez(k+ 1)r1 (ez(k+ 1) - E[ez(k+ 1)]) + E[x(k+ 1)] 

(A3.53) 

where cov[a,b] denotes the covariance matrix of the random vectors a and b. Note 

firstly that since the estimate of z(k+ 1) is unbiased, E[ez(k+ 1)] = 0, therefore 
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E*[x(k+ l)lez(l<+ 11k)J = cov[x(k+ l),czCk+ 1 )]E[ ezCk+ 1)ez(k+ 1)Tr1cz(k+ 1) + E[x(k+ 1)] 

(A3.54) 

Consider the cross-covariance matrix cov[x(k),ez(k+ 1)]: 

cov[x(k+ l),ezCk+ 1)] = E[(x(k+ 1) - E[x(k+ l)])cz(k+1)T] (A3.55) 

A 

using x(k+1) = x (k+1Ik) - e(k+llk) and cz(k+l) = Ce(k+llk)+v(k+l): 

A 

cov[x(k+J),ez(k+1)] = E[(x (k+1Ik) - c(k+llk) -E[x(k+l)])(Cc(k+lIk) + V(k+l))T] 

(A3.56) 

This expression can thankfully be significantly simplified, since the predictive 

estimate is orthogonal to the associated error, and v(k+ 1) is uncorrelated with both 

quantities. Combining these facts with E[e(k+ 11k)] = 0 and EI~v(k+ l)J = 0 means 

(A3.55) simplifies to: 

T T T cov[x(k+1),ezCk+1)] = E[e(k+llk)e(k+llk) ]C = P(k+llk)C (A3.57) 

The next matrix of (A3.54) to evaluate is E[ez(k.+l)ez(k+l)T]. This is achieved by 

again using the relation ezCk+1) = Cc(k+llk)+v(k+l): 

E[ez(k+ 1 )ezCk+ 1)T] = El{ Ce(k+] Ik)+v(k+ 1)} {Ce(k+ llk)+v(k+ 1) }T] 

(A3.58) 

Since e(k+ 11k) and v(k+ 1) are uncorrelated and zero mean this simplifies to give 

E[cz(l<+l)ez(k+ll] = CE[c(k+llk)e(k+lIk)T]CT + E[v(k+1)v(k+l)T] 

= CP(k+llk)CT + R (A3.59) 

ComiJining these matrix definitions shows that 
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E*[x(k+ 1)Iez(k+ 11k)] = P(k+ llk)CT[CP(k+ llk)CT + Rr'ez(k+ 1) + E[x(k+ 1)]. 

(A3.60) 

Substituting this result into the (A3.52) gives 

1\ 

x (k+ llk+ 1) = E*[x(k+l)IZ(k)] + E*[x(k)le"Jk+llk)] - E[x(k)] 

1\ 

= x (k+llk) + P(k+llk)CT[CP(k+lIk)CT + Rr1ez(k+l) 

1\ 1\ 

= x (k+lIk) + K(k+l)rz(k+l) - Cx (k+1Ik)] , (A3.6l) 

where 

K(k+1) = P(k+llk)CT[CP(k+llk)CT + Rr' (A3.62) 

is the Kalman gain matrix. 

The only matrix of the KF algorithm yet to be evaluated is P(klk), which is required 

for the calculation of P(k+llk) and consequently K(k+l). Recall that P(klk) is the 

covariance matrix associated with the corrected error measurement: 

where 

P(k+ lIk+ 1) = E[e(k+ llk+l)e(k+ llk+ 1)T], 

1\ 

e(k+llk+l)=x(k+l)- x(k+llk+l) 

1\ 1\ 

= x(k+ 1) - x (k+ 11k) +K(k+ 1)[z(k+ 1) - C x (k+ 11k)] 

= e(k+llk) + K(k+l)[Ce(k+llk) + v(k+l)] 

= [1- K(k+l)C]e(k+llk) + K(k+1)v(k+l) 

Letting K = K(k+l) for brevity 

(A3.63) 

(A3.64) 

P(k+ 1 Ik+ 1) = E[ {[1- KC]e(k+llk) + KV(k+l)} {[1 - KC]e(k+lIk) + Kv(k+l)} T] 

(A3.65) 
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Since e(k+ 11k) and v(k) are uncorrelated and zero mean the expectations of their 

products are equal to zero and 

P(k+ llk+ 1) = [1- KC]E[e(k+ llk)e(k+llk)T][1 - KC]T+KE[v(k+ l)v(k+l)T]KT 

= [1- KC]P(k+llk)[1- KC]T + KRKT 

= P(k+ llk)[1- KC]T - KCP(k+ 11k) + KCP(k+ llk)CTKT + KRKT 

= P(k+ llk)[J - KC]T - KCP(k+ 11k) + K[CP(k+llk)CT + R]KT 

(A3.66) 

K[CP(k+llk)C + R] = P(k+llk)CT, (A3.67) 

and therefore (A3.66) simplifies to: 

P(k+llk+l) = P(k+llk)[1- KC]T - KCP(k+llk) + P(k+llk)CTKT 

= P(k+llk) - P(k+lIk)CTI(T - KCP(k+llk) + P(k+lIk)CTKT 

= P(k+l Ik) - KCP(k+llk) 

= [1 - I(C]P(k+ 11k) 

In summary the Kalman filter equations moe 

1\ 1\ 

x (k+ 11k) = <Dx (klk) 

P(k+lIk) = <DP(klk)<DT + rQrT, 

K(k+l) = P(k+llk)CT[CP(k+llk)CT + Rrl 

1\ 1\ 

x (k+ llk+ 1) = x Ck+llk) + KCk+l) [z(k+ 1) - C x (k+ 11k)] 

P(k+ llk+ 1) = [1 - KC]P(k+ Ilk) 

(A3.68) 

(A3.46) 

(A3.S 1) 

(A3.62) 

(A3.61) 

(A3.68) 

Furnished with measurements, z(k), a system model consisting of the state transition 

matrix cD, the noise input matrix r, the input and measurement noise covariance 

matrices, Q and R, an initial state estimate, and an initial estimate of the state 
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estimation error covariance matrix P(OIO), this algorithm recursively generates the 

minimum mean squared estimate of the state for aU k. 



A4 Data Acquisition Hardware, Software and 

Protocols 
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The subsequent chapters describe sensors and signal processing methods that were 

developed for the purpose of rowing instrumentation. These sensors, of course, need 

to be connected to a data acquisition system, for the collection and storage of data. 

This brief chapter describes the hardware and software that were developed for this 

purpose. The method by which data was collected is also described. 

Both the hardware and software were designed in consultation with the author and Dr. 

David Aitchison, but Julian Phillips, Julian Murphy and Dejan Metrovic performed 

the bulk of the work described in this chapter. 

A4.1 Computer Hardware 

The aim of this work was to create an instrumentation system for rowing capable of 

producing real time results. As such it was necessary to somehow transmit the data 

from the sensors to a remote viewing station. The system was therefore comprised of· 

two computers, one that acts as a data acquisition system on board the boat (ORAC), 

and one that received and displayed data on the shore (Rocky). The two computers 

were to be linked using a wireless LAN (Local Area Network) connection, but trials 

showed the range to be insufficient. An alternative product for data transmission is 

being searched for. 

A4.1.10RAC 

The data acquisition computer was dubbed ORAC, On-the-water Rowing data 

Acquisition Computer. This acronym will be familiar to those aufait with archaic 

British science fiction. 

ORAC is a fully functional PC, with 400 MHz Celeron processor, mounted on a small 

footprint KA-611O motherboard, chosen for its size and multiple ISA (Industry 
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Standard Architecture) slots, 64 ME ram and a 7.5 GB hard drive. The case for the 

computer is a large polypropylene clear tub, with an aluminium lid for hem' 

dissipation. The motherboard is fastened to the bottom of the tub, while other 

components, described below, are fastened to the lid. A rubber gasket is located 

between the lid and tub to give a reasonably watertight seaL 

Two data acquisition cards were used, one for the analog sensors, and the other for the 

digital sensors. The NUDAQ 9114 has 32 analog channels (single ended) and 16 

digital channels available. It was used only for the analog channels, of which there 

were a total of 19. Space is available for system expansion, the most pressing of these 

items is a second oar force sensor, so that sculling can be fully monitored. The 9114 

occupied an ISA slot. The Universal Pulse Processor was designed and constructed 

by Julian Murphy of the Electronics Workshop. In this work it was used to process 

the quadrature output of a rotary encoder as well as the pulse type outputs of 

miscellaneous digital devices requiring counter/timer facilities. 

In addition to the sensors described in the following chapters, the system was 

designed to capture linked video images. 'Linked' is used in the sense that the 

sensory data is synchronised with the video data, providing very useful information 

for biomechanists/coaches. A MatTOx video card was used for video capture and also 

allowed for, in combination with a small transmitter, the use of ORAC with a portable 

television instead of a regular computer monitor. While this was initially seen as a 

good way to keep costs down, it was found, as is described below, to be too 

troublesome for the saving. 

ORAC was controlled using a wireless keyboard (an infrared receiver is located on 

top of the case) or an FM wireless mouse. The keyboard normally performed well, 

but required a clear line of sight between the transmitter and receiver. 

A number of options for display were trailed, the least successful of which was using 

a small wireless TV, with the transmitted whhin the case. A lot of time was spent 

manoeuvring a small aedal, with one foot in the river, sheltering the small screen 

frOln any incident light! Towards the end of the work, a flat screen monitor was 

trailed. In operation, one 'docked' with the boat and passed the monitor connection 
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cable to the rower to connect to ORAC. This technology made data collection a lot 

faster. The final choice, however, was a flat touch screen, so that the user-interface 

and display could be combined into one. 

Power is provided to the computer by an external 6.5 Ahr Lead Acid battery, which is 

connected through a watertight socket on the lid. Mounted on the lid are two switch

mode power supplies, one providing 3.3V, +12V and -12V lines, and the other 

dedicated to provide 5V. One battery allowed approximately one hour of operation. 

A similar battery was also used to power the flat screen display. 
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A4.1.2 Rocky 

Rocky is the 'base unit' of the data acquisition system. While one could perhaps 

think of a clever acronym, the fact is that Rocky is the brand name of the ruggedised, 

splash-proof laptop. Apart from robustness, Rocky did not have any special features. 

A4.1.3 Methods of Operation; Planned and Reality 

As previously mentioned, it was desired that the system be able to produce real time 

results, that is results viewable at a distance from the boat, without any appreciable 

delay. To achieve the transmission of data, a Diamond Homefree® Wireless LAN 

system was purchased. This system consisted of an ISA card, that was installed 

within ORAC and a PCMCIA card inserted into Rocky. Within the laboratory, 

communication between the two machines was often difficult to initiate, a process that 

seemingly had to be repeated every time a new piece of hardware was installed. In its 

favour, some simple land based testing showed that the transmission distance was 

around 150 m. For some reason, this value dropped to closer to 5m as soon as one of 

the computers was over water. This meant that communication between the 

computers was not a viable option. Regardless of this fact, the planned methods of 

operation, one of which was luckily a 'standalone' mode are described below. 

Radio-linked Operation 

[11 this method, Rocky is used to remotely start data collection; ORAC is set adrift, 

powered on, with the Dataview software (described below) nmning, but no user 

intervention is required. Once data collection is initiated by the operator, ORAC 

processes the incoming data, writes it to hard disk and also transfers to Rocky for 

viewing purposes. When Rocky's user issues the command to stop data collection 

duplicate data files are created on Rocky and ORAC. 
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Standalone 

ORAC is operated using the previously mentioned infrared keyboard and flat screen 

display. Dataview is started, data collection initiated and the monitor disconnected 

and then the boat is set adrift. Data collection is stopped in a similar way. Once the 

data is stored within ORAC, one has the option of either connecting a drive and 

writing the data to a floppy disk, or using the wireless LAN to transmit it to Rocky for 

further analysis. 
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A4.2 Data View 

Data View is the name of the data collection and display program written by Dejan 

Metrovic for this work. It was written in Visual C++ to give a simple and attractive 

user interface while still allowing for reasonably low level commands required for fast 

data acquisition. 

The program is operable in three modes. One collects, records and displays data, one 

collects, saves and sends data, and the last receives data, via the LAN, displays and 

saves the data. Due to the aforementioned problems with the LAN, Data View was 

most often run in the second mode, with no display. 

During operation the traces of the input signals scroll across the screen. Most of the 

signals appear in their raw state, i.e. voltages, although it would be a small task to 

include the transformations from voltage to physical parameter. The program allows 

the user to toggle the display of the channels, as well as control the colour of the trace. 

At the conclusion of data capture, a '.dat' file is created. Each sample is 

'timestamped', and the columns of the file correspond to the recorded channel. The 

timestamping was pelformed to facilitate synchronisation between video and sensory 

data. At the time of writing, there were still some problems with the video capture 

facility. 
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A4.3 System Performance Summary 

The constmction of computer hardware and software required for this project was a 

large undertaking. The data acquisition system, ORAC, performs well, apart from a 

strange problem that was sometimes found in the collection of data from the analog 

channels. One channel would sporadically influence the output of the next. It was 

initially thought that this was caused by an insufficient delay during multiplexing, but 

extending the period did not remove the effect. This problem baffled all who 

witnessed it! ORAC has the benefit of being a total PC, which gives flexibility; an 

important quality for future research. The downsides of this generality are the power 

requirement and physical size of the computer. 

The software, DataView, is also general, and if ORAC, or a successor, are reduced in 

size, perhaps to a 'single card' computer system, the program will stiH be of utility. 

To offer real time results, as was initially intended, it is required that a more effective 

telemetry package be secured. Such a system is currently being sought. 
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