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Abstract

The aim of this work was to develop sensory devices and data acquisition system to
facilitate investigations into the mechanics of the rowing system, comprising the
rower(s), boat and oars. As such, the parameters to be measured were: boat and seat
position, velocity and acceleration; oar force; foot force; oar angle and rower heart

rate.

An oar force sensor was designed that fitted into the cavity of a modified oarlock.
This sensor design is cheap, yields sound results and its presence is almost not
noticeable to the rower. A review of previously applied methods of oar force

measurement, predating 1900, is included.

Foot force is of interest to many different fields of research, thus there is a large
amount of literature on the subject of foot force measurement. A comprehensive
review of this literature is used to aid in the design of the required sensor. The
combination of a non-simple dynamic loading (i.e. time varying spatially distributed
normal and shear forces), with static foot position distinguishes the problem of
measuring the force under the feet during rowing from most previéusly considered |
cases. A strain gauge-based force sensing plate was designed to measure both normal
force distribution and unidirectional shear force under the feet. Sample results are
presented from a study with international class New Zealand rowers on a rowing
ergometer. The sensor, performs well under normal force loadings, but needs

modification to measure shear accurately. Possible modifications are suggested.

While only a single oar angle, known as the sweep angle, was required to be
measured, a sensor combination capable of measuring the spatial orientation of the oar
relative to the boat was conceived. A new method of relative orientation estimation,
via approximation of the Rodrigues’ vector, which allows relative weighting of
sensory data, was derived. Unfortunately, calibration issucs prevented the gathering
of meaningful data in the time available. A full theoretical development, including a

new calibration scheme, which should alleviate the encountered problems, is included.



While the motion of the rower within the boat is an important consideration in the
dynamics of the rowing system, few previous researchers have measured it. These
previous methods are briefly described, before the sensor used in this study, the
optical rotary encoder, is detailed. Differentiation of the encoder signal to obtain seat
velocity and acceleration relative to the boat was achieved using a purpose designed

simple Kalman filter.

The kinematic parameters of the boat, i.e. position, velocity and acceleration were
measured using a combination of accelerometer and submerged impeller. The
information from these two sensors was combined using a variant of the Kalman filter
used in the differentiation of the encoder signal. The combination of the seat and boat

kinematics allows study of the motion of the system centre of mass.

Supplying power to, and collecting data from the above sensory devices was a
purpose built data acquisition system dubbed ORAC (On-the-water Rowing
Acquisition Computer). ORAC was designed to transmit the collected information, in
real-time, to a remote laptop computer via wireless LAN, but the system used proved

to have insufficient range, and hence ORAC was used as a standalone computer.
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Chapter 1

The aim of this research was to design sensors capable of measuring the dynamic and
kinematic parameters of the rowing systelﬁ, comprising rower, boat and oars, during
on-the-water rowing. As such, the logical starting point is to describe the basics of the
dynamics of this system, both to illuminate the topic for people unfamiliar with
rowing and to specify the requirements of the instrumentation to monitor the

dynamics; a qualitative and conservative ‘observability analysis’.

This chapter first informally develops crude ‘one-dimensional’ equations of motion of
a rowing system. This model is then used to make decisions about which parameters
need to be measured, for a full description of the rowing system to be provided. The
chosen parameters are:

e force at the oarlock

s force at the feet

e oarangle

s boat displacement, velocity and acceleration

e seat displacement, velocity and acceleration relative to the boat
In addition to these kinematic and dynamic parameters, the rower’s heart rate is also

measured.

After formally stating the research aims in Section 1.6, Section 1.7 briefly describes

the implemented sensors, and the rest of the thesis.



1.1 Description of Rowing Cycle

For those who have not observed rowing, a brief description of the rowing motion is
probably required. The rowing stroke can be decomposed into four stages: catch,
drive, release and recovery. The two main phases are the drive and the recovery, with
the catch and the release being transitional. During the drive the rower pulls on the
oar while the blade is submerged, at the same time pushing on the foot-stretcher and
straightening his legs, moving on a sliding seat to the bow. While the blade of the oar
remains essentially motionless, the passage of the boat means that the oar, which
started near the bow of the boat, ends the power phase near the stern.  During
recovery the oar is extracted from the water (the release) and moved back towards the
bow of the boat. Simultaneously the rower draws himself towards the stern by pulling
on the foot-stretchers (although rowing coaches will tell you that the rowers simply let
the boat slide under them). As the oar is moved through the air it is rotated about the
loom (shaft) so that the frontal area of the blade is minimised. This is known as
feathering. The rower then submerges the oar again (the catch) and the cycle is

completed.
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1.2 Assumptions and Conventions

In the following development, the oar is represented as a lever that has its fulcrum at
the blade. This follows the approach of Brearley and de Mestre [13]. An alternative
approach is to consider the oar as a lever with the fulerum at the oarlock. Both
approaches have previously been used in models of rowing dynamics. Dudhia [23]
suggests that the fulcrum at the oarlock is more believable for rowers, since, to them,
this point seems fixed while the blade appears to move, while that considering the
fulecrum at the ‘blade is natural to stationary observers as the blade moves very little
through the water. Naturally either convention results in the same equations of

motion.

For simplification, all drag forces on the boat, hydrodynamic and aerodynamic, are
combined into a single quantity, D, that acts to oppose the motion of the boat.
Previous researchers have stated that the majority of the hydrodynamic drag is due to
viscous effects, Pope [56], Wellicome [67]. As a consequence a suitable model for D
is some quadratic function of the velocity of the boat relative to the water. 1If it is
assumed that the water is motionless, then D obviously becomes a function of the

instantaneous hull velocity.

In models of rowing dynamics it is normal to ignore the mass of the oar, the exception
being the comprehensive models developed by Rose [57] and Zatsiorsky [70]. There
is very little to be gained in understanding through including the inertial effects of the
oar, so the additional complication is not warranted. The only time that one may want
to include the inertial effects of the oar in a model is if a new type of oar with

radically different mass distribution characteristics was proposed.



1.3 System Components

1.3.1 Oar

The rower pulls on the oar with force, Fj,q4. Fluid forces exert a force Fyyg, at the
centre of the oar blade, and the reaction force due to the boat 18 Fj,., transmtitted to
the oar through the rigger and oarlock. As shown it is assumed that all oar forces are
normal to the shaft of the oar and in the plane of the page.

Direction of
boat motion

Boat hull

Figure 1.1 Free body diagram of the oar. Forces positive to the right, moments positive
clockwise.

Since the oar is assumed massless the forces and moments are summed to zero

XF=0: F[mnd + Fblude = F/U(:k (]])
XM=0: F/mnd [= F/()L‘k(l - h) ‘ (1 2)

yielding the two relations

Fyana = Froer(] - h)/1 (note Fung < Frock) (1.3)
Fuiode = Flock — F/mnd = Flack(] — (l‘ - /1)/[) = F}(JC/((/1/1) (] 4)



1.3.2 Boat

The force that the oar imparts to the rigger is equal and opposite to the force of the
boat on the oar, Fj, This force (again assumed to act in the horizontal plane) is at
angle @,,- to the direction of motion, thus the force in the direction of travel is
Floc088,,. Of course during rowing there are an even number of oars on either side
of the boat ensuring that so long as the forces and angles are equal the boat should not
turn. The components of force perpendicular to the direction of travel tend to deform
the sides of the boat and are considered to be lost as dissipated elastic energy. The
remaining forces on the boat in the direction of travel are the force exerted on the
foot-stretchers by the rower, Fy,,, and the drag on the boat and rower, D, which
always opposes the motion of the boat. Forces not in the direction of travel, such as
the weight force of the rower and the buoyancy force on the boat are not shown. It is

assurmed that the rollers of the seat move with no friction.
Direction of

O boat metion
__—_>

£ lockCOS 60(”’

—
N D

Figure 1.2 Forces on the boat in the direction of motion. Force is positive to the right.
Summing the forces in the direction of motion gives the equation of motion of the
boat:

>F= MpoarQboar- FluckCOS 60(17' - Fﬁmr ~-D= Mpoai@boat (J 5)

where nip. 1s the mass of the boat, and a;,, 1s the acceleration of the boat.
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1.3.3 Rower

The two forces that are on the rower in the direction of motion, neglecting
aerodynamic drag, are Fy,, and Fjq,q both of which are of course equal and opposite
to the forces that the rower applied to the stretchers and oar respectively. Recalling
that the direction of Fiuue 18 assumed to be normal to the oar, the force in the direction

of motion of the rower 18 Fluqc0S B

Direction of

O boat motion
._..___>

Flmnflcos 60:11‘ 4

Figure 1.3 Forces on the rower in the direction of motion. Force is positive to the right.

The acceleration of the rower with respect to the boat is denoted by duower. Since
Newton’s laws only hold in an inertial frame, the sum of the forces is equal to the
mass of the rower multiplied by the absolute acceleration of the rower, that is, the sum
of the acceleration of the rower relative to the boat and the acceleration of the boat

relative to an inertial frame

LF = Mygyed Grower + Qpoar): -Frana 08B, + F/“nnr = Mrowed Grower + Aboat) (1.6)



1.4 Model Summary

[.4.1 Summary of Equations

The main equations developed are

Oar: Fblmle = FI()(:k - Fkand = Fl()ck( 1 - (l - h‘)/l) = Flm:k(h/l) (14)
Boat: Fl(;ckcos 9{:((;‘ - F/'(m{ -D= Mpoarlboar (] S)
Rower: Froor - Fand €08 Opar = Mo @ronper + Gpoar) (1.6)

The boat equation (1.5) may be used as it is, or the rower equation (1.6) may be used

to substitute a value for Fy,, as follows:

F/(l(.‘/(COS 9()(:1‘ - [Flrmul cos 9()(!;' + ””'l'ower’(amwer + almm)] -D= Mpoartlhoar

(Flm:k - F/m/ul) COos 9{)(11‘ - ’”wnwer'(amwer + abom) -D= Mpoailltboar (l 7)

Using the oar equation, Fi,a — Frung = Fpiade = Floc(h/l), gives two more forms of the

boat equation

F ‘b/m/e cos Huur = Mygwerllrower — D= (’771‘.!()(1! + 7”/‘01\"31‘) Apoat (] 8)

F/(,(;k(h/i) cos H(mr - Myowerllrower — D= (nlbnar + n/"'mwer)abrmr (l 9)

When considering (1.8) and (1.9), it is seen that a positive relative acceleration of the
rower acts as a force against the motion of the boat. Clearly then the rower must
consider more in his technique than the method by which he can impart the maximum
oar force; his motion within the boat is also important. The sequencing of the rower’s

motion and the application of force is also significant.
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[.4.2 Limitations of Model

The developed model incorporates the salient points of rowing dynamics. Limitations
of the model, excluding the obvious assumed one-dimensional aspect of motion, are
mainly to do with propulsion. For example, the force on the blade of the oar is
generated as a consequence of the oar-blade velocity the relative to the water. Thus,
in reality the oar must move through the water to create force, meaning that it is
incorrect to place the fulcrum at the blade, the basis of this model. Previous
researchers have on occasion suggested that the fulcrum is slightly inside the blade

[6]. This assumption however does not radically alter the form of the equations.



1.5 Parameters to Measure

The equations (1.5), (1.8) and (1.9) describe a model of sufficient accuracy to indicate
the approximate relationships between system variables. Given that the aim of this
work 1s to measure the dynamics of rowing, the instrumentation must be able to

quantify each of the parameters involved in these equations of motion.

The ultimate aim of comipetitive rowing is to beat all other boats to the finish line.
Without consideration of the dynamics it is obvious that the boat’s instantaneous

velocity and distance travelled need to be measured.

Unless the drag coefficients of the boat are known, in which case the system drag, D,
can be approximated as a function of instantaneous velocity, it is impossible to
measure ). Since D appears in the equations of motion, and it is an unknown in this
case, all other variables must be measured. From the various forms of the equation

this means that the required measurands are:

(1.5)  Frock Goar Fpoor tpoar  With known parameter mipoqr
(1.8 Fiiade Goar trower poar  With known parameters mpoar, Mrawer

U()) F/m'k 9{)({1‘ Urower Ahoat with known parametcrs Mpoar, Mrowers h, [

The two main options are therefore seen to be measuring oar force at the oarlock or
the blade, and measuring the acceleration of the rower relative to the boat or foot
force. The next section details the aims of the research, while Section 1.7 is a

summary of the designed instrumentation and the thesis.
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1.6 Research Aims

This research was not intended to answer specific questions about rowing, i.e. the
determination of optimal oar force curve, or the best way in which to sequence the
events of rowing; rather it was intended that a tool that could be used to answer such

questions be constructed.

Section 1.5 outlined the parameters of interest in a one-dimensional study of the
mechanics of rowing. As such, these are the baseline parameters that need to be
measured in the study. Beyond these parameters, there are others of obvious interest,
such as the velocity and displacement of the boat as a function of time. To be

specific, it was required that sensors be designed or acquired to measure:

e 'The force at the oarlock

e The normal and shear forces at the rower’s feet

» The oar angle

e The displacement, velocity and acceleration of the boat

e The displacement, velocity and acceleration of the seat relative to the boat

e The rower’s heart rate

In addition to these sensors, it was required that a compact, lightweight data
acquisition system be constructed to fit onto a boat, supply power to the various

sensors, store their output, and aiso transmit the data to a remote computer.
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1.7 Instrumentation and Thesis Summary

Referring to Section 1.5, there were three sets of parameters that could be exclusively
measured to provide a full description of the one-dimensional dynamics of rowing.
This section outlines the reasons for the choices, which were outlined in Section 1.6,
the form the sensors took, and refers to the parts of the thesis in which the full

descriptions of the sensors may be found.

It was chosen to measure the force at the oarlock rather than the blade because it is
easier and because it made for a more generally applicable system, i.e. oarlocks are a
fairly standard piece of equipment, while rowers are likely to have their personal oars.

The oarlock force sensor, a small cylindrical aluminium insert is detailed in Chapter 2.

Rather than make a choice between measuring Fp,,r and a,ye both were measured.
This was because coaches had expressed an interest in measuring the precise timing of
rowing events such as the pull on the oar and the push on the foot-stretcher during the
drive. The foot force sensor was designed to measure centre of applied normal force,
magnitude of normal force and magnitude of shear force. The first two objectives
were achicved, but the design needs slight modification to reliably measure shear.
The design and function of the foot force sensor is covered in Chaptér 3. Suggestions

for modifications are also included.

While it 1s strictly required to measure only the angle &, that the projection of the oar
makes with a perpendicular to the boat in the horizontal plane, it was decided that an
attempt would be made to measure the instantaneous spatial orientation of the oar, In
Chapter 4, the method by which the earth’s magnétic and gravitational fields can be
used to measure the relative orientation of non-ferrous bodies, such as the oar and the
boat, is described. Also included in this chapter is a review of methods by which
relative orientations can be discerned through vector observations from two bodies.
After this review and comments on efficacy, a new ‘least squares’ method, which has
a number of benefits over the reviewed methods, is derived. While this method shows

greal theoretical promise, annoying hardware problems prevented the gathering of
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sound results. An investigation into the problem and methods by which it can be

overcome are included in this chapter.

The acceleration of the rower relative to the boat is estimated by double
differentiation of the seat position signal yielded from an incremental rotary encoder.
Differentiation of a quantized signal can cause significant noise. The novel method
that was used to avoid this is described in Chapter 5. Also in Chapter 5 is the
discussion of the method by which boat motion is measured. The acceleration of the
boat is measured using an accelerometer, while the distance travelled is estimated
using a commercially available submerged magnetic impeller. While it may be seen
as a redundancy to measure parameters that are related by integration/differentiation,
the error characteristics of the sensors mean that each measurement is only an
approximation to reality, thus the outputs are combined using a simple sensor fusion

technique (Kalman filtering).

Appendix Al, describes a geometrical method of optimisation that was initially used

in the determination of foot force, from the voltage outputs of the foot force sensor.

Included in Appendix A2 are full derivations, and comments on strengths and

weaknesses for a number of methods of attitude estimation.

A derivation of the Kalman filter algorithm, used in Chapter 5, can be found in
Appendix A3. This derivation works from the general topic of minimum mean square
estimation, then introduces the discrete time state space model, to arrive at the final

algorithm.

The data acquisition hardware and software, and the methods of data capture are

described in Appendix A4.
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Chapter 2

When investigating rowing, one of the main parameters of interest is the propulsive
force. As shown in the introductory chapter, the forces that drive the boat are a
weighted combination of the force at the oarlock and the acceleration of the rower
relative to the boat, thus the force generated at the oarlock is an integral part of

rowing.

Measurement of oar force has historically been achieved in three ways. In this
chapter these three methods are summarised and then a new method is proposed. This
new method is convenient, cheap and yields sound results. The only problem
identified with the sensor is a very slow drift in the offsét voltage. "While a simple
method can be used to overcome this drift, it is preferable that it be understood and

eliminated.



2.1 Review of Oar Force Measuring Methodolog

As discussed in the first chapter, the term “oar foree” can mean the force at the handle.
the oarlock or the blade. This is a brief chronology of methods that have been applied

Lo measure oar force.

[n 1896 in volume § of Natural Science, nestled between ‘The Pigments of Animals’,
and “Dispersal of Seeds by Birds™. 1s an article that may be regarded as the beginning
ol rowing mstrumentation. "A Rowing Indicator’, by Atkinson [5] details the design
ol a modified oarlock that mcludes a spring loaded scribing arrangement that traces
the rowing force agamst rowing angle on a removable plate. In a later issue [6].
Atkinson also published another article *Some More Rowing Experiments’, in which
he explains the method by which his original indicator has been improved so that it
records data from every fifth stroke for a duration of up to 500 strokes! Also in this
article he approaches topics such as stroke efficiency and estimates the location of the
turning point of the oar (see Chapter 1), which he approximated to be 3 inches above
the top of the blade™  While Atkinson’s method of instrumentation would be
unacceptable today due to its modification of the oarlock and the large displacements
experienced during operation, it was certainly a great start and it was sadly a long

while before such an inspired cffort was forthcoming.

(a) (b)
IFigure 2.1 (a) Atkinson’s original oar force transducer, and (b) an example of the transducer’s

output [5].
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IFigure 2.2 Atkinson's modified transducer capable of recording data from up to 500 strokes [6].
Cameron [67] describes a method of estimating the force experienced by the oar via

photographic methods.  First he subjected an oar constrained from displacement by

knife-edges at the handle and button (the part normally engaged with the oarlock) to
known loads by hanging masses near the blade of the oar. Adding 71b masses up to a

maximum of 56Ib he found that *the tup deflected Tin for every 71b tied on the neck’.

Supposedly from atop a bridge he then took bird’s-eye photographs of the rowing
action. Knowing the length of the oar he was able to scale the deflection of the oar
(rom the photograph, and hence estimate the force on the blade. Camecron states that
Group Captain H. R AL Edwards in his book “The Way of Man with a Blade™ had

mcasured lorce by “putting strain gauges on the oar” but decided that his own method

was more convenient as it did not require additional apparatus within the boat.

[t scems that the next generation (1970-1980) of rowing investigators did not share
Cameron’s views, and the method of choice of oar force measurement was bonding
strain gauges o the oar. A representative ol this “school” is Bompa [10]. Bompa’s
‘measurement oars” had “four strain gauges placed on the [lat side of the oar, 8 ¢m
above the collar...(a thin disc. normal to the shalt of the oar that prevents longitudinal

translation of the oar)... and covered with epoxy to make them watev proof™.

Since oars are not of standard stifIness. the method ol bonding strain gauges to the oar
requires that individual oars be calibrated.  This is not accommodating for rowers.
who like any sportsmen. have their own favourite equipment. ‘This may have been the
motivation for Nolte who designed an instrumented oarfock in 1980, A schematic of

this 1s shown below,
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Figure 2.3 Nolte’s measurement oarlock [19]

No trace of Nolte’s method could be found in subsequent years. Perhaps his oarlock
was too complicated or altered the feel of rowing too much. The next method of force
measurement, which appears to have been first suggested by Gerber [27] in 1987, is
still very much the most popular choice among investigators Teague [64], Kleshnev
[39]. Gerber fixed a metal plate and inductive proximity sensor to an oar so that when
the oar deflected the distance between the plate and sensor varied (see Figure 2.4). A
basic variation on this theme involves the replacement of the inductive sensor and
plate with a Hall-effect sensor and magnet respectively. The amount of bending
within the oar, and therefore the force causing the deflection is measured by
monitoring the distance between the sensor and the plate/magnet. Again, the
disadvantage of this measuring system is that each different oar requires a separate
calibration, as the stiffness of the oar is the factor relating the force to the measured

deflection.

y 4
d = hl 4 —
2 2| |2 2
3

}1gure ‘l’ ‘FDTEE"{Y‘]C‘US:UIIDE{ cell for (e c.wr,' i = induciive scosor, 2 = sleel band, 3 < 5y
4 = meta! plate. Weight of whole device #) g lengin 10 o,

Figure 2.4 Gerber’s inductive oar force measuring device [27]
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A design team at Virginia Tech [65] employed a new method of measuring the force
applied by the oar so that they could optimise the design of the rigger. The group

‘strain-gauged’ an existing rigger using the format shown in Fig 2.5.

Strain Gage Placement on Schoenbrod Rigger
e larsion strain, 1/2 bridge
N\Z normal strain, 1/4 bridge
\pntantiometer voltage divider
il

normal strain, 1/4 bridge

Figure 2.5 Strain gauged rigger used by Virginia Tech [65]

This method of measuring oar force is not suitable for our application, as it

necessitates a large number of channels, and is rigger specific.



2.2 Oar Force Measurement within the Department of

Mechanical Engineering at the University of Canterbury

Oar force measurement, which has a short history within the Department of
Mechanical Engineering (under the direction of Dr Aitchison), has been attempted
using a variety of strain gauge based techniques. Figure 2.6 shows strain gauges
applied to the pin (on which the oarlock rotates). Theoretically, this method measures
the bending stress in the pin caused by a force orthogonal to the plane in which the
gauges are attuched.  In operation the gauged pin is oriented so that forces in the
direction of travel are measured. There are a number of problems with this approach.
including the fact that variation in the height at which the oarlock is mounted on the
pin effects the bending moment. (In operation the oarlock is often propped above the
collar of the pin by washers.) Also, while the instrumented pin should theoretically
indicate the driving force, it gives no indication of the wasted foree, i.e. lorces that act

perpendicular to the direction of motion.

Figure 2.6 An instrumented pin.

Shown in Figure 2.7 is a sophisticated sensor in which a fairly standard design load
cell is incorporated into the rear ol a Concept Il oarlock. Bronze inserts that screw
into the top and bottom of the load cell allow for adjustment in the pitch of the
oarfock.  Stress is induced in the load cell when force is applied (o the face of the

oarlock since the bronze imserts prevent translation.



Figure 2.7 An instrumented Concept I oarlock previously made in the Department.

During the design of this sensor, a major issue was designing the protruding load cell
to satisfy tight spatial constraints enforced by some types of riggers. While the sensor
performed well, it had the disadvantages of relatively high cost and a slow method of
changing the oarlock orientation. Also, a rower’s performance might be affected by

the different (rictional characteristics associated with the bronze bushes.



30
2.3 Requirements

2.3.1 General sensor requirements

Since instrumentation systems now typically comprise sensor, signal conditioning and
computer, rather than just sensor and display, the requirements of sensors have
changed. Where linearity was once important, it iS now important that the sensor
have an output that can be ‘well approximated’ as a function of the measurand. Non-
linearities are permissible in a sensor’s characteristics so long as they are predictable.
Thus the equivalent of linearity is reproducibility and ‘identifiability’, i.e. a sensor
should always have the same response to the same conditions and it should be
possible to model the response, so that knowledge of the sensor output is equivalent to
knowing the condition of the measurand. Clearly, if one is to work from knowledge
of the system’s output to an estimate of the measurand, the approximating function
must be invertible, i.e. one-to-one. Additional requirements of general sensors are
that they do not alter the measurand through their presence, have good quality signals

(large range and good signal to noise ratio) and are reliable.

2.3.2 Requirements Peculiar to Measuring Oar Force

The requirements of the sensor can be divided into those imposed by the environment

and those imposed by function.

The oar has a high chance of getting wet during rowing (certainly at least some of it
must) thus any sensor employed to measure the oar force must either be enclosed so
that is ‘splash-proof” or designed so that its function is not affected by water.
Additionally, the long-term effects of moisture must be considered, i.e. the sensor

must be designed so that corrosion cannot take place.

By functional requirements it is meant that the sensor must be suitable for use in its

specified role. The role of this sensor is to measure oar force, not for a particular oar



or rigging, but for a large range of combinations of these two. As such, the sensor

must require little or no adaptation when equipment is changed.
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2.4 Concept Development

The first stage in the design ol a generally applicable oar force sensor is investigation
ol riggings and identification of any common component that the sensor must
accommodate. Before this was undertaken it had been decided that “instrumenting” an

oar. using either the strain gauge or inductive approach was unacceptab

¢ due to the

required individual calibrations.

The rigeers showed a large range of variability. but onc component was found to be
almost standard. the Concept [ oarlock. [t was realized that lor the system to be
adaptive 1t must etther be compatible with the oarlock or modify the oarlock itself in a

way that would not jeopardize its function or gencral applicability.

2.4 1 Description ol the Concept I1 Oarlock.

The almost omnipresent Concept I oarlock comes in sculling and rowing varieties,
the only difference being the scale (see Figure 2.8). Inserting plastic bush plugs into
cither end of the oarlock cavity controls the included angle that the axis of the pin-
cavily makes with the axis of the pin (pitch). The plugs come in pairs, are numbered
X.v . where x+y=8. and the dilference of x and 4 indicates the magnitude of the angle
caused by the plug. ¢.g. 4.4 is a straight plug and 7,1 is the most extreme plug.
Generally top-level rowers row with either 4,4 or 5.3 plugs, the higher angle plugs are

venerally used to correct for a novice’s poor technique.

Although. as stated. elite athletes tend to row with a vertical oarlock face, it was
decided that the sensor must allow the same degree of adaptability as the oarlock
itself. Moreover it was considered to be attractive that the method of adjusting the

angle be exactly the same as that used in the oarlock.

Figure 2.8 Concept II oarlocks rowing (left) and sculling (right)



2.4.2 Considered Concepts

Several concepts considered included modification of the plugs to incorporate
measurement facility. Manufacturing the instrumented plugs from bronze would
allow for both good ‘running’ and strain measurement. One of the concepts is shown

in Figure 2.9.

Figure 2.9 Original measuring plug concept

The upper and lower parts of the plug fit tightly into the oarlock cavity, with the
central part free. Only the central part of the plugs has contact with the pin, thus when
force i1s applied to the oarlock the ‘beams’ are stressed. - Strain gauges were to be
attached across the flats of the beams. The low level of strain in these beams would
have necessitated very high gain gauges, which are renowned for poor signal
integrity. The plug concept was abandoned for this reason, and also because of high
manufacturing costs and the requirement that not just one pair, but a variety of angled

plugs be constructed.

While the idea of instrument plugs was abandoned, the idea of working within the
cavity of the oarlock was seen to be attractive, as there would be no way that the
instrumentation would foul on the rigging. Rather than working strictly to the spatial
constraints imposed by the dimensions of the cavity, it was considered that enlarging
the hole and making it circular would allow for simpler designs without jeopardising
the integrity of the oarlock. One of the ideas is shown below in Figure 2.10. The
upper and lower parts fit tightly into the bored cavity of the oarlock. The central piece

does not contact the walls of the cavity. Angle plugs are inserted into either side of
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the central piece so that contact is made with the pin. The columns connecting the
extreme and central parts are subject to strain when force is applied to the face of the

oarlock.

Figure 2.10 Four beam instrumented cavity concept

There were many problems with this design, including dubious angular stability
caused by the central placement of the plugs and poor candidate locations for
applications of strain gauges. There were two places in which strain could be
measured in this design, either the front and rear faces of the beam, measuring strain
due to bending, or on the external flats of the beams, measuring shear strain. Both of
these sites had problems. Firstly the beams were very thin, allowing very little space
for strain gauge placement. Also since bending strain is proportional to the distance
from the point of application of force, the strain ‘seen’ by the gauge would vary
greatly over its length. In normal applications, the length of the gauge is small in
comparison to the distance from the application of force, so this is not a problem.
Measuring shear strain is a way in which this problem can be avoided, since shear

strain is not a function of distance for a beam in bending. The problem with
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measuring shear strain in this design, however, is that the levels would be very low,

due to the thickness of the beams required for rigidity of the sensor.

The final concept, and the one eventually used, was to instrument the cavity itself and
continue to use plastic plugs inserted in the top and bottom of the cavity to modify the
oarlock angle. The contacting and free areas were reversed from the previous design,
i.e. the central part fits the cavity while the upper and lower parts fit (with plugs) onto
the pin. The idea of measuring shear strain was maintained. The outside of the sensor
is simply a stepped cylinder; the inside has a constant internal diameter, making
manufacturing easy. The gauged sites are the sections with the smallest wall
thickness (0.75mm). Rather than performing elaborate calculations to determine this
thickness, it was checked that this would produce a measurable level of strain without
causing fabrication concerns for the workshop technicians. The external diameter was
chosen by a combination of the latter of the factors and what could reasonably be
removed from the oarlock wall without ruining its structural integrity. The height of
the gauged sections was determined by the dimensions required for the comfortable
placement of a strain gauge rosette with its two gauges at 45° to the longitudinal axis
of the cylinder. Placing rosettes on points directly opposite each other on one of the
thin sections allows for a full bridge configuration. (Strain-gauge bridges are

described more fully in Chapter 4.)

In summary, the sensor was designed using shear stress/strain calculations to ensure
that yielding would not take place and that shear strain would be of a measurable
level. Simple beam approximations were used to estimate the expected deflection of
the upper and lower parts of the sensor. Combining what was desirable and what was
easily manufactured determined the final dimensions. The manufacturing drawing for
the sensor (generated in Solidworks™) is shown in Figure 2.12. Initially, pitch
adjustment plugs were entirely machined, but it was found to be easier to ‘turn down’
existing plugs so that they fit the modified cavity. This approach also has the benefit
that the coefficient of friction between the pin and the plugs will remain unchanged,

and hence the ‘feel’ of rowing affected only minimally.



FFigure 2.11 Sensor inserted part way into the oarlock, with one strain gauge rosctte exposed
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2.5 Sensor Characteristics

The sensor was calibrated in a way similar to the method of Cameron [67], described
in the introductory review. A coach-bolt acting as pin was mounted horizontally. The
oar handle was prevented from translation using a G-clamp. Masses, suspended from
the oar near the blade were added to a hanger of 0.7kg mass up to a total of 27.7kg.
The longitudinal dimensions of the oar were measured and moments were balanced
about the pin to show that the force at the oarlock was almost exactly three times that
suspended for near the blade. Data was collected at 25Hz and averaged over

approximately 10 seconds.

) Voltage Output and Least-Squares Fit
“\\1 i T
AN
E S
Voltage e
g \\
BN
ju) pn] 3;11 i kol i i g i 0
Force at Oarlock (N)

Figure 2.13 Calibration curve for the oar force sensor

It was ensured in all cases that the substantial oscillations caused by the addition of
the mass had subsided before measurements were taken. At low levels of force, the
response of the sensor was found to be close to linear, however, above 600N (at the
oarlock) the output becomes slightly non-linear. A quadratic approximation to the
sensor’s force response was calculated using least squares. A plot of the sensor
outputs and the calibration curve are shown in Figure 2.13. At an amplification of

100 the amplitude and signal to noise ratio were satisfactory.



As mentioned previously, reproducibility is the key to instrumentation. To check the
repeatability of the measurements, the sensor was loaded to 27.7kg and unloaded,
with the outputs at each level compared. An ecxample of the output of such a

repeatability test is shown in Figure 2.14.

Voltage vs. Applied Mass - Repeatability

Repealatiiy

05

Voltage

g 5 0 3 n F3 El

Applied Mass (kg)

Figure 2.14 Oar force sensor repeatability.

An unexpected characteristic of the sensor was that over long periods of time, e.g.
days, the offset value (output value at zero load) drifted slightly. Normally one could
attribute this to a thermal problem, but the symmetry of the strain gauge placement
combined with the properties of the full bridge in which the strain gauges are
combined make this unlikely. The only other possibility is some inconsistency in the
amplifier, which, incidentally did exhibit a number of other problems. While the
problem should be further investigated, it can be factored out by taking a reading from

the sensor when no load is applied and using this to correct the offset value.
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2.6 Results

In possession of the three calibration factors Cy, C; and C; (the offset, linear and
quadratic terms respectively), it is simple to convert measured voltages into the force
applied at the oarlock, f. Since the voltage is approximated by a quadratic function of
force

V=Co+ Cif + Cof 2 2.1)
The force, f, is a solution to the equation

Cof*+ Cif + Co— V=0 (2.2)

both of which can be found using the quadratic formula:

f:—GiJ@f—ﬂQ-VFJ 2.3)
2C,

In all cases the ‘correct’ solution is given by assigning a positive sign to the square
root term. While the force was determined during post-processing, this simple
method of calculation could obviously be implemented in real-time at the currently
used sampling rate of 25Hz. Shown below in Figure 2.15(a) is a graphical example of
the sensor’s output. The rower in this casc is a heavyweight experienced female.

The shape and magnitude indicated is consistent with intuition and previous research.

The only filtering used on the oar force sensor output was inside the amplifier and in
the kilohertz range. This is clearly not suitable as an anti-aliasing filter when the
sampling frequency is only 25Hz, however, performing fast Fourier transforms
(FFTs) on the data showed that the spectrum of the signal was almost entirely below
4.5 Hz, meaning that aliasing is not a potential problem. An FFT of the signal in
Figure 2.15(a) is shown in Figure 2.15(b). The large ‘spike’ at just below 0.5Hz is
the base frequency of rowing, indicating that the rower was performing just under 30

strokes per minute,
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Figure 2.15 (a) Typical oar force data, and (b) the associated frequency spectrum
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2.7 Discussion

The designed oar force sensor yields sound results and has a number of advantages of
previous methodologies. Firstly, apart from the wire protruding from the rear of the
oariock, the rigging is externally identical to that normally used. The rower may
personalise their set-up in the normal fashion, by changing the pitch plugs and
stacking washers beneath the oarlock without affecting the sensor characteristics.
Another important advantage of the sensor is that the characteristics of the oar are
immaterial to its functioning. This is beneficial because the rower gets to use his own

oar, and hence row to the best of his abilities, without necessitating a recalibration.

Additional to the functional benefits of the sensor, it is also very easy to manufacture

and uses inexpensive materials.

The drift is occurring at such a low rate that it is negligible over the testing period;
however, over hours or days it becomes noticeable. Assuming that the other
coefficients relating the force to voltage of the sensor do not similarly vary, a simple
method of accounting for the drift is to take a zero load recording prior to performing

a run and using this value as the new offset.

Based on the aforementioned positive aspects of the sensor, it is thought that further
development is warranted. This development might include more detailed design and
calibration. An investigation into the drift of the offset value should also be

undertaken.
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Chapter 3

The application of force at the feet is an important issue in rowing performance. The

timing, magnitude and direction of applied force are all variables of interest.

Foot force measurement in general is a topic that has generated much literature aver
the last century. The following review investigates the methodology that has been
applied to the problem over this period, focussing particularly on approaches that

could conceivably be used to measure foot force during rowing.

Factors that make the measurement of force at the foot stretcher unusual are the
combination of static foot position; the generation of dynamic bi-directional normal

forces and the additional requirement of measurement of shear force.

Like all interface measurement problems the foot-force sensor must measure the

applied force with as little modification to the interface as possible.

The designed transducer measured normal force and centre of force to a good degree

of accuracy but the shear output was very poor.

This section discusses the design of the transducer and the ideal response. The
method of data extraction is then detailed. Sample results are shown, the reasons for
poor shear measurement performance discussed, and the way in which these problems
can be overcome in design and analysis is described. In particular an in-depth

discussion of error propagation in least squares estimation is included.
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3.1 Foot Force Measurement Review

3.1.1 Introduction

The force at the feet has been measured for many reasons including diagnosis of gait
disorders and investigation of pressure ulcer causation. Since 1882, when Beely stood
subjects on a sack containing Plaster of Paris [42], state of the art technology has been
applied to the problem of measuring foot force. Many approaches have been
attempted, including optical, strain gauge, magnetoresistive, piezoelectric and
capacitive methods. Not all these methods are applicable to the problem at hand, that
is measuring the force at the feet during rowing, and hence only the relevant methods
are reviewed. Readers are referred to two comprehensive reviews [17], [42] if a full

development of the foot force measuring ‘scene’ is desired.

In rowing, the oarsman’s feet are secured, via rowing shoes, onto the foot stretcher,
which is in turn attached to the boat or rigger. The toe of the shoes are prohibited
from motion, while the heels rise and fall during the rowing cycle. The possible sites
for the measurement of foot force are seen to be within the shoe (between sole of foot
and shoe), between the shoe and the stretcher or within the streicher itself
(modification of stretcher). Bearing this in mind, technoldgies that could potentially

he used in one of these sites were researched.

Measuring foot force during rowing is a peculiar problem since the feet are essentially
static while dynamic forces are produced. The requirements of the sensor are
increased by the fact that normal force is generated in both directions during the
rowing stroke — the rower pulls on the stretcher to bring himself -forward during the
recovery and pushes during the drive. Added to this bi-directional normal force is the
presence of a shear force, since the rower does not exert force exactly normal to the
stretcher surface. There will also be a lateral shear force, although it is expected that

this component will be very small, and thus is ignored in this development.

The potential methods of foot force measurement are significantly narrowed by these

requirements. Most methods considered below are not capable of measuring all of
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these parameters in isolation, but were considered worth reviewing since it would be
possible to use a combination of sensors to fulfil the requirements. Also, while some
methods seem on the surface to be unsuitable due to their physical size it was thought
that the concept of the sensor could be captured and altered to more amenable

dimensions.

The following review of foot force measurement methodology roughly divides work
into sensors capable of measuring only normal force, those that measure shear force,
and multi-component transducers that can measure both shear and normal forces.
Within each category is a range of sensing strategies. Following a brief description of

each sensor is a discussion of the applicability of the method.

3.1.2 Normal Force Sensors

3.1.2.1 Capacitive Sensors

Miyazaki [52], [53] describes an insole shaped capacitive sensor that is attached to the
bottom of the shoe. The sensor is only a few millimetres in thickness, with the change
in capacitance caused by the variation in separation between copper foil sheets
separated by a foam rubber layer. The sensor was divided into two sensing areas, the
heel and the forefoot, with the voltage measured across each of the capacitors related
to the force depressing the associated rubber layer. Miyazaki [53] details an error
analysis to investigate the effects of a uniformly distributed force versus the same
magnitude load applied at a single point. This type of sensor could conceivably be

sandwiched between the rowing shoe and foot stretcher plate.

The potential problems concerning such a sensor are the robustness of the design and
the coarse information regarding force distribution. Increasing the number of sensing
areas could yield more precise information. Some considerable time was spent trying
to conceive of a sensor that would reliably measure both shear and normal forces
using a capacitive approach. Consider, for example, a capacitive sensor with a large
number of pairs of plates. Some of the pairs have exactly the same size and are
oriented above one another, separated by an appropriate layer of foam. Other pairs
have one plate that is significantly larger than its mate. Since capacitance is

proportional to the effective plate area and inversely proportional to the distance
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between the plates, the pairs that are the same size will be affected by both shear and
normal force due to the relative motion of the top plate in the direction of shear. If the
plates of the pair of different sized plates are arranged so that any expected shear
force will not change the effective area then this pair is insensitive to shear. This is
illustrated in Figure 3.1. The thick lines represent the upper and lower capacitor
plates as viewed in profile. The rectangle indicates the effective area of the plate
pairs. In the left hand side case, in which no shear is applied, both capacitors have
the same effective area. When shear is applied (right), the upper plates are displaced,
reducing the effective area of the capacitor formed by the plates of similar size, while
the effective area of the other capacitor remains unaffected. Note that it is assumed
that the size of the overall sensor is much larger than the dimensions of the plates, so
that the rotation of the upper plates caused by deformation of the rubber layer during
shear loading is minimised. In possession of the outputs of the various plate pairs it
should be possible to separate the effects of normal and shear force. Adding
complexity to the required analysis is the fact that the force is not uniformly
distributed. A secondary effect that would also cause difficulties is the existence of a
coupling between shear and vertical displacements, i.e. displacements of the upper
plates due purely to shear will reduce the vertical plate spacing. The magnitude of
this effect would be dependent on the properties of the material between the plates.
While a stiff material would reduce this cross-coupling effect, it would also decrease -

the sensor’s sensitivity.

Figure 3.1 Shear and normal force sensing capacitive sensor concept.

Comments on the Applicability of Capacitive Sensors

The idea of a capacitive sensor was abandoned due to the potential robustness
problems (separation of glued layers), difficult analysis and warnings from
technicians about poor signal integrity. Also note that a capacitive sensor capable of

measuring a tensile (pulling) force is difficult to conceive.
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3.1.2.2 Force Sensing Resistors

The Force Sensing Resistor (FSR) is a relatively new type of sensor that is being used
to measure interface pressures in a range of applications. They are approximately
0.5mm in thickness and come in a range of sensing area sizes and shapes. Their basic
construction and method of operation is as follows. Two plastic film discs are
separated by a circular ring at their perimeters. The upper disc has interdigited
electrodes printed upon it and the lower is coated with a conductive polymer. There is
very little contact between the electrodes and polymer when no force is applied to the
ESR, but when a compressive force is applied to the FSR the area of contact increases
and the resistance decreases, as more current flow occurs through the conductive
polymer. This type of technology has been applied to the measurement of foot force
in two different manifestations, discrete sensors and matrix insoles. Zhu et al [71] and
Abu-Faraj et al [1] describe the development of an FSR measurement system based
on the former approach. Using discrete sensors at the interface requires the
identification of anatomical sites involved in the transmission of force, a non-trivial
task. Two commercially available matrix insole type systems employ technology that
is essentially that described above. The Musgrave Footprint system is a matrix of
2048 3x3 mm FSRs [17]. It was not possible to find any information on this product.
The second product is the F-Scan system produced by TekScan, shown in Figure 3.2. -
The F-Scan is a very thin (0.1lmm) insole comprising 960 sensors that are formed
using conductive and resistive inks [17]. With the insole, which may be cut to size to
fit the shoe, comes proprietary Windows software, and acquisition card
[www.tekscan.com]. It has been reported that ‘calibration between sensors was found
to be poor and the sensors showed significant wear with use’ [17]. Personal
experience with FSR type sensors has shown the output to be heavily dependent upon
the operating temperature. [t is not known, but considered unlikely that thermal

compensation for each of the sensors forming the matrix is included.
Comments on the Applicability of FSR type sensors
It was considered that discrete ESRs within the shoe would be too much trouble to

locate on the foot. A reliable, robust and temperature compensated insole system, if

such a product exists, would be almost ideal if a full investigation of the plantar
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pressure distribution were being made, but the expected cost and volume of data
viclded by the sensor make it inappropriate for our purpose. Nofte also that FSRs and
stmilar sensors could not be used to measure the pulling force during recovery. Thus
i an msole system were used an additional sensor would be required to measure this

force.
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Figure 3.2 The F-Scan Insole, by Tekscan

3.1.2.3 Piezoelectric Sensors

Scnsors that exploit piezocelectric materials have also been designed in discrete and
msole mattix formats.  An example of the former is the transducer developed by

Gross and Bunch [30]. In these sensors, copper tabs were soldered to cither side of

small piezoclectric ceramic squares. The sensor was constructed as shown in Figure
330 Eight sensors were positioned under the insole of a shoe at prescribed anatomical

sttes. More recently Nevill used a piczoelectrie film to design diserete normal foree

sensors | 7] Hennig et al [33] developed a matrix insole of 499 4.78mm square. 1.2

mim thick piezoclectric ceramic sensors, also shown in Figure 3.3, While this sensor
had excellent sensing characteristics, Nevill notes that such arrays “can be difficult to
construct and can be subject to rapid mechanical fatigune’. He also suggests that “both

prablems can be reduced by using piezocelectric polymer film.” | 17].
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I'igure 3.3 Two types of piezoclectric sensors that have been used. (Left) The discrete sensor used

by Gross et al [30], and (Right) the matrix insole of Hennig et al [33].

Comments on the Applicability of Piezoelectric sensors

While the piczoelectric effect has been known for some time, it scems that the
clfective use of piezoelectric materials 1s still best Teft to those in commercial
operations. It would have been interesting to research piezoelectric materials further,
but it was thought that the design of a rchable piezoelectric sensor would constitute
several years” work initself. The sensors, it available commercially are subject to the
same eriticisms as the FSR type transducers, namely discrete sensor location would be
problematic. the msole would  yield oo much nformation and neither yicld
mlformation on the tensile foree.  Incidentally piezoelectric film can be sensitive to
both shear and normal stress [22]. meaning that they are potentially the ultimate

sensor type for measurement ol multi-component interface forees.
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3.1.1.4 Strain Gauge

The strain gauge, as in most areas of force measurement, has been used to great extent
in the measurement of foot force. The following is a very brief review of the applied

methods.

Beam Type Sensors

Stott et al [62] describe an apparatus consisting of twelve beams, each 1.4cm wide
and 25 cm long, connected by pin joint at each end to a strain gauge load cell that is in
turn pin-jointed to a support frame. The load cell pairs are used in such a way that
only the longitudinal tension of ecach of the beams is measured. An ink imprint is
made as the subject walks on top of the beams so that it is known exactly where the

foot is oriented with respect to the beams.

Comments on the Applicability of Beam Type Strain Gauge Sensors

By using discrete beams, the sensor allows for one ‘degree of resolution’ in the
calculation of the instantaneous centre of force. It should be possible to use the
bending stress in a beam to also approximate the centre of application of force for .
each beam. Combining the data would allow for at least a rough approximation of the
-centre of force. It may also be possible to gauge the fore and aft faces of the beams so
that shear forces could be similarly estimated. These two suggested modifications
would require modification of the beam supports and would also add to the number of
channels required to record the data. While the idea is intuitively appealing, the
nuimber of channels required would be prohibitive in our application. It is also
doubtful that a sensor of this type could be ‘downsized’ to an extent acceptable for
use on a rowing boat. While this sensor could be used to measure tensile force, it
would not give information regarding the distribution, since the shoes would be likely
to be attached to only a small number of the beams, and torsion of the beams is not

being measured.



Proving Rimg Type Sensors

Strain gauge proving ring type load cells have been used in the measurcment ol [ool
force by both Dhanendran [217, [ 18] and Arvikar [3]. Dhanendran created a close
packed matrix of load cells suitable for use in a walkway (sce Figure 3.4). Arvikar.
on the other band, expected his patients to balance on six proving rings for what was

obviousty a static measurcment!

Comments on the Applicability ol Proving Ring type Strain Gauge Sensors

The Dhandendran toree plate gives information on the total normal force and could be
uscd 1o accurately estimate the centre of force. The problem with this sensor in our
apphcation 1s 1ts size. which could not be reduced it a good response was required of
the proving rings. A large number of channels would also be required and extra

sensors would be required for the measurement of shear.

Figure 3.4 A quarter of Dhanendran’s proving ring matrix [21).

Miniature Cantilever Strain Gauge Sensors

Soames [61] designed a very compact beryllium copper sensor, shown in Figure 3.5.
A semiconductor strain gange was used, presumably because of their high gain. It
was nated that “To give an accurate measurement of pressure requires that the soft
tissues of the sole of the foot are sufficiently compliant to distort the cantilever
without significant change in the pressure exerted, that the surlace beneath the

transducer does not deform to an extent that it obliterates the recess, and that the load
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is evenly distributed on the cantilever.” Fifteen of these sensors were located on one

foot of the subject.

Goober iy worgd

Figure 3.5 The sensor used by Soames et al [61]. This view is from below, showing the recess into

which the central cantilever is expected to deflect.

Comments on the Applicability of Miniature Cantilever Strain Gauge Sensors

While the design and manufacture of these sensors is admirable they suffer from the

same problem as all previously mentioned discrete interface sensors,



3.1.3 Shear Sensors

A number of investigators have designed discrete shear force sensors that are placed
at the interface [17],[40],[55],[68]. All use essentially the same principle. The basic
sensor, which appears to have first been used by Pollard and Le Quesne [55], consists
of two thin metal discs, one with a groove, and the other with a matching ridge. The
upper disc has a magnet mounted in the ridge and the second has a magnetoresistive
(MR) sensor located centrally in the groove. The two discs are separated by a rubber
element to oppose relative motion of the discs. Shear force causes the upper disc, and
therefore the magnet, to be displaced by an amount proportional to the applied load
and the MR sensor gives an output related to the displacement of the magnet.
Williams [68] designed a sensor based on this approach capable of biaxial shear and
normal force measurement. The purpose of the sensor was to investigate the forces
involved at prosthetic limb interfaces. The shear force part of the sensor is essentially
two of the aforementioned sensors stacked on top of each other, as shown in Figure
3.6. The normal force part of the sensor consisted of a strain-gauged circular

diaphragm that was forced onto a central indenter.
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Figure 3.6 The multi-component force sensor used by Williams [68] to measure stump-socket

interface forces.

A similar method of shear measurement was applied by Lebar et al [40]. An LED and
solar cell were located opposite one another in a circular bronze housing. Located at

the intersection of the diameter perpendicular to that connecting the LED and solar
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cell are two beam spring elements. A disc with a ridge that has a central triangular
notch is inserted into the first part so that the ends of the ridge deflect the two springs.
In this position light passes through the notch unimpeded. When a shear force is
applied to the upper plate the springs allow the disc, and therefore the notch, limited
progress in the direction of shear. As the notch displaces the amount of light
intersected by the ridge increases and hence the motion is sensed by the solar cell.

The sensor components are each 15mm in diameter and 3.8mm in thickness.
Comments on the Applicability of Discrete Shear Force sensors

Again, these sensors, since discrete, would require to be fixed to the inner sole of the
shoe at sites where load transfer was expected. The position of the sensors would
have to be altered for each rower. Also, placing sensors within the shoe can modify
the way in which the force is transferred. It was thought however, that a similar
method of shear sensing could be used exterior to the shoe. Consider, for example, a
normal force sensor that is securely fixed to the top plate of a shear force sensor, the
bottom plate of which is fastened to the foot stretcher. A possible difficulty with this
type of sensor would be finding an adhesive strong enough to keep the layers of the
sensor bonded together during the phases of the rowing cycle when tensile forces

would tend to pull them apart.
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3.1.4 Multi-Component Sensors

3.1.4.1 Force Plate

A common use of piezoelectric materials in the measurement of foot force is in load
cells supporting the corners of a plate, an arrangement is known as a force plate.
While some researchers have designed their own force plates using strain gauge load
cells [31], the commercially available Kistler force plate is almost omnipresent in the
field of biomechanical measurement. The Kistler force plate is supported by four tri-
axial piezoelectric load cells. Since the reactions at each corner of the plate are
known, it is possible to estimate the total force in each direction (normal force and

both longitudinal and lateral shear forces) and the centre of applied force.

Comments on the Applicability of Force Plates

The force plate yields the data required, but commercially available units have the
disadvantages of high cost (tens of thousands of dollars) and bulk. The principle of
operation is attractive and it is easy, in theory, to see that a sensor using a similar

approach could be designed to be of a more convenient size.

3.1.4.2 Pressure Platform

Giacomozzi and Macellari made an interesting and useful sensor by placing a pressure
sensitive mat on top of a standard force platform [28], [49]. Their pressure sensitive
mat used a principle similar to the FSR described above. The upper and lower layers
of the sensor are a flexible Kapton (a polyimide film manufactured by Dupont) sheet
and printed circuit board respectively. Parallel conductive tracks are printed on each
of the layers, with the layers oriented so that the tracks are orthogonal. A layer of
conductive polyethylene separates the tracks. Knowing which part of the foot is in
contact with the ground (from the pressure mat) and the total shear force (from the
force plate), they were able to investigate the shear stress acting on small areas of the
foot during gait. Redundant data from the compound sensor was also used to

investigate other areas of interest.



Comments on the Applicability of the Pressure Platform

While it was not seriously proposed that this sensor be used in the application at hand.
it is obviously subject to the combined criticisms of the force plate and matrix type
sensor. the way tn which the sensors are combined to form a transducer with excellent
capabilities 1s ol interest. A comparable method would see some normal force

distribution sensor mounted on a rigid plate and supported by multi-component load

cells.

3.1.4.3 Strain Gauged, Column Mounted, Cantilever Sensor

Recently Davis et al [20] described their “Device for Simultancous Mcasurement of
Pressure and Shear Force Distribution on the Plantar Surface of the Foot.” This
device consists ol an array of strain gauge sensors that are each composed ol (wo

parts.

outer
diameter

0.1 wall thickness

Figure 3.7 A single element and packed matrix of sensors developed by Davis [20]. The exploded
rectangle on the left indicates a strain gauge T-rosette.

The upper part, designed to measure the compressive force is an ‘S-shaped

cantilever™. The shear-sensing element is an alumintum tube on which the upper part

is located. see Figure 3.7.
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Comments on the Applicability of the Strain Gauged, Column Mounted Cantilever

Sensor

The dimensions of this device are such that it is unsuitable for our purpose, further it
is not easy to see how such a sensor could be reduced in size. However, the method
by which shear is isolated from the normal component, and the idea of a two-
component sensor are interesting. Note also that this sensor would be incapable of
measuring the distribution of force during the recovery since the shoes would have to
be connected to a finite number of the sensing elements, which are incapable of

measuring bending moment.

Note: The interface sensor designed by Williams and detailed in the Shear Sensors
section is truly a multi-component sensor, but was included in the previous section
due to the fact that two of its axes used exactly the same technique as the dedicated

shear sensors.
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3.2 Summary of Review

The only sensors in the preceding review that could be implemented to measure
normal force in both directions and longitudinal shear are the force plate and Davis’s
device. This is ignoring geometric constraints, which rules out the use of the latter
(assuming that a force plate could be miniaturised to a sufficient extent). Davis’s
sensor is also unacceptable in the number of channels involved and since it would
only measure the load distribution when normal force was compressive, i.e. pushing

down on the sensor.

All discrete sensors that are placed within the shoe are undesirable due to the time it
would take to locate anatomical sites of load transfer, also no discrete ‘in-shoe’ sensor

can conceivably be used to measure force as the rower pulls on the stretcher.

A possibility however is the use of discrete sensors in an external role, say as the
support of a normal force sensor. (*Support’ entails both physical constraint and the
addition of information.) An example of this would be mounting a rigid sensor
capable of measuring normal forces on supports that incorporated shear sensors.
Mounting a normal force sensor that had some cross-axis etfect on shear sensors that
were relatively free of this contamination would enable shear and normal forces to be
accurately evaluated. In an even more ideal situation a multi-component sensor
(shear and normal) could be mounted on shear sensors. If this approach were taken,
the shear force could be estimated using some optimal combination of the sensor
outputs. The cross-axis effect of the multi-component sensor could be well
approximated, and knowing the shear to an accurate level, the normal force and
distribution could be well estimated. These comments also apply to any combination
of complementary or redundant sensors such as a shear sensor supported by normal
force sensors or a multi-component sensor and normal force sensors. Alternatively, a
multi-component discrete sensor could be used to support a rigid plate, essentially

creating a force plate.

It was stated in the introduction of the review that the sites available for

instrumentation were within the shoe, between the shoe and stretcher, or the stretcher
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itself. The first option has been shown to be undesirable and most of the discussion
has centred on placing a sensor between the shoe and stretcher, To show that this is
the most sensible option requires the elimination of the third site — modification of the
foot stretcher structure. While this seems an attractive option, since it would be
possible to directly relate the strain in the stretcher support to the applied load, it is
unachievable due to the large range of foot stretchers that are currently in use. If it
were only required that a single boat be instrumented then it may be possible to
design a specially gauged support structure, but the aim of this work was to design the

instrumentation to be as generally applicable as possible.

The required measurands, spatial constraints and inter-boat variability lead to the
conclusion that the sensor must be at least in part rigid (this is imposed by the bi-
directional normal force), and fit in between the shoe and the stretcher surface. The

following is a design that was intended to fulfil these criteria.



60

3.3 Sensor Description

The foot-force transducer was designed to measure bi-dircctional normal and

longitudinal shear forces. as well as the approximate centre ol applied normal force.

A rigid rectangular plate is supported at cach corner by slender beams that are
cantilevered (rom a support central to the longitudinal axis of the plate. Thin slots cut
through the plate form the beams. Generous radii blend the cantilever supports to fect
at cither end. The feet fix by means of socket head cap screws o a location plate.
Milled recesses in the support plate prevent the motion of the upper plate in the
longitudinal direction. Beyond the recesses. a small clearance allows limited vertical
deflection of the upper plate but prevents potential overloading of the support beams.

Both the upper and support plates are monolithic, CNC machined from Aluminium

alloy.

I'igure 3.8 The designed foot foree sensor, without base plate.
Twelve strain gauges are bonded to the cantilever beams, two on the upper and lower
surfaces of cach beam, and one on the exposed vertical face of cach beam.  The

cauges on the upper and lower surfaces are placed ostensibly to monitor the normal
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force (tensile and compressive) while the gauges on the fore and aft faces are placed
to measure shear. The upper and lower gauges on each of the beams form a half
bridge, as do the ‘shear’ gauges at each end of the sensor. The bridges are completed
by gauges that are bonded to an aluminium block so that thermal effects are

minimised.

Not knowing the approximate magnitudes of the force components experienced
during rowing meant that the sensor design had to be conservative. The overall
dimensions of the sensor were defined by what could be fit onto a reasonably
representative foot-stretcher. The beams were sized using simple beam theory, to
ensure that yielding would not occur, but that a measurable value of strain would be

induced.

In Figure 3.9, the sensor with main dimensions is shown with its location plate.

<<<<<<<<<

Beam sectional width 4.5 mm
Beam sectional height 6.0 mm

Figare 3.9 Main dimensions of the foet force sensor,

The next section describes the theoretical outputs of the strain-gauged beams in
response to general loadings, and the way in which the loading condition can be

implied from the data.
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3.4 Ideal Sensor Theory

3.4.1 Sensor Loading

Consider an arbitrary 2D distributed loading over a plate of length, L,, and width, w.
The loading can be reduced to a central normal force, two orthogonal moments and a

shear force using simple statics.

Consider first the case when all loading is normal to the sensor plate. Define the
normal arbitrary load as being made up of discrete loads, Af;, acting at coordinate
(x;,yi) with the origin of the coordinate system at the plate’s centre. The long axis of
the plate is Y the short axis is X. Shown in Figure 3.10 is the sensor plate geometry
and the application of a single discrete load, Afi. The letters at the corners of the plate,
F, A, L, R, denote fore, aft, left and right respectively. The reaction at the rear of the

plate is denoted R4 i.e. Reaction Aft.
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Figure 3.10 Theoretical normal sensor loading. Diagram showing position of discrete load Af;,

dimensions of plate and labelling of corners.

The net normal load on the plate is the sum of all discrete loads

Fy :ZAfi 3.1

The moments about the X and Y-axes of the plate at the origin are given by
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My :zAf{‘)’f =y.Fy
i
| (3.2)
Iwy = zAfle = xCFN
i
where (x.,y.) is the coordinate of the point load which is equivalent to the distributed
load. Assuming that the plate can be adequately modelled as being simply supported
the reaction to the normal loading and Mx at each end of the plate is calculated to be:
R e T W B o
2T L Y2TL
P / \ P

where subscripts F,A denote fore and aft. Similarly the load supported at each side,

R

F, M (1 WW 33

/

due to the moment My is:

tMy *Fyx,

W W

RL,R - (34)

where LR denote left and right. Adding together the contributions due to the vertical

loading, the following four vertical reactions result:

Iy, x,

R, =F,|—+2e "¢
S ] 2L, 2w
B E T X

R,. =F,  —+-2¢ 4
Riv 7N g 2L, 2w

(3.5)

A Iy, x
R, =F|-——2c "¢
o 2N g 2L, 2w
1y X,

R, =F,|———2¢ 4 ¢
RRe =NV 4 2L 2w

where Ry, indicates the reaction at the Left Front corner due to Normal loading etc.
The reactions show a ‘complementary nature’ in the signs associated with the centre

of force coordinates. This is an important feature that is referred to in later sections.

If a uniform shear loading, S, is introduced, the reactions due to this force at each of

the corners of the plate are simply
R, =— (3.6)

where the subscript s denotes reaction due to shear. Shear is assumed to be positive

when in the positive Y direction.
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3.4.2 Beam Strains

The beams that are loaded at each corner by the normal and shear reaction forces are
of length /, breadth b and depth 4. The material of which they are constructed is of

Young’s modulus, E.

The strain developed in the beams and measured by the gauges placed on the upper

and lower surfaces, at distance /s from the external ends of the beams are given by:

R..[d
&m——7§$— (3.7)

where [, =blc—;

where it is assumed that the previously calculated reaction forces act at a point at the
end of the beams. The positive/negative signs in front of the expressions indicate that
when subject to a particular vertical loading, one gauge ot each pair is in tension (+),

while the other is in compression (-).

The strain due to the shear loading is measured by gauges mounted on the external

faces of the beams and are

I
g =g ohs? (3.8)
‘ 2L,
3
where I, = b~
12

The pairs formed by gauges measuring shear at the same end of the plate will be in
the same stress state {compression/tension) at all times (assuming uniform shear

distribution).
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3.4.3 Transducer Outputs (Ideal)

While the simple approach given above suggests a model for the strains at each of the
gauged sites in terms of the plate geometry and applied loading, it would be naive to
believe that the coefficients of proportionality were exactly defined by the physical
measurements of the plate. Among other factors, nonlinearities in the stress state of
the transducer at the gauged sites and inaccuracies in strain gauge placement will lead
to deviations from the ideal case. This section considers the ideal outputs of each of
the half-bridges. In the next section, possible deviations from the ideal are considered

and a method in which to use the sensor in the presence of uncertainties is developed.

Each strain gauge pair measuring normal force is connected in a half bridge

configuration. The strain gauges are of gauge factor g, 1.e.

AR ,
— =g 3.9
R
where R is the nominal resistance of the gauge, and AR, is the change in resistance

due to strain.

The gauge in tension has resistance Ry = R + AR, while the gauge in compression has

resistance Rc= R - AR,

The gauges are arranged in the bridge as shown in Figure 3.11, with the outputs

calculated as follows
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Ry R
Vi Vi N Vo > V2
R. R

Figure 3.11 The half-bridge configuration used for the normal channels of the foot force sensor.

V; is the input voltage, and V, = V; — ¥V, is the measured output.

Vo =V2 =V
R, R-
V=—=~t v = ARV,. (3.10)
Ry +Re 2R
R
V, =—V.
2 IR I
/ (
R R AR
v, = },_ =,
2R )

Thus, each normal strain gauge pair yields an output that is directly proportional to
the strain at the site of the pair. The shear gauges, which have the active gauges

mounted diagonally opposite each other in a bridge format Yields the same result.

Substituting (3.7) and (3.8) into (3.10) gives expressions of the form

R e

o v 3.11)
v = glb sV
T 4RI

where V,, is the form of the voltage output of a normal channel, and V; is the general
form of the shear bridges output. Recall the complementary nature of the reaction
forces due to normal loadings. This is reflected in the output channel associated with

each corner of the plate.
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3.5 Deviation from the Ideal Transducer Model

3.5.1 Causes and Effects of Deviations

The basic development assumes that the system behaves in a completely linear
manner, obeying the simply supported assumption and that the strain gauges are
mounted precisely (collinear with the neutral axis of the strain element) and
equivalently (all strain gauges mounted the same distance along the strain element
from the point of application of load). The linearity of the actual load cell

(independent of the gauges) depends on its degree of symmetry.

While it is naive to think that all the above assumptions will be totally fulfilled, the
development does lead to a simple model that can be extended further through testing

and parameter estimation.

Quick consideration of the errors that are likely to cause the actuator’s behaviour to

deviate from that of the model are:

(1) Orientation of strain gauge
(i1) Eccentricity of strain gauge (parallel to axis of sensing element)
(iii)  Inaccuracy of the simply supported assumption for the plate

(iv)  Inaccuracy of simple beam bending model for the sensing beams.

The first two factors will cause the strain gauges to be subject to strains due to shear
stress as well as the orthogonal force (i.e. the gauges measuring vertical force may be

affected shear force and vice versa). This will be known as the cross-coupling effect.

If the sensor plate is more ‘built in’ than simply supported, there will be moments at
either end that are functions of both the force and the eccentricity of the centre of

force. These moments will be transmitted to the sensing beams.

The ideal strain of the sensing beams was developed using the assumptions that they

behaved as simple beams built in at one end, and loaded at a point at the other. The
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reality is more complicated. Both ends of the beam are effectively built in, preventing
rotations, When the plate is translated downwards, a tensile stress caused by these
built-in conditions accompanies the bending stress of the beams (when a beam is in
simple bending, the neutral axis remains the same length, since this is prevented by
the physical constraints, a stress results). Thus the strain at the gauged sites is due to
a superposition of the effects of bending and tensile forces. Clearly these tensile
forces do not change sense when the plate is translated upwards, and thus a translation
dependent offset is introduced. The translation is of course a function of the

magnitude and centre of the normal force.

The actual output of each of the channels should be approximately linearly related to
each of the quantities involved in the ideal output, with the addition of cross-coupling
effects (shear effects normal channels and vice versa). The constants relating the
parameters to the output cannot be expected to be the physical characteristics of the

force plate, but the complementary nature of the outputs should be preserved.

Given parameters that the output of the bridges should be proportional to, the problem
of system identification, i.e. relating input to output, is reduced to that of finding
coefficients that relate the parameters of interest to the output; parameter estimation.
The simplest methods of parameter estimation are the least squares techniques, which -
aim to minimise the mean-squared error between the actual output and the output of
the estimated model. The application of least squares parameter estimation to the

problem will be discussed in the following section.
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3.5.2 Least Squares Parameter Estimation

As discussed, it was assumed that the output voltage of each channel is linearly
related to F (previously denoted Fy), Fx., Fy, and § by a series of constants. In the
ideal case, these constants would be simple expressions containing the physical
dimensions of the sensor. Due to the potential inaccuracies previously discussed,

these constants will be much more ‘arbitrary’.

To estimate the actual constants involved in the expressions, least squares estimation
was used. (Appendix Al describes another method that was used). Consider a single

channel, j. Its output voltage, for a constant input voltage, is approximated as follows:
Vi=F.Cj+ Fx.Cy+ Fy.Cyj+ S.Cy (3.12)

where F is the normal force, (xc,y.) are the coordinates of the equivalent normal point
load, S, is the shear load, and (Cy, Cy, Cy;, Cy) are coefficients relating the loading
condtion to the output voltage of the ;™ channel, V.. If the output voltage of channel j
is recorded for N different values of F, x., y. and S, the equations can be written as

follows:

V(1) = F(1).Cy + F (1).x:(1). Cy + F(1).y(1). Cyj + 8(1). Cy
V(2); = F(2). Cg+ F (2).x(2).Cyj + F(2).y2). Cyj + SQ2). Cy

V(N)} =F (N) ij +F (N)-xc?(N)~ij + F(N)yc(N)CyJ + S(MCV

v, ] [FO)  Flx0)  FOy.0)  sO)TC,
ve) || F@) FRKQ) FRNQ) S@)|C,
M M M M M | C,
VIV, | [FWN) FOx (V) F(N)y, (V) S(V)] ¢,

(3.13)

Equation (3.13) can be concisely written
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Least squares parameler estimation involves finding the parameters C;, such that the

cost function,
J=(V; -FC)T(V; -FC)=¢"¢ (3.15)

is minimised, where ¢ is the ‘error vector’. It can be shown (see Sensor Analysis and

Improvement) that the least squares estimate of the constant vector C; is given by
Ci=@F'F'V, (3.16)

Applying parameter estimation techniques to each of the channels then yields a set of

constants that relates the voltage output to the loading conditions.

The method of calibration is to subject the sensor to a large range of known loading
conditions, recording the data for each channel, and then applying least squares
estimation to determine the best linear relationship between the variables and the

output voltages.
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3.6 Calibration

The requirement of calibration was that known loading conditions be created and the
outputs recorded. A simple test-rig, shown in Fig. 3.12, was manufactured. During
the application of normal force, the frame is horizontal, with each end supported on a
desk. Known ‘compressive’ forces are applied by hanging masses below the sensor
via a cross bar arrangement. The cross bar is balanced on a small circular plug that is
placed on the sensor surface to localise the loading. Forces of the opposite sense are
applied by inverting the entire rig, during which the sensor was both screwed and
clamped to the rig frame. A 20mmx20mm grid was drawn on both sides of the sensor
plate, with an origin placed at the centre of the plate (this is partly visible in Figure

3.8) to act as a guide for the load placement.

Figure 3.12 The foot force calibration test-rig

The initial rig (shown above) did not allow for simultaneous application of shear and
normal forces. To apply shear, the rig was clamped upright (long axis of sensor
vertical) and weights were applied to the sensor via rods that extended from plates
that were screwed and clamped to the sensor. lLater the rig was modified by
suspending a bearing on a horizontal shaft, projected out from one of the ends of the
rig. A cable that was attached by a hook to the sensor plate ran over the bearing and
was used to suspend masses. The bending moment caused by the cable was
minimised by attaching it to the hook at close to the level of the plate, and ensuring it
was as horizontal as possible. This modification allowed the application of a limited
amount of combined loadings (normal and shear). The amount of testing was limited

because only compressive forces could be applied concurrently and also since the
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presence of the hook and cable limited the positions at which the mass causing the

normal load could be placed.

The graphical results ol a relatively coarse (25 points per mass) normal force
calibration are shown in Figure 3.13. These show three normalised performance
surfaces for cach channel created by dividing the voltage yielded at cach location by

the applied force.

Performance surfaces, channel 1 Farformance surfaces, channgl 2

1
3
ronEte 3 coordinate Y coordinate i X coordinate
Fartormance sufaces, channel 3 Parformance surfaces, channel 4
1 |
: iP
11
i
Loordinate ' X coordinate Y coordinate - X coordinate
Farformance sutaces channel 5 arformance suriaces channs 6
f rmance surfaces, chann Ferformance suriaces, channel
002
= &
- ;j |
\
| IR
| = s ™ 1 =
= - o e 4 = T
iR pd ( ~ — 2
[ =g 1] ~~ . 0
0 4 = e -0 4 A
onrdinats X coordinate Y coordinats X coordinate

Iigure 3.13 Normalised performance surfaces for response to compressive normal forces of 5, 15

and 25 kg.

In Fig. 3,13, m which a number ol important phenomena are visible. channels 3 and 6

are the shear channels. Note the complementary nature of the surface gradients of the

normal channels (1,2.4&5) that was predicted carlier. Other important phenomena are
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the good linearity and low variability with increasing mass of the normal
channels

the arbitrary appearance (but apparent repeatability) of the response of the
shear channels to normal loading

the shallow gradient of the plane that passes through the shear surfaces

Separate shear calibration results are also shown below in Fig 3.14. These results

were the effective downfall of the sensor. It was hoped that the shear channels would

offer much higher sensitivity to shear loading than the normal channels. Observation

of the results shows that this was not the case.

Channel 1 Channel 2

/.
0.05f / ¢

015 005

02 . . . . -01
& 5 5 ) 3 3 1]

0.1

0.,

G4 . y - : 03
L 5 i S 0 ' X 35 0

0025
\\\ 002

0015

Figure 3.14 Results of a shear calibration with linear and quadratic lines of best fit forced to pass

through zero at zero load.
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In addition to the poor sensitivity of the ‘shear channels’, it was found that their
response was dependent on the direction of application of the shear force, i.c. channel
3 may be linear when shear force acts towards the front of the sensor, but highly
erratic with force in the other sense. A method was conceived to alleviate this

problem that 1s detailed later.

The coefficients obtained by normal force application are shown below in Table 3.1.
The columns represent the change in voltage associated with: (i) unit normal load at
the centre of the plate (i1) unit normal load at unit distance in positive direction along
X-axis (iii) unit normal load at unit distance in positive direction along Y-axis

G Ce Cp

-0.0357 | 0.0154 0.0029

-0.0409 | -0.0152 | 0.0027

0.0047 0.0014 | -0.0000

-0.0415 | -0.0195 | -0.0028

-0.0386 | 0.0192 | -0.0024

0.0034 | -0.0020 | -0.0002

Table 3.1 Coefficients generated by normal force calibration.
The bold entries correspond to the ‘normal force’ channels (1,2,4,5); the two
remaining are ‘shear’. Ignoring the shear channels, note the complementary nature of
the signs associated with each channel, i.e. channel 1 (-++), channel 2 (-,-+),
channel 4 (-,-,-) and channel 5 (-+,-). The effect of these patterns is discussed in
Section 3.9. Another important feature of the coefficients is that the elements relating
the response of the shear channels to normal loading are generally an order of
magnitude smaller than the other entries. Physically, this means that normal loading

has very little effect on the shear channels.

The coefficients in Table 3.2 resulted from combined loadings, applied as discussed .
previously. The fourth column represents the increase in each channel due to a unit

shear load in the positive direction.
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Cr Ca Cy Cs
-0.0414 0.0211 0.0029 -0.0203

-0.0421 | -0.0211 | 0.0032 0.0250

0.0026 0.0013 0.0001 | -0.0047

~-0.0443  =~0.0158 ~0.0033 | ~0.0129

-0.03%7 ' 0.0156 | -0.0026 | 0.0009

0.0017 @ -0.0019 )| -0.0000 | 0.0010

Table 3.2 Coefficients generated by combined loading calibration.

Note that the magnitudes and signs associated with the first three columns remain
almost unchanged and that channels 3&6, that were designed to respond to shear,

have very low magnitude response.
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3.7 Sensor Function

In possession of the six constant vectors from the calibration, the next task is the
inverse of calibration, i.e. given a certain voltage vector, determining the (most likely)
loading condition, i.e. combination of normal force, normal force coordinates and

shear force.

This problem was originally approached using what appeared to be a novel method.
The normal force and coordinate estimation problem was reduced to that of
minimising the diagonal of a quadrilateral with sides that have fixed gradient and
intercept inversely proportional to the applied force. After solving the problem and
applying the results, it became obvious that this problem is a restatement of ‘least
squares’ in a very particular application, which as previously shown has a very
concise solution. Thus, rather than inserting the derivation of this ‘novel’” method of
finding the solution to a group of approximate equations, it is relegated to the
appendices (see Appendix Al). The fact that it is included at all is due to the
geometric interpretation that the method gives to this problem. 1t is also conceivable
that a similar method may be useful in problems where least squares estimation is not

applicable.

At each instant the output of the sensors channels is V = [V; V, ... Vg]. Recall that
each channel’s voltage is approximately related to the loading condition by the
relation

Vim F.Cph+ Fxe.Cy+ FyeCy+ 5.Cy (3.17)

which, defining the loading condition vector F = [F F.x. F.y. S] and constant vector

C=[Cy CyCy CS]T, can be rewritten

V,=FC; = C/'F' (3.18)
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for j=1,2,..,6. Using the measurement (voltage) vector, V, and constant vectors C;
J=1,2,..,6 we must solve for F. As a first step each of the scalar relations are stacked

to form the matrix equation
V= CF' (3.19)

where V and F are as previously defined and C:[C1T CTCTCe,TesTe, T which
is a 0x4 matrix, i.e. there are six equations in four unknowns. An alternative, and
ultimately more useful notation is C=[C; Cx Cy, C,], where the (6x1) column vectors
of the matrix are as previously described. Each of these equations is approximate,
thus we are trying to find the best solution, I, given V. The method of solving such
an over-determined system of equations is to use the matrix pseudo-inverse, which is

the least squares solution, thus
F'=(Cc'cy'c'v. (3.20)

The loading conditions are included within the vector, F, and are extracted by simple
division, (x, = F(2)/F(1), y. = F(3)/F(1)). These expressions become undefined when
the applied force is calculated to be zero. Also the accuracy of the centre of force

estimate becomes low as F—0.

Shown in Fig. 3.15 are the graphical results obtained when this method of
determining the loading conditions is applied to calibration data. From top left, they
show the accuracy in determination of load coordinates (in cm), accuracy of load
determination, norm of coordinate error, approximated load against X — coordinate
and coordinate error norm against X — coordinate. All plots are for a nominal
compressive load of 20kg, but the hanging apparatus (chains, beams and hanger) add
3kg to this value. The characteristics of the sensor were plotted against X —
coordinate to discern if there were points that were not as reliable as others. The
results are pleasing. The norm of the coordinate error is less than lcm in all cases,

and the approximated load is within 0.5kg of the true value.
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As can be seen in the approximated load against X — coordinate plot, the sensor tends

to slightly overestimate the load at the left edge of the plate. Methods to overcome

this are described in later sections.
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3.8 Results

Results included in this section are from ergomeler trials of a number of (he New
Zealand 1999 rowing squad.  Patria Hume, a biomechanist at the University of
Auckland. was conducting a study into the effect of foot stretcher angle on ergometer
rowing and required that foot force be measured [36]. In this study, the sampling
frequency was Tklz, principally because EMG data was also being recorded and this
is the recommended rate.  Each subject rowed for one minute, trying (o maintain a
constant rating (strokes/minute) and power lor five different fool stretcher angles.
The rowers were given a two-minute break between each minute of rowing while the

angle was adjusted. A photograph of the experimental setup is shown in Figure 3.16.

IYigure 3.16 A national level rower using the foot force sensor on an ergometer

While it is impossible to quantify the accuracy of these results, since it is unknown to
what extent shear is affecting the data, the normal force plots, showed what are

mtuitively believable results.
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Figure 3.17 Normal force generated by subject ‘sb’ for three separate foot stretcher angles

It is evident from Figure 3.17 that changing the foot stretcher angle effects not only

the peak force attained during ergometer rowing, but the profile of the force.

The X and Y coordinates of force were also computed. Interesting results were found

by plotting the Y-coordinates and X-coordinates against the applied force.
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While the X-coordinate of the centre of force was not seen to vary greatly, indicating
that the normal force is applied towards the centreline of the force plate, the Y-
coordinate varied in a way that is consistent with intuition (see Figure 3.18). Consider
the cycle of foot force from the end of the drive onwards. At first the rower’s foot is
flat on the plate and the force is practically zero. As he pulls himself forward the
force becomes negative and a moment about the X-axis is created that puts the centre
of force significantly passed the area of the plate. (This situation is caused by a small
net vertical force, F, and moment F y, such that y. > 2L,.) An interesting circling
effect occurs as the rower begins to slow his progress and the force becomes positive
{pushing on the plate). Now at the drive, the rower’s heels are well off the plate.
While there 1s no easy way to indicate elapsed time on plots, the ‘comet’ function on
MATLAB showed that the centre of force quickly tended towards the centre of the
plate as the compressive force increased suggesting that the full foot quickly comes
into contact with the plate. The trace shows that the rower gets his feet flat to the
plate and applies the largest magnitude force with a centre of load at around 60-70mm

ahove the centre of the plate.
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Figure 3.18 Y-Coordinate of centre of force vs. applied normal force for the subject ‘sb’ at three

different values of foot stretcher angle.



83

Shown in Fig. 3.19 is a Y — coordinate vs. normal force plot in which the direction of

time has been drawn in.
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Figure 3.19 The general direction of time for Y-coordinate vs. Force plots.
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Figure 3.20 X-Coordinate of centre of force vs. applied normal force for the subject ‘sb’ at three

different foot stretcher angle.

As previously mentioned, the X — coordinate of normal force was found to be almost

constant during ergometer rowing. This is not to say that ‘interesting shapes’ were
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not generated, as shown in Fig. 3.18. Each rower tended to have signature profiles

that varied with the changing foot stretcher angles.

While the normal force and coordinate data obtained using the sensor was found to be
good, it was disappointing that the shear characteristics of the sensor were so poor.

The next section explores the reasons for this poor performance.
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3.9 Sensor Analysis & Improvement

Thus far the sensor design, calibration, method of operation and sample results have
been discussed. It has also been stated that the sensor did not function cxactly as had
been hoped in that shear was not reliably measured. In this section the reasons for
this poor performance are suggested and possible methods of improving functionality
arc discussed. Prior to this, a geometric visualisation of least squares estimation is
developed that helps in the understanding of both how the sensor was intended to
work, and how it failed. Unsurprisingly, the characteristics of the sensor are
contained within the coefficients of the C matrix generated during calibration. The
structure of these matrices is explored and it is shown how the low accuracy model of
shear response can degrade the other estimates, regardless of the accuracy of the other

column vectors.

3.9.1 Algebraic/Geometric Least Squares Derivation

Least squares estimation is very easy to understand if it is simply stated that it is the
linear estimate that minimizes some quadratic function of the error, but this does not
fully explain the geometric concepts involved. A si[ﬁple 3D case will now be -
explained so that geometric concepts can be exploited. In this case, terminology is
skewed towards our application: we have a measurement vector V that we wish to
approximate using a linear combination of the column vectors of a coefficient matrix

C. The coefficients of the vectors of C, fi and f5, form the vector F
HC +£C,=CF (3.21)

If (and only if) the vector V lies in the subspace spanned by the column vectors of C

(the column-space of C), then it is possible to find values of f; and f; such that

CF=V (3.22)
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This will not normally be the case, i.e. V will usually lie outside the column space of

C, this is the situation shown in Fig. 3.21.

Column space of C

Figure 3.21 The geometry of the estimation problem. The column space of C consists of all linear

combinations of C; and C,, and the measurement vector, V, lies outside this space.

In this case the best that can be achieved is the estimation of V by a linear
combination of C; and C, such that the length of the error (V-CF) is minimised. The
length of the error vector is minimised when CF is that vector resulting from the

orthogonal projection of V onto the column space of C.

v
ﬂ V.CE

CF
Cy

C

Figure 3.22 The least squares estimate, formed by the orthogonal projection of V onto the column

space of C,
When F is chosen in this way, it is clear that V-CF is orthogonal to both C; and C,,

and in general is orthogonal to the entire column space of C. This may be written

using the scalar product notation:

C.(V-CF)=0 Co(V-CF) =0 (3.23)



87

Since the scalar product a.b can also be expressed a'b, it follows that C;T(V-CF) = 0

and

~ T
“ v-cr)- m

C,'
C'(V-CF)=0 (3.24)
Manipulation of (3.24) leads to the familiar least squares solution
F=cC'O)'C'v (3.25)

In the actual problem at hand, the voltage vector is in R, and we are trying to estimate
it by an optimal linear estimation of the four (6x1) coefficient vectors Cy, Cp, Cp &
C,. The sub-space generated by these vectors is a hyperplane in R®. The geometric
interpretation offered by this derivation of the least squares technique helps in the
understanding of what ‘went wrong’ with the sensor. The characteristics of the least
squares estimation are obviously contained in the coefficient matrix, or equivalently
the column space, that in this work, because of poor rééults, was constructed in a

number of different ways.

3.9.2 Coefficient Matrix Generation

Driven by the quest for better results, three different methods were used to create C
matrices. Each of these matrices, and the results that they yielded when used with
purely normal and purely shear loadings are now explained. Following this is an

~attempt to explain why shear output was so poor.

The first matrix, Cpormai, Was created via a least squares estimation using only normal
data, i.e. tensile and compressive loadings at various locations on the sensor surface.

When this matrix was used to estimate the loading condition (i.e. running the
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calibration data back through the derived coefficient matrix), both the magnitude of
force and the coordinates of the centre of force were of good quality. (See for
example Fig. 3.14). When the coefficient matrix was used with shear only data, the
estimated force was close to zero, as it should have been, while the coordinates of
loading, which were undefined, were large and arbitrary. The nature of the coordinate
estimates in response to purely shear loading is easy to explain since the pair (x,y) is
estimated by dividing the second and third elements (Fx and Fy) of the estimated load
condition vector by the first element (£). When the first element is estimated to be
small, as it is when no normal loading is applied, dividing by this element results in a
magnification of the error in the estimate of Fx and Fy. While this explains that
magnification takes place, it does not explain what is being magnified, i.e. why the
estimate of Fy is greater than F (as must be the case for magnification to occur). A
possible reason for this is a moment caused by uneven application of shear force
during calibration. Another reason is suggested once required concepts have been

mtroduced.

Before the rig was modified so that shear and normal forces could be applied
simultaneously the method of creating a € matrix with both normal and shear
‘capabilities’ was to concatenate the results of a shear calibration to the normal force
calibration. Thus the (6x1) vector Cypeq resulting from a shear calibration was joined .
to the previously described matrix Coorar to form Cgyper = [Chormat Cshear], Where the
subscript ‘super’ is used to reinforce the fact that this matrix is built on the
assumption of superposition. When Cgyper was applied to normal force data, it was
found that the force was estimated with medium accuracy, the force coordinates were
estimated very poorly and shear of considerable magnitude was often indicated where
none was applied. In the second instance, where Cgyyper was used on shear data,
normal force was estimated well, i.e. it estimated a force very close to zero, and shear
was close to being correct, but the estimated coordinates of force fluctuated violently,
presumably for the same reasons as stated above. Recall that the shear response of the
sensor was found to be directional, i.e. the response in one direction bore no
resemblance to shear in the opposite sense. This could potentially be overcome using
the assumption that the direction of shear force is dependent upon the sense of normal
force. More precisely, the shear force during compressive loadings, such as the drive,

will always be towards the toe, while shear during tensile forces, if it exists, will be in
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the other direction. This assumption can be used to dynamically update the C matrix
by first calculating the sense of the normal force using Coma then applying the stated

assumption and including the relevant Cg vector.

The final matrix, Ceompined, Was created using a least squares fit on data obtained
during combined (shear and normal) loadings. This approach gave results that were
poorer than the previous two methods in response to both shear and normal loading

data, although, again, the normal force estimate was usually accurate.

These were the main methods used to generate coefficient matrices. Some
alternatives were considered for increasing the accuracy in specific loadings. For
example, if the centre of force was estimated to be in the front left corner of the sensor
plate, a new C matrix generated by data only from that area of the plate could be used
to refine the estimate. This potentially increases the accuracy because the
performance surfaces of the plate are not exactly linear. When a small quadrant of the
plate is used, a linear fit should be more accurate. The other way in which a more
accurate solution could be found is to first estimate the force using a general C matrix
and then use a matrix based only on data similar to the estimated force to improve the
estimate. "This method would allow for variation of the performance surfaces with
respect to load. During calibration, no great' fluctuation in the normalised -
performance surfaces was observed, but at higher levels of load, some deviations may

occur,
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3.9.3 Coefficient Matrix Properties

Now that the results of the methods used to generate the C matrices have been
discussed, it remains to try and relate the results obtained to the matrices themselves.
To do this we return to the geometric principles at the introduction of this section, and

also explore the structure of the matrices employed.

Regardless of the method of generation of coefficient matrix, C, it was found that the
estimate of normal force was generally good. The results from using Ciopmpa OR
normal force data were of high quality, suggesting that the vectors of these matrices
were accurate. The estimates of these vectors were also very stable with time, i.e.
over a period of a few months of testing and various calibrations the numerical values
of the elements of the vectors changed very' little. This also adds weight to

assumption that these three vectors are ‘correct’.

In comparison, the response of the sensor to shear was found to be nen-linear (and
therefore had low accuracy with a linear fit), directional and time varying. This last
component of uncertainty must surely be due to unintentional variation in loading
condition. Disappointingly the channels that were included principally to monitor
shear did not have good response to shear. This fact, and the directionality are
illustrated by the results of shear calibration in two directions shown in Table 3.3.
Also given is the Cg vector of Ceompined. Note the large discrepancy between the

numerical values.

| 2 3 4 5 6
Positive -0.0038 -0.0120 -0.0003 0.0137 0.0020 -0.0098
Negative -0.0006 .0.0053 0.0038 -0.0083 0.0000 -0.0001
Combined = -0.0203 0.0250 -0.0047 -0.0129 0.0009 0.0010

Table 3.3 Generated shear coefficients for positive, negative and combined calibrations,

bold columns relate to the ‘shear’ channels.

The
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Regardless of what caused the sensor’s poor shear response (some suggestions are
given below), the translation of the effects of shear to a linear representation was an
inaccurate process. The low accuracy of the C, vector translates to a low accuracy of
shear estimation, but does not directly explain why coordinate estimation and normal
force estimation were adversely affected to varying degrees. The phenomenon of
estimate degradation due to the inaccuracy of the shear coefficient vector is now

explored.

Recall equation (3.24) expressing the orthogonality of the column space of C to the

orthogonal projection of V onto it encountered during the least squares derivation:
C'(V-CF)=0

or

Clcr=C"v (3.26)

Using the scalar product, this (3.26) can be rewritten

c,c, ¢, ¢, cCTrF] [c,v
C‘/‘ 'C,f.'r Cﬁ\‘ C I le\' C 1y Cﬁ\' 'Cx Fx — C/\ V (327)
C,C, C,C, C,C, C,C |Fy| |C,V
c,c, C,c C€,C C.C, C,V

which explicitly shows the way in which the vector C; is manifested in the least
squares solution. It is clear that the degree to which the inaccuracy of C; affects the
estimates of I, Fx and Fy is contained in the scalar products C.C,, C4.C, and C;.C,
respectively. 1If the vectors are orthogonal then the error in C; does not contaminate
the estimation of the other parameters. In general, also, the smaller the included angle
between C, and another coefficient vector, the greater effect C, has on the associated
parameter estimate. An investigation of the orthogonality of the columns of C for the
formulations described above is shown in tabular form below, where all values appear
twice for clarity. The values are the included angle between the two indicated vectors
divided by m/2, i.e. orthogonal vectors will have a value equal to unity. Significant

deviations from unity indicate that the involved column vectors are not orthogonal,
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and hence the accuracy of the parameters with which these vectors are associated is

affected by the accuracy of the second vector.

G Cir Cy Cs
C, - 1.01%96 0.9942 1.0738
Cp 1.0196 - 1.0160 0.7208
C, 0.9942 1.0160 i 12335
C, 1.0738 0.7208 1.2335 -

Table 3.4 Included angle betwecen indicated vectors divided by 71/2 for C . mhinea

Cr Cn Cy Cy
C, - 1.0334 0.9944 0.9789
Cs 1.0334 - 1.0460 0.9320
C, 0.9944 1.0460 i 0.6511
C, 0.9789 0.9320 0.6511 -

Table 3.5 Included angle between indicated vectors divided by n1/2 for C,y.r (shear positive)

Note that:
e the vectors Cp, Cj and Gy, are nearly mutually orthogonal in both cases
e Crand C; are almost orthogonal in both cases | |
o C,and Cg are significantly removed from orthogonality in both cases
e C,and Cy are significantly removed from orthogonality in the combined

loading case

These results show numerically why the estimates of coordinate are greatly degraded
by including a shear vector shear in the C matrix. Geometrically, these comments are
easily translated. Each of the column vectors in C represents a direction of increase
due to a particular loading. For example the vector Cyis oriented such that it points in
the direction of increased normal load, F, i.e. if an increasing normal load was applied
at (0,0) the direction of increase in R® would be Cy, and the magnitude of the load
would be given by the ratio of the magnitudes IIVI/IICAl. The triple C;, Cx and Cy,
are three near orthogonal vectors in R®. This orthogonality was predicted early in the

chapter, where the complementary nature of the signs of the responses (o a normal
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loading at arbitrary coordinates was observed. The vector C;, while almost
orthogonal to Cy is oriented so that it has non-negligible components in the direction
of Cy and Cy. Recall the least squares estimate is obtained through the orthogonal
projection of the measurement vector on the column space of the coefficient matrix,
i.e. the subspace defined by linear combinations of Cj Cg, Cs and Cy. Since C; has
components in the same direction as Cy and Cp, when V is projected onto the
subspace there is an ambiguity that is heightened by the poor accuracy of Cs (i.e. the
presence of un-modelled but deterministic components in V) and the presence of

noise.

In summary, the response of the sensor to shear, as it has been loaded proved to be
such that it could not be well modelled linearly. Further, the linear model that was
fitted to the response was not in the anticipated ‘direction’ in that the elements of the
vector that were expected to be large were not. If the vector relating the response to
shear had been in error and also, by some chance, orthogonal to all other vectors, its
inaccuracy would not affect the other estimates. As it is, the erroneous C; vector
‘soaks’ up some of the projection that would otherwise be distributed between Cg, Cy,
and estimation error, i.e. the component orthogonal to the column space of C. It is
possible that the true response of the sensor to shear is not orthogonal to the other
vectors. If this is the case and the vectors are all well modelled then there will be

little error.

As the sensor is, it yields good results in response to purely normal loadings in that
the load and coordinates of load are estimated to a reasonable level of accuracy.
Since the shear response was not modelled well it is impossible to accurately state to
what extent the presence of shear effects normal load condition estimation during
combined loads. The results obtained from the ergometer trials, however, yielded
results that were consistent with intuition. If it is desired that the sensor’s combined
loading characteristics be accurately quantified, some modifications will need to be

made.
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3.9.4 Sensor Improvement

Clearly, to improve the sensor’s performance, its shear response must be more
accurately determined. Before discussing methods by which the shear response could
be improved some general comments are made on the C matrix and the effects that

good shear modelling would have.

3.9.4.1 The ‘Ideal’ C Matrix

If the sensor had behaved as planned, the third and sixth elements of the calculated
shear vector would have been large, with all other elements (corresponding to the
response of the normal channels to shear loading) small. This would increase the
orthogonality of the shear vector with respect to three other coefficient vectors, since
none of the other channels have significant components in these directions. In
addition, if the sensor had functioned as was desired, there would not be such a large
error in C; and hence, the small amount of error propagation would not be

problematic.

In an ideal situation a square (6x6) C matrix would be used, since this would allow
for ‘perfect’ estimation of the loading conditions, i.e. the measurement vector, V,
would always lie in the column space of C. One cannot, however, simply add two
arbitrary columns to the coefficient matrix. The columns, for the inverse of C'C 1o
exist must be linearly independent. In physical terms this means that additional
parameters associated with the new columns must be selected so that the vector
response of the sensor to parameter variation is distinct from existing column vectors.
In particular the vector must be non-zero. Even if a full square matrix could be
generated, the estimation error would still only be ‘theoretically” zero. The word
theoretically is used because of potential errors in both the measurements vector and
the coefficients matrix. If the number of unknowns (corresponding to the number of
columns) is anything less than the dimension of the measurements vector then there
is, additional to errors in C or V, an estimation error. This estimation error is not
purely a function of the discrepancy between the dimension of the column space and

the dimension of the vectors to be minimized, but also of the form of the coefficient
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matrix and more particularly the accuracy of each of the column vectors and their

relative orthogonality.

3.9.4.2 ITmproving Shear Response

Inherent in the discussion of improving shear response is identification of possible

causes of the originally poor characteristic.

It is possible that a portion of the error in C; was due to the way in which shear was
applied. Both methods had the potential for a simultaneous application of bending
moment that would alter the outputs. The bad repeatability and directionality could
also be a function of the sensor constraints, i.e. the way in which the sensor is
fastened to the calibration rig. To truly find the sensor’s response to shear loading the
transducer could be mounted on a reliable load cell set-up, or a force plate. The latter

suggestion would allow for very accurate dynamic calibration of the sensor.

The small magnitude of the shear response could be improved, thereby increasing
signal to noise ratio, by making the sensing beams thinner. This would not drastically
alter the response of the other four channels due to the definition of the second
moment of area for bending in each direction. There is enough room, considering .
strain gauge placement, for easy removal of almost 2mm from the width of the beams.

Higher gauge factor strain gauges, such as polymer varieties, could also be used.

Another possible minor modification to the sensor would be an increase of the width
of the slots that define the sensing beams so that it would be possible to fix strain
gauges to both faces of the elements. It is thought that a possible contribution to the
poor shear response was the placement of strain gauges on adjacent beams. Reasons
for this are: the possibly asymmetrical shear distribution and location of the gauges

and different distances along the beams.

If the shear response of the sensor cannot be improved by the discussed methods, then
it is possible that a compound sensor could be designed. Such a unit could be
designed by mounting the existing sensor, or a subtle variation, on the

magnetoresistive shear sensors discussed in the foot force measurement review
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section. The method of function would remain unchanged; the output of the shear
sensors would simply be substituted for the outputs of the shear sensing channels.
There would be the option of increasing the dimension of the space, for example
using a shear sensor in each corner would result in eight channels in total, or a single
sensor could be placed at each end, maintaining the original dimension. If the shear
sensors can be designed so that they have either negligible, or well modelled,
response to normal loadings, as well as good shear response, then the compound

sensor would be likely to yield very good results.

While thé preceding section has briefly explained ways in which the shear response of
the sensor can be improved, there is also room for improvement in the normal force
estimation. Investigation of the deformation caused by even the simplest case of
central normal loads shows that the ideal situation considered at the beginning of the

chapter was a great oversimplification. This is discussed briefly in Chapter 6.
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3.10 Conclusions

The design, calibration and function of a foot force sensor that is theoretically capable
of both normal and shear force measurement has been described. The structure of the
sensor was enforced through the sensing requirements, spatial constraints and desired

generality.

While the sensor had good characteristics in response to normal loadings the shear

facility was very poor.

Least squares estimation is used in both the calibration and function of the sensor, and

an investigation of error propagation due to this method has been made.

Suggestions for improvement of the sensor have been made. Modifications are
g :
generally concerned with the increase in accuracy of the sensor’s shear response. 1t is

proposed that a sensor hybrid is perhaps the most attractive option.
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Chapter 4

While the rower pulls his oar through an arc during the rowing stroke, only the force
in the direction of motion of the boat has impact upon the motion of the boat. There
are therefore portions of the stroke where it is more efficient to create a greater force.
Thus, to investigate the efficiency of the stroke, it is necessary to measure the rotation
of the oar. Other kinematic characteristics of the stroke that should be measured are
the size of the arc subtended during the stroke and the sequencing of the oar

movement with the motion of the seat and the force at the foot-stretcher.

All the aforementioned aspects of the stroke require only the measurement of the
angle between the loom of the oar and a normal projected from the boat ‘parallel with
the plane of the water’. Rather than being a simple hinge, allowing only one degree
of freedom, the oarlock permits full rotation; only translation of the oar is prevented.
During the rowing stroke, in addition to the previously described angle, the oar is
rotated so that it rises out of the water during the recovery and is submerged into the
water for the catch. It is also rotated about its own axis during feathering. Just like
any general three-dimensional motion, to fully describe ‘the rowing stroke requires -
three angles. These three angles can be quantified as the yaw (sweep angle), pitch
(tilt of loom with respect to the horizontal) and roll (rotation of the oar about its own
longitudinal axis). Many insights into rowing technique could be gathered from

investigation of the rotation of the oar.

This chapter gives a brief history of oar angle measurement to measure the sweep
angle (yaw). Following this, a new sensor combination capable measuring the three
oar angles is developed theoretically. These sensors were manufactured, but results
were poor, for reasons that are elaborated upon in later sections of this chapter.

Methods by which these problems could be overcome are fully detailed.
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4.1 Oar Angle Measurement Review

Atkinson’s ‘Rowing Indicator’ [5], [6] described in Chapter 3, was capable of
measuring both oar force and sweep angle. It in fact produced, as output, a chart
plotting force against rowing angle. In Atkinson’s original version [5], a pencil
rotating with the gate drew ontoSpccially configured charts. His later method was

much more mechanically sophisticated.

With the exception of Atkinson, all researches who have measured oar angle have

used a rotary potentiometer in one form or another [27], [39], [64]. The advantages of

the potentiometer in this application are that they are compact, relatively cheap,
require only very basic signal processing and can be obtained in splash-proof
configurations and non-contact varieties. The shortcomings of the potentiometer are
that it measures only one angle, and that it must of course be fixed somehow so that it

measures the rotation of the oarlock with respect to the rigger.

Candidate sites for oar angle measuring potentiometers are limited and include: the
oarlock cavity (using a shaft type potentiometer), with the potentiometer fixed inside
the cavity, with the hole pressed onto the pin; above the oarlock (probably
necessitating an elongated pin. An alternative to these sites where the potentiometer
is directly driven by the rotation of the oarlock is to situate the sensor on the rigger,
distinct from the oarlock and drive it using some sort of belt. Such a method, the

‘rubber band goniometer’ was mentioned by Gerber [27].
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4.2 Sensors Applied to Measure 3D Oar Rotation

Since it was already decided that an attempt would be made to measure all three
angles of the oar, none of the previously used methods of measuring oar rotation were
suitable, and a new method was devised. Later in this section, it is described how the
output of a sensor such as a rotary potentiometer could be used in conjunction with a

general 3D ‘orientation sensor’ to resolve certain ambiguities.

The new method, as developed in the following sections measures the rotation of the
oar by finding the relative rotation matrix that transforms measurements of the earth’s
magnetic ficld and a general acceleration field, from an orthogonal set of sensors
mounted on the oar to a corresponding set fixed to the boat. The sensors employed
are magnetoresistive (Honeywell HMC1021,1022) and accelerometers (Analog

Devices AD202).

Magnetoresistive (MR) sensors are a relatively new technology, so a brief description
of their construction and method of operation is now given. Each axis of an MR
sensor consists of a Wheatstone bridge made up of NiFe thin film deposits on a
silicon substrate. These sensing elements are oriented opposite to each other in pairs.
When the magnetoresistive elements are subjected to a perpendicular magnetic field,
the magnetisation vector within the elements is rotated. The resistivity of the
elements depends on the angle between the electric current in the element and the
magnetisation, thus each axis outputs a voltage proportional to the strength of the field
perpendicular to the axis.  General characteristics for the HMC1021/1022

microcireuits are shown below.

Field Range +/-6 Gauss
Field Resolution 85u Gauss
Bandwidth Over 5 MHZ
Sensitivity 1.0 mV/V/Gauss
Linearity +/-0.5-1% full scale

Table 4.1 HMC 1021/1022 MR Sensor Characteristics
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Sensor output vs magnetic field
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Figure 4.1 HMC 1021/1022 typical sensor output

The earth’s magnetic field is well within the linear range of the sensor, at
approximately | Oe or | Gauss, as shown in Figure 4.1. From this point onwards,
each axis of an MR sensor is regarded purely mathematically as an axis that maps the
incident magnetic field to a scalar output via a linear transformation. This is more

fully described in the following sections.
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4.3 Sensor Design and Construction

Sensor clusters consisting of triaxial MR sensors and accelerometers mounted inside a
common enclosure were used in this work. A brief description of these sensors is

given below.

4.3.1 MR Sensors

3-Axis sensors consisting of a HMCI1022 two-axis MR microcircuit and a
HMCI1021Z single-axis MR microcircuit were constructed so that a 3D representation
of the earth’s magnetic field could be measured. The orientations of the axes within

the microcircuits and the ‘pin outs’ are shown in Figure 4.2.

OUT- 1 ] OFFSET- {A) 1 5 QFFSET» (A}
VERIDGE 2 OUT+ (A} 2 i BiR- (A}
Sif+ 3 Die VBRIDGE (A) 3 SiA+ {A)
GND 4 OUT-{A) 4 3 GND (B}
5/R- b - CUT-(B) 5 2 QUT (B)
OFFSET+ 8 VBRIDGE {(By 6 QFFSET- (B)
OFFSET- 7 GND{A) 7 OFFSET+ (B)
OUT+ 8 S/R+ {B) 8 8/A- (B)

Figure 4.3 Approximate Dimensions of HMC1022 (left) and HMC1021Z [34]

The two-axis sensor was mounted flat to the board, while the HMC1021Z was
mounted with its axis orthogonal to the plane of the board. This gave a set of 3
‘orthogonal’ axes. Orthogonal appears in quotes because all the microcircuits were

mounted ‘by eye’. This had consequences that are fully discussed in Jater sections.
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The circurtry on the board (designed by Electronics Technician Julian Philips) was
very simple. basically consisting of bridge supply and output amplification. The pins
in the above diagram marked S/R are “Set/Reset Straps™ and can be used to reset the
circuit 1f saturation occurs. (Saturation due to large incident fields can reverse the

polarity of the sensing elements.)

The triaxial sensor is shown below in Fig 4.4, The external dimensions of the board
was chosen to give a tught fit in a photographic 35mm film canister, as this was at the
time considered to be a cheap method of housing the sensors. Problems with sensor

ortentation. due to the curved surface of the canisters, lead to a new housing design.

Figure 4.4 Triaxial MR sensor. The single axis sensor is seen projecting from the lower right

corner. The dual axis sensor is the micro-circuit in the lower left corner,
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4.3.2 Accelerometers

Dual-axis solid-state accelerometers manufactured by Analog Devices were used to
create a three-axis accelerometer. Two boards joined along a common edge had one
dual axis accelerometer each (the two axes are in the plane of the microcircuit),

Again, the microcircuits and the boards were mounted without a special jig.

The boards on which the sensors were mounted were then glued into a plastic
enclosure, without any jig to ensure that they were square with respect to edges of the
enclosure. As mentioned previously, these approximate methods of mounting lead to
problems. While it would surely have been sensible to create jigs to mount the
sensors properly, there were a number of factors that prevented this. Among these are
the cost of producing a jig of useful accuracy, and the time this would take to produce,
offset against the desire to quickly create a new sensor methodology. Additional to
these excuses, there will always be some degree of error in the mounting of the
sensor; even if the microcircuits are mounted perfectly, there is no guarantee that the
axes within the sensor are ‘true’, thus it is actually more useful to combat these errors
in an ad hoc sense, i.e. finding the error and then compensating rather trying to
eliminate the error during manufacturing. Thus, by being initially sloppy, and paying

the consequences, a much more useful technique was developed!
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4.4 Introduction to Measurement of 3D Rotations

The following sections develop the theory required to use the output of the previously
described sensors to measure relative orientation during general 3D motions. The
results from the field of theoretical kinematics are taken from various texts [11], [29],
[47] & [48] and have been combined so that only the useful material is present. The
subject matter in its pure sense is far removed from rowing, but in practicality, the
described technique will be useful in an almost endless array of areas where motion,
human generated in particular, needs to be measured. The aim of this work is to use
vector observations of the earth’s magnetic field and a ‘general acceleration field’ to
discern the relative orientations of two objects from which the observations were

made.

Before the problem of attitude estimation is discussed, an amount of theory needs to
be laid down. In particular, theoretical spherical kinematics, discussed in Section 4.5,
has many essential, and beautiful results. Section 4.6 provides a geometric bridge
between spherical kinematics and attitude estimation, showing the minimum

information requirements to uniquely discern attitude.

Attitude determination, that is, estimating the relative orientation of two objects using -
vector observations, in this case the orientation of the oar with respect to the boat, has
applications in many fields, and thus many solutions to the problem have been
proposed. A review of existing methods, including the derivations of the algorithms,
of attitude determination is included in Appendix A2. In Section 4.7, a simple new
method of attitude determination that simulations have shown to out-perform all-

comers in our application is derived.

Having sufficient theory to solve the problem, the next section of the chapter, Section
4.8, is concerned with the actual application of accelerometers and magnetoresistive
sensors in the role of generating the required vector observations, still at a theoretical
level. Section 4.9 gives some more practical details concerning the use of the sensors

with the new attitude estimation algorithm.
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Next, in Section 4.10, the problems that have been alluded to in the previous sections,
concerned with the non-orthogonality of the sensor axes, are discussed. While these
problems cannot be entirely eliminated physically, a new method of calibration is

proposed, which ‘orthogonalises’ the axes of the sensors.

The output of the attitude estimation is not in a form that is immediately useful to
rowers or coaches, thus some simple processing is needed to transtorm the output to

physically meaningful angles. This is the subject of Section 4.11.
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4.5 Spherical Kinematics

Spherical kinematics is concerned with rotations of bodies in three-dimensional space.
The displacements of spherical kinematics have the property that one point (normally
taken as the origin) remains stationary, and thus the paths of all points on the body as
it rotates are constrained to lie on concentric spheres, with the stationary point as their

centre.

In the case of the oar, the problem for which this system was designed, the oar is
constrained from translation at the oarlock, while all other motions are possible. It is
possible to place one non-rotating frame at the oarlock and one on the oar such that
the origins of the two frames are always coincident, thus the motion of the oar with

respect to the boat is one consistent with the requirements of spherical kinematics.

The more general multi-body case can also be considered as one of spherical
kinematics as long as the body does not involve sliding joints, e.g. the upper arm
rotates relative to the shoulder, while the lower arm rotates relative to the elbow (and

hence the upper arm).

4.5.1 Rotation Matrices

Say the vector, r, represents a field that is being ‘measured’ in two bases, M and F.
The vector r is constant, while the column matrices, ry and rp that represent the
coordinates of the vector in M and F vary as the orientation of the two bases change.
Consider F to be fixed and aligned with the global frame so that the unit vectors of ¥

are [1, j, kJ. Then
r=xpi+yrj+zrk. 4.1

where 17 = [xp Vp zF]T. M, with defining unit vectors [my, my, m,] is arbitrarily

oriented with respect to I such that

F =Xy My + yyr My + Zp MM, (4.2)
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Equating (4.1) and (4.2) gives

xpi+yej+zp K= xymy + yy my + zym, 4.3)

If the scalar products of this equation with i, j, k are taken, the resulting equations are,

respectively:
Xp = Xp Myl + Y™ my.i + Zpr Mg
Vi = XMy + Yy My.j + ZyrMyj 4.4)

zrp = XMy K + vy myK + 73y m,K

This can be written in matrix form as

Xp m.i m.i m.i|x,
Ye =M omojoom Ly (4.5)
Zp m .k m .k m.kjz,
or
re=Aly ‘ B - (40)

Note that the matrix, A, is formed by three columns that are the scalar products of
each of the unit vectors of M with the unit vectors of F. The matrix therefore has as
its columns, the coordinates of the unit vectors of M with respect to F. It is clear,
then, that knowing the matrix that relates a vector that is measured in two bases is
tantamount to knowing the orientation of one basis with respect to the other (and
therefore the relative orientation of two bodies in which the bases are fixed). This is
not to say that the problem of orientation estimation is simply to find a matrix that
relates the vector ry to rg, as the matrix is in general non-unique. This problem is

described in the following sections.
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If rather than forming the matrix to relate the vector measured in M to the vector in F,

the converse is undertaken, the result is

Xp = Xp Ly + yp jamy + 2 kamy
¥y = Xp imy + yp j.my + zrkoamy 4.7)

Zy = Xp LMy, + )’Fj-mz + zrk.m,

leading to:
Xy m.i m. m.k|x,
Yy [=m 0 mj m k| vy, 4.8)
Zy m.i m,. mk|z,

or ry = Brp (49)

where the commutative property of the scalar product has been used in the writing of
B. Note that since Irr = Ary and 1y = Bre it follows that rp = ABrp, i.e. AB =1,

or B=A"!. Investigation of the matrices A and B shows that B = AT. Thus

Al =AT (4.10)
This is the property of orthogonal matrices. It is easily shown that orthogonality of
the rotation matrices is required for displacements to be rigid, i.e. the distance
between two points is invariant under a rotation.
Orthogonal matrices with a determinant of +1 are known as rotation matrices. (Every
orthogonal matrix has a determinant of either +1 or —1. The matrices with a

determinant of —1 are reflection matrices).

The rotations associated with the rotation matrices may be considered in two ways,

either:

e the rotation of a vector in a fixed basis or
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e the measurement of a vector in two bases that are oriented such that their

origins are coincident,

The second visualisation is the more natural in this work for reasons that will become
obvious. The maths is the same for both visualisations; only the sign convention

associated with rotations is ditferent. (The above development was based on [11], [29]

and [47]).

4.5.2 Cayley’s Formula, the Rodrigues’ Vector and the Axis Angle
Formulation of the Rotation Matrix

Regardless of how the rotation is visualised, Buler’s Rotation Theorem: the
displacement of a body with one point fixed is a rotation about an axis through that
point, s valid and useful. Since the rotation matrices have been shown to represent
rotations, it follows that each rotation matrix is associated with an axis and angle of

rotation.
4.5.2.1 The Rodrigues’ Vector and Equation

Any vector that is collinear with the direction of rotation remains unchanged by the

rotation matrix
X = Ax 4.11)

where x is a vector of arbitrary magnitude along the axis of rotation. Cayley’s formula,
which is now derived, shows that every orthogonal matrix can be defined by three
parameters. Knowing these three parameters is equivalent to knowing the associated
rotation matrix and therefore the relative orientation of the frames in which the vector is

measured.

Consider the rotation R = Ar. Since the magnitude of vectors are invariant under

operation by rotation matrices, lIRIl = lIrll, (IRIF = lel®) which can also be written:

RR-rr=0. (4.12)
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Note that
R-1)R+0)=RR+Rr-rR-rr=RR-ror=0. 4.13)

The first and last elements of this chain of equalities show that the vectors (R - r) and

(R +r) are orthogonal. This is shown geometrically in Figure 4.5.
R-r
R

r
\

r

Figure 4.5 The orthogonality of R-r and R+r when R=Ar

Now R—r)=@A-Drand R +r) = (A + Dr, so that r = (A + D''(R + ).

Combining the first and last equalities gives

R-1=A-DA+D'R+1)
R-1r)=BR+1), B | C(4.14)

where
B=A-DA+D" 4.15)

Defining s = (R —r) and t = (R + r) (which have been shown above to be orthogonal)

(4.14) may be rewritten,
s = Bt, (4.16)

thus the matrix B is seen to have the property that the vector Bx is orthogonal to x that

is,

x.Bx =0, 4.17
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where x is an arbitrary vector. Expressing the elements of the matrix product (4.16)

as a sum gives

sp= Y bty fori=123 (4.18)
i

where by is the element in the " row and j* column of B. Thus the scalar product

(4.18) may be rewritten

Nty bt =0. (4.19)
i

Expanding (4.19) leads to

ti(hipty + biata + bisty) + ta(bart; + baaty + basts) + ty(bsjty + bty + b3stz) =0
Fj?' b” + Z‘zzbzz + [;2[)33 + Z‘]tz(bfg + [)2)) + l‘ltg(b” + bj]) + tztj(sz + [)32) =)

or

%z(bﬁ +b )t =0 (4.20)
“ i

Equation (4.20) reveals, that for an arbitrary vector, t, the orthogonality of t and Bt
can only be assured if B is skew-symmetric, i.e. bj; = -b;; and b; = 0. Skew symmetric

matrices have the form:

0 -b, b),
B=| b, 0 -b, 4.21)
b, b, 0

and the property that B" = -B. The three elements of B are named so that the matrix
product Bt is the same as the vector product b X t, where b = [b, b, bz]T. The vector,
b, is known as the Rodrigues’ vector. Using the original definition of B (4.15), we

can find an expression for the rotation matrix A (Cayley’s Formula):

B=(A-DA+D"
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BA+D=(A-T)

BA+B=A-1
I+B=A-AB=(1-BA
A=(I-BY'0+B). (4.22)

Since B is defined by three parameters, the elements of the vector b, it is seen that the
rotation matrix A is indeed defined by just three parameters. Further, note that due to
the properties of the matrix B, the equation (4.14) may be rewritten as the Rodrigues’

Equation

R-r)=bx(R+r) (4.23)
This is the equation required for the method of orientation calculation employed in
this work. The remaining part of this subsection explores the equivalence to the
axis/angle formulation, which is useful in the next section. (This development was

based on [11] and [47]).

4.5.2.2 The Relationship Between the Rodrigues’ Vector and Axis of Rotation

Returning to the definition (4.11) of the axis of rotation:
(A -Dx=0, (4.24)

where X is a vector collinear with the axis of rotation. Using Cayley’s formula (4.22)

to substitute for A

[(I-B)(I1+B)-T]x=0, , (4.25)
and premultiplying (4.25) by (I - B) gives:

[(T+B)-(1-B)]x=2Bx=0. (4.26)

Recall that Bx = b X x, and lIb x x|l = |iblllixllsinf, where 0 is the included angle

between the vectors b and x. Hence (4.26) states that (for non-zero b) the vectors b
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and x are parallel and therefore the Rodrigues’ vector, b, is along the axis of rotation.

Define the unit vector along b as s. It has now been shown that

s  Only three parameters are required to fully specify a rotation in 3-space

e The components of the Rodrigues’ vector can be used to specify a rotation

These facts imply that within the definition of b, the Rodrigues’ vector must be
information concerning the angle of rotation. Since this vector has been shown to be
collinear with the axis of rotation, the only ‘degrees of freedom’ left in the vector are
its magnitude and sense. It seems logical that the magnitude of the vector must

contain the information. This is now shown to be the case.

Consider the rotation of a point with position vector r, through an angle ¢ about-the
unit vector s to yield the vector R. Construct a plane through the points r and R (the
terminal points of r and R) that is normal to the axis of rotation. This plane intersects

the axis at the point sp, with associated vector sy as shown in Figure 4.6

So

0

Figure 4.6 Rotation of r to R about s and the construction of a plane normal to s, through the tips

of r and R.

A view normal to the plane shows two vectors R-sp and r-sy, of equal magnitude

separated by an angle, ¢. This situation is shown in Figure 4.7.



Figure 4.7 A view of the rotation from r to R from a plane normal to the axis of rotation.

Using simple trigonometry it is seen that tan(¢/2) = IR — rll/IIR + r — 2s¢ll, thus

IR — il = tan(/2)IIR + r — 28y, (4.27)

which can be used to form a vector product. To do this requires that we find a vector
of the same orientation and magnitude as R-r. A vector parallel to R-r, would result
from the cross product of s (out of the page in Fig. 4.7) and (R + r — 2s;). Since the
vectors s and (R + r — 2sp) are orthogonal, the definition of the magnitude of the

vector product gives
s X (R +1=2sp)ll = lIsll (R + 1 = 28p)Il = [I(R + 1 — 2sp)l (4.28)
To obtain the vector R-r, this vector product must be multiplied by the scalar tan(¢/2),
(R—r1) =tan($/2)s X (R + r — 2sp). (4.29)
Note that the axis of rotation, §, and the position vector of the intersection of the axis
with the constructed plane, sp, are collinear, hence s X sp = 0 and this equation may be

rewritten,

(R -1) = tan(§/2)s X (R +1). (4.30)
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Recall Rodrigues’ equation (4.23) (R —r) = b X (R + r), comparing this with the

previous equation shows that
b = tan(¢/2)s, 4.301

where ¢ is the angle of rotation about s. This is the result that relates the Rodrigues’

vector to the axis and angle of rotation. (A similar development can be found in [11]).
4.5.2.3 Axis/Angle Formulation of the Rotation Matrix

It is possible to use Cayley’'s formula (4.22) and the relationship between the
Rodrigues’ vector and axis of rotation (4.31) to derive an axis/angle representation of
the rotation matrix. This, however, requires a large amount of manipulation, and it is
considered to be much more useful to derive the result from a graphical approach,

which is based upon [29].

Consider a vector r rotated about s (unit vector) through an angle ¢, to yield R.

Figure 4.8 Two views of a general rotation. The vector R is obtained by rotating r about s,

through the angle ¢.

The two vectors, r X s and r-s(s.r) are of the same magnitude (the radius of the circle)

and are orthogonal. The component of the vector R orthogonal to s, defined as R,:

R=s(s1r)+ R, (4.32)

can be seen to be given by



R, = (r-s(s.1))cosd - (r X s)sind (4.33)

as shown in Fig 4.8. Combining (4.32) and (4.33) an expression for R is therefore

R =s(s.r) + (r-s(s.r))cos¢ - (r X $)sing. (4.34)

To use this expression as the definition for a rotation matrix it must be possible to
extract the vector r from all terms to the right hand side of the equation. Terms of the
form s(s.r) can be rewritten as ss'r. The only other non-trivial term is r X s, Using
the previously defined skew symmetric matrix definition, a matrix § is defined such

that Sr =s X r = -r X 5. Using these notations, (4.34) may now be rewritten

R= {‘ssT + (I- ss'r}comb + Ssing]r

= [Tcos¢ +ss (1 - cosd) + Ssing]r

= Ar {4.35)
Note that
2 -
SY O SeSy S8
T_ | 2 )
88 = | 5,5, S5 848,
§2
S8, SyS; 53
while
F_ 2 .
Sy TS S¢Sy 5.5,
32 _ - 2 .
S =] 5,5, -85y —s; Sy8;
. . 2 2
5,5, SyS, 5y — 85

. . . . 2 . 2
Since s is a unit vector the diagonal terms of §° can be rewritten 5,” — 1, sy2 —1 and Szz

— 1, meaning that

§*=ss" 1. (4.36)
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Using this (4.36), (4.35) may be rewritten,

A =Tcosd + (8% + I)(1 - cosd) + Ssind
=T+ S%1 - cost) + Ssino. (4.37)

Thus, given the axis of rotation and the angle of rotation about that axis, it is possible
to generate the associated rotation matrix. At this point, sufficient tools have been

developed to proceed to the actual aim of this section: orientation/attitude estimation.



119

4.6 Calculation of Relative Orientation

As previously discussed, the aim of this work is to use vector observations of a field
from two bodies to find their relative orientation. The previous section showed this to
be equivalent to finding a rotation matrix that relates the two vector measurements.
This section shows, using geometric concepts, that it is impossible to uniquely define
the relative orientation of two bodies using the observation of a single vector quantity
from the two bodies. In other words, it is shown that given two vectors of the same

magnitude there are an infinite set of rotation matrices that relate the two vectors.

4.6.1 The Disc Argument

When a vector is rotated about an axis, the component of the vector along the axis
remains constant. This being the case, given a pair of vectors, one a rotation of the
other, the axis of rotation must have the same included angle with both vectors. This
condition yields a unit disc of possible rotation axes that bisects the angle between the
two vectors. Each of the infinitude of axes has an associated angle of rotation, and
when the axis and angle are combined, using the expression (4.37) of the previous
section, different rotation matrices result. The result of the non-uniqueness of the
rotation axis is that there are an infinite group of rotation matrices, A, that fulfil the

relation:

Xp= AXM. (438)

4.6.2 The Cone Argument

Another explanation of what will be referred to as the non-uniqueness problem can be
given by the ‘cone argument’ as follows. Consider llxpl = llxzll = 1. It must be
possible to find a matrix A such that xr = Axy, where the columns of A are the unit
vectors of M with respect to F (i.e. A = | Xy Yu Zp] where Xy is the unit vector
representing the orientation of the X-axis of M w.r.t F etc.). The equation xp = Axy, is
a compact expression of three scalar products, which using the properties of

orthogonal matrices (A" = A™!) can be written
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Xy = Xpr Xp
xp2 = Y Xr (4.39)

X1 = Ly Xp

where Xpr = [ X1 Xan ng]T. Consider the first of these relations. Since both vectors are
of unit magnitude, this equations states that the included angle of the X-axis of M and
X 18 arcos(xy). Vectors, Xy, that satisfy this requirement form a cone with xy as
longitudinal axis. The same argument can be used to show that each of the axes of M
lie on cones that share X as their axis. Aside from lying on the cones, the axes must
form an orthogonal right-handed system. Since it is possible to find one rotation
matrix A that relates xr and %, it can be seen that there are an infinite set of matrices
that fulfil the requirements. The set is formed by rotating the original frame
(arbitrarily defined), M, about xz. The rotation of the initial solution about x results

in three cones, corresponding to the possible solution spaces of Xy, Yy and Zy,.

Using either the infinite set of rotation axes or the cone argument shows that it is
impossible to uniquely and consistently relate two vectors based only upon the vectors

themselves.

If the non-uniqueness problem is to be resolved,-additional information is required.
The minimum information that can be used to make the solution unique is any pair of
angles between the axes of F and M. In the rowing problem, one of these additional
angles, say the sweep angle, could be provided through use of a potentiometer.
Alternatively, multiple vector observations can be made from each frame.
Considering two vector observations from each of the bodies the disc argument is
modified. In possession of Xy, yu, Xr & yr we seek a unique rotation matrix that

satisfies Xy = AxXys and yr = Ayy
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4.6.3 Two Vector Observations

Potential axes of rotation lie on the intersection of the discs that bisect the angles
between the pairs (Xr, Xa) and (Yr, yu). If x and y (the vectors that are measured in
the two frames) are non-collinear then under most conditions the discs are distinct and
intersect along a line through the origin, giving two possible values for the axis of
rotation: s and —s, see Figure 4.9. The two axes are associated with angles of ¢ and -¢

and therefore generate the same, unigue, rotation matrix.

Discs of possible
rotation axes.

Figure 4.9 The intersection of two unit discs of possible axes of rotation defines two possible axes

of rotation s and -s.

What may seem a counterintuitive result is that even if the discs do coincide it is still
possible, as long as x and y are non-collinear, to identify the relative orientation of
two bodies. To understand this requires a more thorough investigation of the

formation of the discs.

Recal] that the disc is formed by the requirement that the axis of rotation has the same

included angle with any given pair of vectors, one a rotation of the other.

To find a method by which the axis of rotation can be identified, when the discs are
coincident requires that we investigate the situations under which this occurs. This is
undertaken geometrically. Recall the discs bisect the angles between the vector pairs
(X, Xp) and (yr, yu). Clearly, for the discs to be coincident requires that there exists
a single plane that bisects the angles between these pairs. This plane must also pass

through the origin, since it also bisects any scaled versions of the vectors.
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The problem is approached, somewhat ‘backwards’, i.e. we assume we know the
orientation of the axis and angle of rotation and then show the conditions under which
the discs bisecting the vector pairs are coincident. This is preferable to the ‘other
direction’ since the vectors and their rotations must be physically realizable, whereas
if arbitrary vectors are chosen, it may not be possible that they are related by a single

rotation.

Assume the axis of rotation lies along the X-axis, this makes the drawing easier but
does not cause any loss of generality. We now make use of the idea of a sub-space,
actually a plane, that passes through two arbitrary vectors, Xy and yu and the axis of
rotation, s = X. The plane including X3, contains all vectors of the form oxp + Ps.
Upon rotation, the plane maps to A(tXy + Bs) = atAxy + BAs = axy + Ps, that is, the
plane that passes through the two vectors X and s becomes the plane including X and
s. This situation is shown below in Figure 4.10. The case for two arbitrary vectors,

Xy and yyu 1S alsb shown in Figure 4.11.

A

s=X .
Figure 4.10 The plane including the axis of rotation, s, and the vector x,; rotates to form the plane

including s and xg.
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Xp

yr

Figure 4.11 The planes generated when two arbitrary vectors, xy and yy are rotated about the X-
axis.

Two discs of candidate axes of rotation, Dy and Dy, bisect the planes created by the
x’s and y’s respectively. The only condition under which Dy and Dy are coincident is
seen to be when Xy, yyr and s all lie on the same plane. In this situation the axis of
rotation lies at the intersection of the planes containing (Xu, yum, s) and (Xp, Yr, S).
This is since the intersection is the invariant direction, and using the definition of the
planes, i.e. if oxy + Bs = Bs, then A(oxy + Bs) = A(Bs) = Bs. This is shown in Figure

4.12 for an arbitrary axis of rotation.

Figure 4.12 The case where Xy, yr and s form a linearly dependent set.

This geometric method of identification of the axis of rotation does not work for cases

in which (X, Yus, S) are linearly independent (do not lie in a single plane).

The only case in which taking two vector measurements will not lead to a unique
solution is when the vectors are collinear. This is exactly equivalent to the case in

which only one measurement is taken. Conceptually this leaves a single disc, or an
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infinite number of planes that can go through each of the ‘vector pairs’ (xg = yr) and

(Xp = Ynm).

It may seem that two completely different methods are being employed to find the axis of
rotation for the two cases (Xu, Yu, $) linearly dependent and independent. However, all
that is different is the method by which the initial defining relations are applied. It is not
proposed that the above-mentioned methods, or their mathematical translations are used
to calculate the axis of rotation. The diversion was simply made to prove that even if the
discs of potential axes of rotation are coincident, it is still possible to find the axis of

rotation.

For the interested reader, the mathematical ‘translation’ of the disc method in the linearly
independent case is easily reduced to finding a unit vector that is orthogonal to both (xy, —
xp) and (Y — ¥r), which can be accomplished through normalising the vector product of
these two ‘observation differences’. This is impossible in the linearly dependent case,
since the observation differences are parallel, and the vector product therefore results in

the zero vector.

These methods only allow for the estimation of the axis of rotation. In possession of
the axis it is, however, possible to find the required angle of rotation, which is unique
within added integer multiples of 27 due to an agreed sign convention (‘right hand

rule’).

The method that is actually used in this work to estimate orientation, simultancously
calculates the axis and angle of rotation, using the previously introduced Rodrigues’
vector, introduced in Section 4.5. It is more robust to sensor noise than the

mathematical translations of the above methods.
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4.7 Relative Orientation Estimation

While it is theoretically possible to find the rotation matrix using the geometric
approaches implicitly outlined in the previous section, it must be remembered that we
are dealing with sensors that will have noisy outputs. Error in the vector observations
will cause the discs to rotate, meaning that the intersection, which is a function of the
orientation of the two discs, will be removed from the ideal. Rather than calculating
the orientation exactly, we are therefore reduced to estimating the orientation so that

some optimality criterion is fulfilled.

Orientation estimation has applications in wide ranging areas from aerospace to
computer vision. A number of approaches that have been used are reviewed in full
detail in Appendix A2. A new method, that of estimating the Rodrigues’ vector, is
presented below. This method is computationally inexpensive, allows relative
weightings of measurements and was found to either have accuracy greater than or

equal to the reviewed methods in the case at hand.

4.7.1 A New Method of Orientation Estimation

A feature of all the reviewed algorithms in (see .Appendix A2) is that for n<3 it is
impossible to weight one observation above another. A method of estimating rotation
from n>2 observations that uses only a 3x3 matrix inversion and allows differential
weighting of a sort is now presented. This algorithm has not been found anywhere in
the literature and could be quite a useful new addition to the arsenal of orientation

estimation techniques.

In the following, to simplify notation, R and r are observations of the same vector

from two bases. Recall the Rodrigues’ equation (4.23):
R-1)=bx(R+r1)

where R = Ar, and b is the Rodrigues’ vector. Now ¢ Xd =-d X ¢, so
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R-r=-R+nrxb (4.40)

Define a matrix X, so that Ze=-(R + 1) X ¢, i.e.

0 R3+f’3 —(R2+r2)
Y=|-Ry+n) 0 Ry +n (4.41)
R2 +r2 _(Rl +r1) O

and the vector A = R — r, so that the (4.40) may be rewritten

A=Th. (4.42)

2 18 singular (as are all skew—symmétri‘c matrices), so the system cannot be solved
simply by inverting 2. This is proof in itself that a single vector observation is
insufficient to specify relative orientation. Consider two separate vector quantities
that are measured in the two bases to be related. Let Y = Ay, A, =R -1, A=Y -y,
%, = L (defined above), and

0 Yity; —¥+y,) |
Zy: _(Y3+)’3) 0 Yi+y; (4.43)
Yo+y, —(+y) 0

For simultaneous measurements we then have two matrix equations involving the

Rodrigues’ vector

Ar=Lh (4.44(a))
Ay=Zb (4.44(b))

A Tx,
{ N } = [2), }b (4.45)
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Ac=Xcb (4.46)
Define € = Ac - X cb, then the least squares so]ﬁtion minimises

J(b)=¢'e = (Ac- Lch)'(Ac- Ech). (4.47)
The solution is

b=(Z o' 2 A (4.48)

If the vector observations are error free, this is the exact solution for b, i.e. there exists a

b, such that J(b) = 0.

Corresponding to the discussion in Section 4.6.3, the only condition under which the
matrix X' Yo is singular is if the vectors being observed are collinear. If one of the
vector observations is a linear combination of the other observation and the axis of
rotation, the case for which the discs of potential axes of rotation are coincident, the

matrix remains non-singular.

Typically, measurements of the same quantity will be obtained using similar
instruments. If one instrument is known to be mére accurate than another it may be '
desired that the observations from this sensor be weighted more heavily than the
other. This is simply achieved using ‘weighted least squares’, where the aim is to

minimise

£"We = (Ac - Zcb) W(Ac - Zcb) (4.49)
The weighted least squares solution is
b=(EWED ' 2"WAC. (4.50)

In possession of an estimate of the Rodrigues’ vector associated with the rotation,
there are a number of ways in which the associated rotation matrix can be formed.

These include: forming the skew symmetric matrix B associated with b and then
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using the direct consequence of Cayley’s formula A = (I - B)'(I + B); finding the angle
of rotation by 2tan™'bll, and the axis of rotation by b/lIbll and using the axis-angle

formulation (4.37); or the following closed form expression [37]

5 b'+1  bb,—b, bb,+b,
A= i bbb, +b, b+l Dbb,—b -1 4.51)
\bb,—b, bb,+b b +1

where b = [b; by bs] and d = Ibll. The theoretical advantages of the new proposed

method: ‘Least Squares Estimation of the Rodrigues” Vector’ are;

—

it always produces a rotation matrix (i.e. orthogonal matrix with det = +1)

2. it functions with n > 2 measurements

3. the major mathematical function is a 3x3 matrix inversion (as compared to
SVD or eigendecomposition)

4. it is possible to weight observations even for n =2

These characteristics can be compared with those of the reviewed methods in Table

4.2.

While the advantages appear positive, it was thought that testing should be done to
confirm the method’s utility. The case for which testing was conducted is similar to
that to be used in this work — that of two noisy vector observations. So that the new
method could be compared to a large number of alternatives, Black’s method was
used to generate a third observation from the original two. (If this were not done, the

only method that could be used as a comparison would be that of Arun.)

Vector observations rigue and rog,. were generated randomly, with ry, r2, Ry and R,

formed in the following way:

I =Tirue + Iy Ry = Arype + 1y (452)

Iy = Tapge T 12 R2 = Ar?.tme +n;



where: A is a rotation matrix generated by a random axis and angle of rotation

n; and n, are zero mean Gaussian white noise vectors of variance ¢, and &,

Using Black’s method the third observations are

Im=ryXnm R;= R1 xR, (453)
Required .
Orthogonal/Non- Main
Name Independent i Comments
Orthogonal Computation
Measurements
A standard
Brock o solution to the
] Matrix Square )
Constrained Orthogonal 23 question
i Root
|14] posed by
Wahba.
Can yield a
o reflection
Arun et al [4] Orthogonal =2 SVD )
matrix or a
rotation matrix.
~ Cuan be made
Markley & Bar- ,
‘ orthogonal by
Itzhack [45)/ . )
; (3x3) Matrix | conditioning
Brock Non-Orthogonal 23 .
. Inversion the
Unconstramed
o measurement
[14] i
matrices.
Catta & (3x3) Matrix Not guaranteed
. to be the least
Lackowski [167], _ Inversion &
Orthogonal 23 ‘ - squares
Markley & Bar- Matrix Square
orthogonal
Itzhack [45] Root )
estimate.

Table 4.2 Characteristics of reviewed attitude estimation algorithms,

Note: Any algorithm that requires n=3 linearly independent measurements can be

used with Black’s method of using the vectors defined by the cross product of the

vectors in each frame.
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A master function was written to recursively call all the previously described
functions with the same observations before changing both A and the observations.
At the conclusion of each cycle the Frobenius norms of the difference between the
true rotation matrix and that calculated by each of the methods was calculated and

stored. For reference, the methods tested were:

1. Arun’s method with two observations (A2)

2. Arun’s method with three observations (A3)

3. Brock’s constrained method (B)

4. Markley’s unconstrained method (MU)

5. Markley’s unconstrained followed by ‘Carta Orthogonalisation’ (MC)

6. Least squares estimation of Rodrigues’ vector (RLLS)

7. Weighted least squares estimation of Rodrigues’ vector (WRLS2)

8. Weighted least squares estimation of Rodrigues’ vector using three

observations (WRLS3)

A number of different values for 6, and &, were used. Increasing both indicated how
robust the solutions were, while having one larger and tuning the weighted least
squares method accordingly suggested this approach’s efficacy. The W matrices were

chosen to be of the form

w0
W= s ’ (4.54)
0 Wo 1

where 1 and 0 are 3x3 identity and zero matrices respectively, and w and w, are the
weights attributed to the measurement of the pairs (ri,R;) and (r;,R;). Obvious

extensions were made for the three-measurement case.

At the conclusion of each run, which consisted of 1000 calls to each routine, the
means and variances of the Frobenius norms of the matrix differences were
calculated. Making comparison easier is the fact that the three solutions to Wahba’s
problem (A2, A3, B) yielded exactly the same results. (It is likely, however, that their

computation times would be different.y This being the case, the comparison was
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reduced to that of the general Wahba solution, Markley’s unconstrained method, its
orthogonalised form, and the three listed variants on the proposed Rodrigues’ vector

estimation scheme,

The Wahba solutions (A2, A3, B) were always better than the unconstrained (MU)
and orthogonalised versions (MC), but only as good as the Rodrigues trio in the case
of zero or very low-level noise. Orthogonalising the Markley unconstrained estimate

reduced error in all circumstances.

In the case of different values for 6, and G, it was easy to assign weightings in the
two-measurement Rodrigues’ estimation scheme to achieve consistently lower error
norms. It was more difficult, although possible, to select a third value to get better
performance still. The only conditions under which RLS performed better than
WRLS2 and WRLS3, were if different weightings were assigned to the two actual
measurements when the noise strengths were the same. Even in this condition the
error norms from WRLS2 and WRLS3 were less than that for the Wahba solutions

(for reasonable weightings).

This qualitative testing suggests that the best option for our purpose is either RLS or
WRLS2. The extra computation time and small performance benefit of WRLS3 as -
compared to WRLS2 mean that its choice was not justified. WRLS2 would be the
algorithm of choice if ‘sensible’ choices for the weighting matrices could be made. A

method for choosing such matrices is discussed in Section 4.9.

Having chosen a method by which vector observations will be processed, the next
step is to show that the outputs yielded by the previously described sensors

(accelerometers and magnetoresistive sensors) are suitable in the application.



4.8 Theoretical Relative Orientation Estimation Using

Accelerometers and Magnetoresistive Sensors

Up to this point, while sensors have been mentioned, it has simply been assumed that
two independent vector measurements can be gathered. No mention of the
relationship between these vector quantities and the actual motion has been made.
This section rectifies this situation by considering a general two-body configuration.
The mapping between the physical motion of the bodies, i.e. linear and rotational
quantities, and the outputs of theoretical sensors mounted on the bodies is then

derived.

4.8.1 Problem Definition

Two bodies, U and L, with associated coordinate frames U and L, are connected at a
spherical joint. A frame, J, that is at all times parallel to the inertial frame, F, is
coincident with the centre of the joint. The position vector Or — O; that measures the
translation of the joint is denoted by p. The frames J, U and L have coincident origins

at the centre of the joint. This situation is shown in Fig. 4.13.

B

-
S ——

Figure 4.13 A 2D representation of the problem geometry.
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A point x is fixed in the upper body, U. The coordinate matrices of this point with

respect to the bases U and J are related by

X;= AXU . (455)

where A is the rotation matrix that has as its columns the coordinate matrices of the

unit vectors of U w.r.t J (and therefore F). Similarly, for a point, y, fixed in L:

ys=Byr. (4.56)

where the columns of B give the orientation of L w.r.t. J (F).

Located at both x and y are sensor clusters consisting of triaxial magnetoresistive
(MR) sensors and triaxial accelerometers. The ultimate aim is to find the orientation
of U with respect to L using the outputs of these sensors. Before this may be
achieved, the outputs of these sensors in response to a general motion must be
derived. This analysis is performed first for the MR sensors, and then the triaxial
accelerometers. Once the relationships have been derived, schemes for selecting
parameters in the weighting matrix in the orientation estimation algorithm are

discussed in Section 4.9.
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4.8.2 Theoretical Output of the Magnetoresistive Sensor Under General

Motion

In the following, the triaxial magnetoresistive sensor, M, is assumed to be a perfect
sensor of the incident magnetic field, E. This means that each axis of M outputs a
voltage exactly proportional to the component of E perpendicular to itself. Denoting
the axes of M as the right-handed orthogonal set of unit vectors M = {Xy Yu Zy}
(where the unit vectors are defined in the reference basis F), and a field that is
orthogonal to E as F, the output of the sensor, M, is given by the voltage vector V=

[Viat Vyrr VzM]T. The components of Vy, fulfil the following relations:

ven = Foxyy
Yyn = F.yM (457)

Vo = Foy.

If the field F is assumed to be a constant vector field, an assumption that is soon
relaxed, translating the sensor without changing its orientation relative to the tield will
not change its output. Further, since the field is assumed to be constant, rotating the
sensor will always yield a vector of the same magnitude. It is seen then that
regardless of the displacement experienced by the sensor, only a rotation is sensed,
and thus even if the sensors are submitted to non-spherical displacements, the output
vectors will be able to be related by rotation matrices. Note that these comments
relating to the rotation of a single triaxial MR sensor also apply to their use in a pair,
i.e. it is always possible to relate the output of two ideal MR sensors via a rotation
matrix. If the pair is positioned such that the field incident at each of their locations is
identical, then the field may be time varying without disturbing the function of the

sensors since the magnitude of the two observation vectors will be the same.
Define the field that would be measured by an MR sensor aligned with J as f. Since
the system’s motion does not alter the field, the sensors located in U and L simply

yield an output that is related to f; by the relevant rotation matrix:

£, = Afy (4.58(a))
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=Bt (4.58(b))
or

fu=A'f) (4.59(a))

f, = B'f). (4.59(b))

For the estimation of the relative orientation of U/ and L, we require vector
observations from each of these bodies related by a relative rotation matrix. The

relative rotation matrix is easily found by combining (4.58) and (4.59):

f, = A'Bf, = Cf;, (4.60(a))
f;, = B'Af, = C'fy (4.60(b))

This section has shown that MR sensors are theoretically very useful for measuring
the relative rotation of two bodies. This is since they effectively ‘filter out’ any
translational aspects of the motion and derivatives of the angular motion are
inconsequential; only the angular orientation of the body affects the output of the MR
sensors. Unfortunately, the situation is not so simple for accelerometers, as the next

section shows.
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4.8.3 Theoretical Output of the Accelerometer Under General Motion

The triaxial accelerometers are considered as ideal sensors of acceleration, where
measured acceleration is due to both gravity and motion of the sensor itself. Because
the ‘field” measured by the accelerometers is affected by motion, the analysis is
considerably more complex than that for the MR sensors. Actually, this section
shows that the general outputs of two triaxial sensors mounted on two bodies
undergoing general motion cannot be related via a rotation matrix. It is also shown,

however, that under certain conditions they can be approximately related.

The first step is to find the velocities and accelerations of points x and y as measured
in £. Since x (y) is fixed within U (L), the velocities and accelerations of these points

with respect to their associated frames is zero:

XU :kU :yl) :5;1, :0 (4.6])
therefore

X = Ax, (4.62)

Xy =Ax, (4.63)

with similar equations for the lower body, L. Using xyy = ATx_; , (4.62) gives

x; =AA"x, (4.64)

Consider the derivative of the expression of orthogonality: AA" =1,

T

AAT +AA =0

. A AT 'T__;[' T 3
o1 AA"=-AA =-AA (4.65)
N

which shows that the matrix AAT is skew-symmetric. Denote this matrix, the
angular velocity matrix, by Q, and its time derivate by Z (which is skew-symmetric

by definition).

Now

X;=Q X, (4.66)
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5;./ :QX_]+Q);.I :§ZXJ+QZXJ :E+ Qz]xj 4.67)

or

s = [Ero?ax, (4.68)

(Note: strictly the matrices Q2 and = should be Qy and Ey but since only the case of
the upper body is considered here, the subscripts are omitted for simplicity.) Equating
the expressions {4.63) and (4.68) for the acceleration of the point x, in the fixed frame

it 1s seen that

A=(E+0HA (4.69)

This matrix relates the coordinate matrix of x, in U, to the acceleration due to the

rotation of U in J. Since
Xp=X;+ P (4.70)

where p is defined above, we have

XF=X7+p=Axy+p @.71)

This is the acceleration of x due to the rotation of U and the translation of J. Two
changes need to be made before this quantity will represent the output of an
accelerometer mounted in U at x. Firstly, note that accelerometers register the
acceleration not just due to motion, but that due to gravity as well. Making this

correction, the vector representing the sum of the accelerations is
ap =Xr+g=Axy,+ptg 4.72)
Secondly, the calculated expression is ‘measured’ in F, whereas the accelerometer is

mounted in U, with axes that are in general non-parallel with F. To account for this,

the vector of acceleration measured in F is rotated to I/, Since A is the rotation matrix
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that relates U—J and the axes of J and F are parallel, the output of the accelerometer

at x is given by

acey, :AT(AXU+i;+g) (4.73)

and following exactly the same derivation for the accelerometer in L gives

ace; =B7 (Bx, +p+g) (4.74)

Following the approach of the MR section, it is desired that the outputs of the
accelerometers be related via a relative rotation matrix. It can be seen that this is
actually impossible unless the first quantities in the brackets of the two expressions
are equal. The following development, however, shows that in cases where
reasonable limits are put on the magnitude of angular acceleration and velocity and
the accelerometer is placed close to the joint, the first term in the brackets (henceforth
known as the rotational term) is negligible compared to the second two.
Alternatively, mounting arrangements, requiring additional sensors, are discussed that

allow for general motions.

In the following |l . Il denotes the Euclidean (2-norm) or the associated induced matrix

norm. The following properties of norms are used:

1. TABI < AT B
2. A + Bl <Al +1IBII & Ix + yll < Ixil + lyll
3. NAxIE< TAI il

where A and B are matrices and x and y are vectors. Also used is the property of
rotation matrices (and orthogonal matrices in general) that their induced 2-norm is
equal to one. This has a physical interpretation in that rotating a vector does not

change its magnitude.

Since A is a rotation matrix,

llacey Il = IAT(Axy + p+ )l = | Ax + p+ g1l < I Axyy I + i p+ gl (4.75)
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denote the “signal’ s = p+ g. Consider first the rotational term of (4.75):

I Ax I = I(E+ QD) Axy | <I(E+QH) Axy 1 = I E+ QD) xy 1l (4.76)

and
II(E+QZ)|ISIIEII+|I£22|| .77

It was stated earlier that the matrices €2 and = are associated with vectors o and o.

The structure of the matrices is as follows

0 -y @
Q=| w, 0 —ay
“@en 0 4.78)
0 -0y 0y
== 84 0 —
-0, o 0

where © = [@ | @, an]T is the angular velocity vector and oo =[x | & 3 (xj]T 1s the
angular acceleration (rate of change of angular velocity) vector. These matrices have
the property that their product with a vector is equal to the cross product of the
associated vector, e.g.

Qy=wmXy 4.79)

Since, using the properties of the cross-product, the maximum norm that this vector

can assume is

€2 ¥l ax = Nl X ¥llyax = oIl 1yl (4.80)

when llyll = 1, this maximum takes the value of the induced norm, and it is seen that

Q= ol @.81)

and similarly IZll = llall. A similar argument can be used to show that IQ*] = lloll*

This gives
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I(E+ Q)< Nl + ool (4.82)

and the (4.76) can be rewritten

I Ax 11 S ICE+ Q) lixy 1l < (ol + llol?) Ty I (4.83)

This gives an upper bound to the magnitude of the accelerometer signal that is due to
the rotational velocity and acceleration of the body. Expected bounds on each of the
quantities can be reasonably estimated through consideration of the motions that are
to be monitored. The relative sizes of the terms due to s and the rotational term may

then be discerned by assuming equality in the initial relationship:

llace, 1= Il Ax, Il +1isll. (4.84)

Recall s is the vector sum of the acceleration due to gravity and the linear accelera?ion
of the joint. Numerical values are now associated with these quantities. The
following assumptions are made for the expected smooth motion:

loll < | rad/s®

llwlt < 2 rad/s

lisll > 7 m/s
The other quantity to be estimated is IIx¢ll, the Euclidean norm of the vector from the
accelerometer to the joint about which rotation is occurring. The magnitude of the .
rotational term therefore becomes a linear function of the distance of the

accelerometer from the joint:

Il Axy 11 < Slixgll (4.85)

It is of course of interest that this quantity be made as small as possible, i.e. the
accelerometer should be very close to the joint, but this conflicts with the case in
which more than two bodies are being monitored. In this truly multi-body
application, it would be preferable to have one sensor on each body, rather than one at
each ‘end’ of the body, close to the joints. The obvious choice in this situation is to
place the sensors midway between the two joints. Approximating the maximum
length of a human limb segment as 400mm, the distance to the joint is half this value,
and the magnitude of the rotational term is unity. This is unacceptably large when it
is considered that the signal term could reasonably be expected to be as small as 7

(when the joint is accelerating directly upwards at 2m/s®). Central placement of a
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single accelerometer/MR  is  therefore not recommended for multi-body
instrumentation. For multi-body instrumentation, an obvious solution is to place a
cluster at either end of the limb segment, but this introduces a large number of
channels. Some alternative methods of reducing, or potentially eliminating the

effects of the rotational term are now discussed.

While the previous discussion details the minimisation of rotational effects on the
accelerometer through physical placement, it may also be possible to apply a
sophisticated signal processing technique to do the same job and therefore reduce the
required number of sensors. Consider, for example, a ‘magnitude filter’. The
magnitude of the output of each of the accelerometers is a function of the linear
acceleration of the joint and the rotational term associated with the body on which the
accelerometer is mounted. This being the case, in the frequency domain the spectra of
the signals from the two accelerometers may share some similar characteristics (due
to the signal term) and some different (due to the rotational term). It may be possible
to use the similarity in the frequency domain to eliminate the effects of the rotational
term. The exception to this would be when the spectra from each effect occupy the

same region of the frequency domain.

What might be the most reliable method of elimination of the rotational term is a -
combination of very basic signal processing and the use of two rigidly linked
accelerometers. Consider a second triaxial accelerometer, placed on a rigid extension
from the accelerometer/MR sensor cluster. The output of the additional accelerometer
(accy) will be the same as that of the first (acc;) except for the rotational term. If the

vectors from the joint to the accelerometers are 1; and 1, then ideally

ace|—acc;=A A 1) =ATAA (4.86)

where A is the vector between the two accelerometers.  If the vectors 1y and 1, are
collinear (or near to it), the ratio, Ill;lI/IAll can be used to modify a combination of the

original accelerometer output and the vector difference of the outputs so that the new

vector is free of the rotational term:
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acc* = ace — (ace; — ace)l /1Al (4.87)

This is since (ace; — acey)/llAll, the normalised vector difference, gives the rotational
term that would result by placing an accelerometer 1 unit from the joint in the
direction of 1; and l;. Modifications need to be made if 1, and 1, (and hence A) are not

collinear, although it is probably accurate enough to assume that this is the case.

Regardless of the method in which the rotational term is made small, the result is that:

acey = A'(p+g) ace, =~ B'(p+g) (4.88)
so that acey = A'B ace, = Cacey, giving the accelerometer equivalent of (4.60(a)).

This section has shown that under certain conditions, an accelerometer may provide
the additional observations needed to estimate the orientation of U w.r.t. L. The next
section details the exact way in which these observations are used. The basic ideas of
this section are used in the design of ‘weighting matrices’ for more accurate

orientation estimation.
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4.9 Orientation Estimation Revisited

Recall that in Section 4.7, a method for the weighted least squares estimation of the

Rodrigues’ vector was derived (4.50):
b = (Zc"WEo) ' 'WA. (4.89)

The matrix Z¢ (6x3) contains the sum of the vector outputs of the MR sensors and
accelerometers (3x3 matrices stacked on top of each other), and the vector A¢ (6x1)
the differences. Before the data is summed and differenced it is normalised so that it
is actually possible that a rotation matrix can relate the measurements. Clearly if
vectors measured by the same type of instrument are of different magnitude, no
rotation will bring the two into agreement. This normalisation removes any gain
discrepancy between sensors and also the dynamic effects discussed for the

accelerometer in the previous section.

As documented above, it is likely that the accelerometer measurements will have what
can be considered an ‘error signal’ due to the angular velocity and acceleration of the
body on which they are mounted. The data from the two sorts of sensor should be
weighted so that the lower error level informati(;n of the MR sensors is ‘believed”

more than that of the accelerometers in the determination of orientation.

The accuracy of the accelerometer outputs is a function of the motion that the
accelerometers are undergoing, thus the optimal (in a very loose sense of the word)
weighting matrix is non-constant. A method to dynamically produce a sensible

diagonal weighting matrix W is now described.

Recall that the exact expression for the two vector outpuls was given by (4.73),
4.74):

acc; = AT (Axy +p+g) (4.90(a))

acc; =BT(ﬁx[l+i;+ g) (4.90(b))
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Since the magnitudes of the second (signal) terms are the same, the only reason for
the accelerometers to give outputs of different magnitudes is due to the differences of
the rotational terms. If the accelerometers give signals of vastly different magnitude
then it is safe to assume that the first term in one of the expressions is non-negligible.

In the case where the magnitudes are practically the same there are two possibilities

e the effect of the rotational terms is negligible

e the direction and magnitude of the first terms are such that the signals are of

similar magnitude

The first possibility is more likely to occur, requiring only low-level angular
accelerations and velocities. Based on this reasoning, the greater the discrepancy
between the magnitudes of the two accelerometer signals, the more significant the
rotational term and the lower the weighting to be attributed to the accelerometer data,
The MR data is constantly weighted, as the only error assumed to present in the
output of these sensors is noise. Thus, the chosen weighting (6x6) matrix is block-

diagonal

{1 0 } ‘ -
W= (4.91)
0 W

with the identity matrix corresponding to the MR data. W, is defined
W .. = (c| llacegl-llaceg )l 1YL (4.92)

where ¢ is a positive constant, discussed below. Note that the greater the difference
between - the magnitudes of the two acceleration measurements the lower the
weighting assigned to the accelerometer data. In the case where ¢l llaceglHlace,ll | <
1, this will result in ‘more notice’ being taken of the accelerometer data than the
magnetoresistive sensor data. Unless the MR data has been adversely affected by
localized magnetic fields, there is no reason for a higher weighting to be placed on the

accelerometer data, since the accelerometer data is more ‘approximate’ due to
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rotational effects. The high weighting of accelerometer data is prevented by checking
the magnitude of the difference of the vector norms, i.e. if ¢l llacegll-llacell | < 1, then
W = 1, otherwise it is as previously defined. The constant, ¢, is chosen by
considering the magnitude of the vector norm difference after which, the data can be
considered to be practically unaffected by the rotational terms. For example, if it
were considered that | llaceyll-llacell | < .05 were a suitable level, then ¢ = 20. For any
vector norm difference with magnitude greater than .05, the weighting is given by ¢l

llaceyll-llaee,ll I, for a difference less than 0.05, the weighting is unity.

At this point, it is probably beneficial to summarise the method by which orientation

is to be estimated. The steps are:

1. Obtain f, fy, acey, acey,

Calculate norms of each of the quantities

Calculate wye. = 1/(cl Il acey -l acez I )

Create weighting matrix, based on wye<1 or Wye=1

Normalise all vector quantities by dividing by the associated norm

Form vector A¢ and matrix ¢ using normalised data

A e

Solve for b using weighted least squares

The exact form of the vector Ac is

accU - ach

Ac=[ fu=ts } (4.93)

i.e. the MR data is stacked on top of the accelerometer data, and the rotation matrix
associated with the obtained Rodrigues’ vector is the relative rotation matrix C,

where:

ty = Cf; and acey = C acey, (4.94)
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Having described now, the theoretical aspects of the use of outputs of accelerometers
and MR sensors in the least squares estimation of orientation, the next section

discusses the calibration of the sensors.
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4.10 Sensor Calibration

This section contains two methods of calibration for the sensors. The first is simple,
and assumes that the axes of the sensors are orthogonal, and that the sensors are
mounted orthogonally within their enclosure. This is quite a large assumption to
make when all assembly, as previously mentioned, was done ‘by eye’ with no jig to
ensure accurate mounting. This method of calibration was applied while the author
was able to access the sensors and had very little time to gather results. After the
collected results were found to be poor, the second, more comprehensive method was
derived, while at a distance of many thousands of kilometres from the sensors. Thus,
the second method remains unproved. Both are included so that it may be seen where
the original method went wrong, and also so that future workers may apply the second

method.

Before describing the methods of calibration, it is perhaps useful that the purpose of
calibration is properly defined. In this case, the purpose is to make the physical
sensors behave as much as possible like their mathematical idealizations. The axes of
both sensors are modelled as operators that will yield the scalar product of the
associated field vector with a unit vector collinear with the physical axes. Deviations

from this ideality include

[. Constant offsets: output from the axes when either no field is present, or the
field is exactly orthogonal to the axis.
2. Non-linear effects: hysteresis and general deviation of the output of the sensor

from the scalar product model.

The first possibility is relatively easy to account for, while the correction of the non-
linearities of individual axes would be a very time consuming task to undertake.
While there will always be some degree of non-linearity in the sensor’s

characteristics, it is hoped/trusted that this will be a negligible component.

In addition to making the individual axes behave as scalar product operators, certain

requirements are placed upon the collection of axes as a whole. These are
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I. Uniform gain among axes of the same sensor type: Once the offsets are
accounted for, the response of two axes of a similar sensor that are collinear
and of the same polarity should be equal.

2. Orthogonality: The axes should form a right-handed orthogonal set.

These two requirements combined ensure that the field that is being measured by the
sensor is uniquely and accurately portrayed. The orthogonality of the axes also has

important consequences that are fully discussed below.

It should be noted that when talking of calibration purely through use of the ambient
fields (magnetic or gravitational), there is no need to make explicit reference to the
type of sensor that is being calibrated. While most people know more about the
gravitational field than they do about the magnetic field, and may sometimes use this
knowledge to simplify calibration procedures, e.g. the ‘2g test’ when an
accelerometer’s axis is oriented so that it is positive upward and then downward, this
is potentially dangerous. If the method of finding vertical is not reliable, or the axis is
not accurately aligned with the enclosure, errors will result. It is better to make no
assumptions about the fields that are being measured and make the calibration routine
general. Further, since both the accelerometers and MR sensors are mounted within -
the same enclosure, it saves time if both sensor types are calibrated using the same

technique.

Finally, in this calibration it is not necessary that the voltage output of the sensors be
converted to a physically meaningful number with associated units. It is required only
that the equivalent sensors in the same orientation yield the same results. Having
discussed the purpose of calibration, the first, crude method of calibration is now

presented.
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4.10.1 Calibration Assuming Orthogonality of Sensor Axes

This first method of calibration makes three assumptions about the sensor axes. The
first is the orthogonality of the axes within a single sensor; the second that the axes of
the two sensors within an enclosure have parallel axes; and finally that the axes of the

sensors are parallel with a coordinate frame defined by the edges of the enclosure.

Based on these assumptions, when the enclosure is rotated 180° about any of the axes
of its associated frame, the outputs of all the sensor axes, except the two (one from
each type of sensor) parallel to the axis of rotation, should have their outputs remain
constant in magnitude, while they change polarity. This is the basis of the method of

calibration, which is now described below for a general sensor.

Consider the incident field, f, to be arbitrarily oriented with respect to the X-axis (in
orientation x(1)) of a sensor. The ficld may be decomposed into two components, that
orthogonal to x(1) (foun) and the projection of f onto x(1) (fpre5). The projection term,
which is calculated using the scalar product fx(1), is the output of the sensor.
Rotating x(1) 180° about any axis orthogonal to itself gives x(2) = — x(1). The
projection term is now given by f;x(2) = - £x(1), i.e. rotating the axis vthrough 180° -
gives two values equal in magnitude and opposite in sign. This is shown

diagrammatically in Figure 4,14,

f
forth f forlh
p—p
fpn)j X( 1} xfz) O fpl’()l

Figure 4,14 Rotating an axis through 180° gives values of equal magnitude and opposite sign.

This intuitive fact treats the sensors as ideal mathematical objects. In reality the axes
of each sensor has an associated offset so that even when f is orthogonal to an axis,
the voltage output is non-zero. This offset must be accounted for if the outputs of the

sensors are to be related by a rotation matrix. This correction may be achieved by
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either subtracting the offset from the output during processing or altering the offset
using hardware. The former option was undertaken as it was considered to be both
faster and more accurate. (The offsets of the MR sensors can be altered using three
trim potentiometers attached to the sensor boards.) If the offsets are to be accounted

for, they must first be determined. This is the first part of the calibration process.

As shown above, taking two readings from a single axis before and after a 180°
rotation should, in the absence of an offset, give two values symmetrical dispersed
about zero, thus the offset can be calculated as the average of the two measured

outputs.

The characteristic magnitude of an axis may be defined as the voltage output
(measured from the offset) due to a unit field collinear with the axis. For the sensors’
outputs to be relatable via a rotation matrix, each axis must have the same
characteristic magnitude, or the outputs must be modified so that the effects of the
individual characteristic magnitudes are accounted for. While it would be difficult to
calculate the characteristic magnitude as it is defined, it is a simpler task to ensure that
each axis has an identical characteristic magnitude. All the latter requires is that the
processed output of all axes are similar when the axes are subject to a similar field.
Consider, for example, taking the output of the X‘-&xis Of a sensor, and then rotating -
the sensor so that the Y-axis has the orientation that X used to occupy. Ensuring
similar chéracteristic magnitudes simply means that the deviations of the measured
outputs of the X and Y-axes from the known offsets are identical. In this work the
similarity of the axes’ response was achieved by normalising all the axes, i.e. finding
the magnitudes of the responses to a standard field and then dividing the axes’ outputs
by these magnitudes. Since the magnitude can be calibrated using the same data as
was required for the offset determination, calibration can theoretically be completed

using six tests (two for each axis).

There are potential problems with using only two tests that may be reduced by using
more tests. Firstly the direction of the axes might be such that reversing the
orientation causes only a small change in output. This would occur when the field is

close to being orthogonal to the chosen direction. The smaller the actual change in
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the magnetic field, the greater the effect of measurement error in the determination of
offset and magnitude normalisation.  Also, when using only two tests, the exact
orientation of the sensor is of high importance. If more tests are used, errors in
orientation (assuming a symmetrical spread about the mean) tend to ‘average out’. A
preferable method of calibration uses six tests for each of the axes of the sensor. The
six tests correspond to three orthogonal axes in both directions (as shown in Figure

4.15).

+3

+1

v

-3

Figure 4.15 The six orientations of each axis used in calibration of accelerometers and MR

S5€nsors.

When using six tests, the offset is given simply as the average of the values of each
output. This is because each pair of tests has outputs that should be symmetrical
about the offset. Using this three-dimensional approach allows for a more thorough
definition of the magnitude of the sensors response to the incident field. The
magnitude of the incident field, as measured by an axis is given by the Euclidean
norm of the output (measured from the offset) in three orthogonal directions. Rather
than using the deviations from the offset in threc directions, e.g. +1, +2 and +3, the

following expression is used

Mag = Ya{ ([+1]-[-1])° + ([(+2]-[-2])° + ((+3]-[-3])*} (4.95)
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where [+1] indicates the value measured when the axis is collinear with direction +1

etc.

As well as an offset and a characteristic magnitude, each axis has a polarity that must
be correctly determined if the axes of the sensor are to form a right-hand coordinate
system. This polarity can be due either to the orientation of the chip on the board, or
the wiring of the sensor. While the definition of a positive axis is arbitrary, all axes
must be treated similarly. A simple method using only two of the six directions is to
arbitrarily say that [+1] > [-1], i.e. the output when the sensor is in the +1 direction
should be greater than that when it is in the opposite direction. [f the recorded data
for a particular channel gives [+1] < [-1], then the previously calculated normalising
factor is made negative. [f this method is used, it should be ensured that the chosen
direction entails a large change in voltage when reversed. The minimum number of
tests that can be used so that each axis of a three-axis set occupies all six positions

was found to be nine. This minimum was used in the interests of saving time.
l. 4 2 I I

K Y ;

X X

Z

Y

Figure 4.16 The nine orientations of the enclosure frame during calibration
As previously mentioned, this method of determining axis offset and magnitude
demands orthogonality of the sensor axes. The actual calibration implicitly requires
this as it uses the fact that rotating the enclosure about one of its axes is equivalent (o
rotating the sensors about one of their own axes. Since this is assumed for all three

axes, each of the axes must be parallel with the associated axis of the enclosure frame.

This applies for both sensors within the same enclosure. If the axes are not
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orthogonal in this way, then, assuming the X-axis of a sensor has components [a, b, ¢]
in the enclosure frame, rotating about the Z-axis of the enclosure frame gives the axis
new components of [-a, -b, c] in a fixed frame with which the enclosure frame was
previously aligned. In the six orientations [1]-[6] for which the output of the X-axis is

recorded, the components of the axis in the fixed frame are:

[11:  [a, b, c]
[2]: [-5, a, c]
3]: [-a,-b, c]
[4]:  [b, -a, c]
[5]:  [b,c,a]
[6]:  [b, -c, -a]

In each of these configurations, the output is of the form
Myfy + myfy + mf + A (4.96)

where [my, n1y, m,] are the components of the vector representation of the axis in the
fixed frame, and f = |y, fi, f7] is the field in the fixed frame. Summing the six outputs

gives:

(a—b—a+b+b+D)fx+(b+a-b-a+c-c)fy+(c+c+c+c+a-a)f,+6A

= 2bf; + 4cf, + 6A (4.97)

Whereas under the assumption of orthogonality the sum gives 6A. Similarly
erroneous results are generated by applying the previously described method for
finding the characteristic magnitude of the axis. Clearly, the problems caused by non-
orthogonal axes are many. Firstly it leads to errors in the calculation of axis offsets
and characteristic magnitudes. During the actual operation of the sensor, non-
orthogonality also causes problems, even if the offsets and axis gains are correctly
determined. Two of the problems are to do with consistency within and between
sensor clusters. Even if the axes of the accelerometer and MR sensor are orthogonal

themselves, if the two types of sensor are arbitrarily oriented with respect to each -
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other within the enclosure, the vector observations are being made from different
bases and hence cannot be used in the proposed method of estimating orientation. If
the accelerometer and MR sensor axes of each cluster are parallel, but arbitrarily
oriented within the enclosure, then a simpler type of error results. The discrepancy
caused by this error in orientation is theoretically a constant rotation matrix that

relates the orientation of one cluster to the other (in the ideal case, this is the identity

matrix).

The following method of calibration makes no assumptions about the orientations of
the axes within the enclosure, yet theoretically yields data that would be obtained if

the sensor axes were orthogonal and parallel to the enclosure frame.
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4.10.2 Calibration Assuming Axes Non-Orthogonal

Consider three non-orthogonal axes, my; i = 1,2,3 of a field sensor fixed in a cubic
enclosure, which itself has an orthogonal coordinate frame [X¢ Y¢ Zc] (the axes of
which are parallel with the edges of the cube and forming a right-handed system).
The enclosure frame is initially aligned with a fixed global coordinate system [Xg Yr
Zg|. The field, f, has unknown components [fy, fy, /7] in the fixed frame. Consider first
the axis m; which has unknown components [g, b, ¢] in the enclosure frame. The

situation is shown in Figure 4.17

ZC = ZF
4 £
!
\f
b 1
i : /)//» YC = YF
fx 7 Ill_l_i_____:/
a_______c_.v’/
Xce=Xr

Figure 4.17 The orientation of m; and f in the enclosure and fixed frames, which are shown as

coincident.

Ideally, the axis would give an output proportional to the scalar product:

afy + bfy + ¢f, (4.98)

However, there is an unknown offset on the output of the axis that must be

determined, and the output is therefore given by

cy=afx+bfy+cf, + A, (4.98)

where A is the unknown (assumed constant) offset. If the axis is rotated about Zg by
180°, the axis now has components, as described in the previous section, [-a —b ¢] in

the fixed frame, and the output in this configuration is therefore given by
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¢y =-afx - bfy + ¢fy + A (4.99)

Similarly rotating the original configuration about the Xr and Y axes gives,

respectively
c=afy - bfy - ¢fi + A (4.100)
ci=-afs + bfy - of, + A (4.101)

It is seen that by adding together the outputs collected with the axis in these four
configurations, the result is simply 4A, i.e. averaging the recorded data gives A (or at
least an approximation of A). There, is more information in these tests, however, than

the value of A. Writing the scalar relations in the following matrix form:

1 1 1 1_ f\ a €y

=L =1 T fb] g (4.102)
I =1 =1 1j f,c Cy |

-1 1 =1 1] A <y

Ad=c | (4.103)

Since A is non-singular it is possible to calculate d, which contains information about
the orientation of m, in the enclosure frame. If the enclosure is reoriented in the fixed
frame so that the components of the axis in that frame are [c, a, b], which is achieved
by making X¢ = Yy, Yo = Zg and Z¢ = Xp and the same rotations are performed, then

the matrix equation becomes

111 1 fe €

-1 =1 1 1 f).a e (4.104)
I =1 =1 1| f,b €3 .’
-1 1 =1 1| A €y

Similarly orienting the enclosure so that [b, ¢, a] are the coordinates of the axis in the

fixed frame, i.e. X¢ = Zp, Yc = Xg and Z¢ = YF, then the equations are
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=| - (4.105)

From these twelve tests, the results are three estimates of A, {of which the average is

used), and the following products, written in matrix form:

af, af, df,
bf . bf, bf, | (4.106)

Thus, three scalar multiples of the desired coordinate matrix are furnished, i.e. fomy,
Jymy and f;m;. Performing similar operations for the other two axes of the triaxial
sensor, the results are estimates of the axis offsets and the scaled representations of

the axes: (fumy, fymy, fm,) and (fums, fyms, fms).

Ideally the vectors represented by the coordinate matrices fom, fimy, fm;, should be
collinear, with lengths and sense dictated by fx, fsﬂ Iz Due to a large number of -
factors, including orientation errors (i.e. errors made during rotation of the enclosure)
and sensor noise, the vectors will not be collinear, There are two pieces of
information in the representation m; = [a;, b, ¢i], the orientation of the axis with
respect to the enclosure, and the gain of the sensor axis. ldeally, all axes would have
the same gain, but this 1s not a safe assumption due to manufacturing variability. If
the outputs of the sensor axes are to be related using a rotation matrix, the
characteristic gain of each axis must be calculated and accounted for. While it is not
possible to find the exact gain of each axis, without precisely knowing the field in
which the sensor is located, it is easy to define the gain within a multiplicative
constant, and if this is done consistently, this is sufficient. A method for finding the
géin that uses all the collected information is now described. The sum of the norms of

the vector outputs is seen to be:
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rmlh + Il + Emy| = (£ + 1) + 150 Imgl = Flimy (4.107)

The positive scalar, F, is common for all axes, therefore, if we assume that [yl = g,=

I, then
Fimll=F. (4.108)

Using this value for F, the characteristic gains of the other axes may be found by

|

+nymi +}f1~mf B
il T

f‘,\‘mi

=g (4.109)

F

The numerator is simply the sum of the norms of the three calculated scaled versions
of the coordinate matrices of my. It should be remembered that if two triaxial sensors
are to be used in an application they must both be calibrated in the same magnetic
field. If this is not the case, the value F may be different for the two sensors and

hence the calculated gains will not be consistent between sensors.

Now that both the offsets and gains of each axis have been determined, the issue turns
to the orthogonalisation of the sensor axes. The first"s‘tep in this process is the
normalization of the three coordinate matrices representing the orientation of the axes

in the enclosure frame. The resulting unit vectors are denoted w;, i.e.
u; = (fomy + fomy + fmg)/Ilfm; + fom + fmll (4.110)

The vectors w; are in general not orthogonal. Orthogonality is required if the fields
are to be able to be measured uniquely. Therefore, the next part of the process is the
orthogonalisation of the vectors so that a linear combination of axis outputs can be
used to give the same output as would be the case if the sensor axes were truly
orthogonal, but still arbitrarily oriented within the enclosure. This orthogonalisation
1s achieved using the Gram-Schmidt process and transforms w; to mi. First, one of the
vectors is chosen as the reference, in this case u;. Next a unit vector, ny, is created by

removing the component of u, in the direction of n; = u; and then normalizing the



159

resulting vector. Similarly, ms is created by removing the components of w3 in the

directions of n; and n; and then normalizing, i.e.

n =u (4.111(a))
n; = (w; — (uz.n)n))/lhay — (uza)nyli 4.111(b))
Nz = (U3 ~ (ua.n)n; — (ua.n)ny)/ug — (Uz.n2)n; — (a.n)nyll “.111(c))

At the conclusion of this process, [m; np m3] is an orthogonal set of unit vectors.
While there is no guarantee that the set will be ‘right-handed’, this is likely since the
physical axes have been arranged in this way and the Gram-Schmidt process simply
removes the components of the vector representations that are non-orthogonal to the
other vectors in the frame. Should it be found that the set is not right-handed, i.e. n; X
n, = -m, then the components of n; can be negated, without affecting the

orthogonality of the set, and the frame will then be right-handed.

The matrix composed of the unit vectors, n;:

N = [ n; ns] _ 4.112)

is the rotation matrix that expresses the orientation of the orthogonalised sensor axes .
in the enclosure frame. The final step in the process is to rotate this orthogonalised
frame so that it coincides with the enclosure frame. This is required for a number of
reasons. Firstly, two triaxial sensors are located within each enclosure, and it is
required that the vector observations are referred to a common frame. It is also
physically useful to have the enclosure frame as a visible reference to the true

orientation of the sensors (or at least the transformed versions of them).

The derived rotation matrix, N, relates the coordinate matrices of vectors measured in .

the arbitrarily oriented orthogonal frame (r,) to the enclosure frame (1) , i.e.

1. = Nr, 4.113)
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Hence, knowing the orientation of the orthogonalised sensor within the enclosure
frame and the output that this sensor would have is equivalent to having an orthogonal

sensor mounted collinear with the enclosure {rame.

‘While the method of determination of N has been described, no mention has been
made of the method of calculation of r,, the output that the arbitrarily oriented
orthogonal sensor. The processing of the outputs of the actual sensor, which is now
described, runs in parallel to that applied to the vector representations of the sensor

axes.

After subtracting the calculated offsets from the axis outputs, each of the corrected

values, denoted m; 1 = 1,2,3, are divided by the calculated gains:

U = I’lli/gi (4 | 14)

where #; is the output associated with the arbitrarily oriented unit vector uw;. This
would give the outputs of all the sensor axes if they had the same gain, but were still
arbitrarily oriented and non-orthogonal. The next step is the processing of u; to
produce the theoretical outputs of the orthogonal, but arbitrarily oriented sensor, the
part of the processing associated with the Gram-Schmidt process and the unit vectors .
n;. Just as with the physical axes, the outputs of the theoretical axes is given by the
scalar product of the vector representation with the field vector, i.e. n; = m.f.

Recalling the definitions of m;, this gives the following relations:

m=mf=uf=1y (4115(3))
1y = Mo f = (o.f — (wp.nny )/l — (ug.npnyll
= (M2 - (llz‘n]v)nl)/”llz - (uz.nl)nlll (41 15(b))

ny= Il3.f = (U3.f — (llg.ng)nz.f — (113.111)111 f)/”ll'; - (113.112)112 — (llg.ﬂ])l]i”

= (43 — (wa.np)nz — (wa.npny)/ ez — (wz.np)n; — (we.n)myll.  (4.115(c))

While these calculations may look a little complex, they can be rewritten in the form

ny=u A (4.116(a))
Ny = (g — ca111)/N; (4.116(b))
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13 = (U3 — Caplp — ¢311 )N (4.116(c))

where ¢;j = u;.nj and N, and N; (the norm terms associated with (4.115)) are constants.
At this stage, the »; are the outputs that would be obtained if an orthogonal sensor
were arbitrarily oriented within the enclosure. The final step is to multiply the
coordinate matrix [n; nz 713]T by the rotation matrix N. This gives the output that
would be obtained if three orthogonal axes of the same gain were oriented so that they

were collinear with the orthogonal enclosure frame.

Use of this method of calibration should improve the results gathered by the sensor
clusters. Once good results have been collected, the issue turns to methods by which
they may be usefully presented (the rowing coach who has discussed Rodrigues’

vectors with his athletes is rare!).
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4.11 Data Presentation

While the actual output of the new orientation estimatién procedure is the least-
squares estimate of the Rodrigues’ vector, the relative rotation matrix can be easily
calculated (as previously shown). Still the rotation matrix 1s not an ideal method of
presenting results to the rowing community, more processing is clearly required.
Recall that the relative rotation matrix has its columns the orientation of the axes of
one basis with respect to the other. In the situation where it is the motion of one
object relative to another that is of interest, this means that by judicious placement of
sensor clusters the presentation of results can be simplified. In the case where one
cluster i1s fixed to the oar so that one axis, say the Y-axis, is collinear with the
longitudinal axis of the oar and the second cluster is oriented so that when the oar is at
a ‘zero position’ all axes of both clusters are parallel, then the second column of the
relative rotation matrix gives the orientation of the axis of the oér-shaft with respect to
the boat. The orientation of the longitudinal axis of the oar gives two of the three
angles required to exactly specify the orientation of the oar. The third angle is the
rotation of the oar about its own longitudinal axis, the feathering of the oar, which

must be determined using cither of the othcer columns of the rotation matrix.

Based on the structure of the calculated relative rotation matrix, the results could .
clearly be presented graphically. In addition to a line representing the Y-axis
(collinear with the shaft of the oar), either the Z or X-axes would have to be added so
that feathering could be observed. While this method of presentation would be
aesthetically pleasing, it is unlikely that sufficient information could be gleaned by
coaches/athletes. It is thought that numerical representation of the oar angles is a
more suitable method of presentation, or at the least that three separate plots of the oar

angles are generated.

There are a number of conventions used to express the orientation of an object using
three angles, including many Euler angle variants, but to be usetul to the rower/coach
the angles must be physically meaningful. Such an angle system, based on that
presented by Zatsiorsky and Yakunin [70], is used in this work. The angles measured
are:

o the swing angle created by projecting the loom of the oar onto the horizontal plane
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v: the angle of the oar with respect to the horizontal

B: the rotation of the oar ahout its axis (feathering)

The situation is shown in Figure 4.18, which is followed by descriptions of methods

by which the three angles may be determined.

r Z
Z’OZII‘ ‘ ‘ boat

S
}&oar Yhum

Figure 4.18 The orientation of the oar-mounted cluster with respect to the boat-mounted cluster,
and the positive definitions of o and v.

o

Since the Y-axis represents the shaft of the oar in the boat coordinate system,
projecting it onto the horizontal plane is simply using the first two components of the .
second column of the relative rotation matrix. The angle between this projection and
Yhoat 18 found using the dot product. Defining the unit vector in the direction of Yoyt
as Ypom and the projection of the unit vector representing the oar onto the Xpoar, Yboat
plane as Yoo’ = [Voul(1) Your(2) 0]T (i.e. the vector created by the X and Y components

of Your and zero for the Z component)

XY _ X,¥
Yooat:Yoar = H.,Vboat” “yoar Il coso

)’Oﬂr(z) = ||yOa1‘x’y” COSOL (4] 17)

80 = Your(2)/ (Yoar(1)* + Your(2)D)" (4.118)
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Since cosine is an even function, the sign of alpha must be determined by another
method. Arbitrarily assigning o positive when Y, is forward of Yy as shown in

Fig. 4.18, o may be fully defined by

lotl = 2c08((Youl(2) Yoarl 1) + Your2)H)') (4.119)

oL = lod if your(1) <0, else o = - lodl

Y
The tilt angle is also calculated using the projection ¥, . This time, however, the

angle 1s found using the dot product of ye,r with Vour

Ry Ry .
YoarYoar Y= Ilyom-ll ||y0m- y“ cosy

Y12
”yo;\rxwyu = “yg-drx’y” COS'Y

cosY = llyoar |l (4.120)

Again, the sign of the angle must be determined through consideration of the elements
of Yoar- In this case, if the Z component of y,,, is positive (Voar(3) > 0), then the tilt is

defined positive, i.e.

W = acosllygy ] ‘ @.121)
Y= if you(3) > 0, else y = - |fy1

It may have been noticed that [ is not included in the previous diagram. This is
because its definition and determination is a little more involved than those for o and
v. Following Zatsiorsky and Yakunin, B is the angle between Zg, and an ‘auxiliary
axis’, Z°, that forms the angle y with Zy,. This clumsy sounding definition is

hopefully clarified in Figure 4.19.
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Xboat
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yYy'd
Xmu Yboat

Figure 4.19 The auxiliary axis, Z°, and the feathering angle, f.

The purpose of the auxiliary axis is to negate the part of the rotation due to pitching of
the oar, which would be included if the scalar product of Zyu, and 7, were simply
used. The auxiliary axis lies in the plane defined by Yo and Zpe and has the same
included angle and sense with Zyea that yo.r has with its projection onto the Xpoar, Yboat
plane, i.e. v. This fact can be used to create z°, by treating Zyon: and the unit vector in
the direction of y.,," as the basis for the plane in-which z° lies. The new unit vector .
in the direction of y., is denoted y° and is found by normalising yo. ', i.e. y° =
Yoar "/ Yoar ¥ Il Reference to Fig, 4.19 shows that z° has the same relationship with
Zhoar that Your has with y°, and that the relationship of you With Zyey is the same as z°

and —y°. Thus, z° can be written as
Zo= ~(Your Zboa)Y” + (Your-¥*)Zbcat (4.122)
Upon the calculation of this unit vector, the feathering angle can be determined by
ZoarZ. = Zop ! 1IZ°icosP = cosP (4.123)

Again due to the even nature of the cosine function, extra information is required to

assign a sensc to (3. This can be achieved by finding the sign of the cosine of the
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angle between z” and the cross product of y” and Znom, i.€. if the cross product of y°
Ell’ld zb()a[ iS dCfiHed as XO, i.e.

X’ = ¥° X Zboat (4.124)

where X" clearly lies in the Xpoa, Yoo Plane, and forms a right handed orthogonal axis
system with y° and Zye, then [ can be said to be positive if Ze.X" is positive (the

included angle is less than 90 degrees) and negative otherwise.
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4.12 Discussion

While it is believed that with the new calibration method in place, the data yielded by
the sensors, in combination with the relative orientation algorithm, should yield sound
results, this will have to be verified by a future reSearcher, as the length and breadth of
the Pacific Ocean now separate the author from the apparatus. It is hoped that
research is continued in this area, as there are many applications for this technology,

in sports and biomedical engineering in particular.
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Chapter 5

The ultimate rowing performance indicator is not the peak force generated during the
stroke, the stroke ‘shape’, or the acceleration profile of the rower within the boat, but
the culmination of all these effects, the actual motion of the boat. From a systems
point of view, up to this point only the inputs have been measured. The boat motion:
displacement, velocity and acceleration are the outputs that the rower is trying to

control through his technique.

Obviously, the time taken to cross a ‘piece’ of race length, say 2km, conveys overall
performance, but there are very many interesting effects within the general motion
that warrant investigation. Such effects include those caused by the motion of the

rower, such as periodic speed variation.

This chapter describes a method of measuring the motion of the system’s centre of
mass. This is achieved through individual measurement of the kinematic parameters

of the two substantial system components: the rower and the boat.

Since the rower’s bulk is centred more or less over thé seat, mea:surement of the
motion of the seat is a good indicator of the motion of the rower’s centre of mass. An
optical rotary encoder was chosen to measure the seat displacement. This
necessitated the design of a mounting bracket to force the encoder wheel to run on the
chosen surface. To determine velocity and acceleration from the displacement signal
requires differentiation. This can be problematic due to the quantisation noise on the
output signal. A simple method of real time differentiation using a Kalman filtering

approach is discussed and results are presented.

Two sensors are used to measure the motion of the boat: an accelerometer, and a
submerged impeller. The outputs of these two sensors are fused using a Kalman filter

of very similar design to that used as a differentiator for the seat motion.
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The first part of this chapter reviews methods that have previously been used to
measure rowing seat displacement, both on and off the water (in boats and on
ergometers). After justifying the selection of the rotary encoder for the task, the
design of the mounting bracket is described. Following this is a section on the design
of Kalman fiiters for use as a differentiator of random ‘periodic’ signals. Numerous
other techniques of numerical differentiation are also explored. After the presentation
of sample results, attention is turned to the problem of measuring the motion of the
boat. While the accelerometer used is exactly the same as that described in Chapter 4,
some details regarding the additional sensor, a commercially available submerged
impeller are required. The simple modifications required to transform the Kalman

‘differentiator’ to a basic sensor fusion technique are then described.



5.1 Seat Motion Measurement

5.1.1 Sensing Requirements

The displacement, velocity and acceleration of the seat are all parameters of interest,
thus all three must be able to be determined from the output of the transducer used to
sense the motion. It was considered, however, that as a base requirement the
displacement should be available in real-time. This is because it is more easily
interpreted than the velocity and acceleration, i.e. a direct correspondence can be
drawn between the motion of the rower and the data on the screen, whereas in the
cases of acceleration, more ‘processing’ has o be performed in the mind of the
observer to negate the effects of boat motion. It was also considered that such a

‘transparent’ signal could act as a check to prove that the system was working.

5.1.2 Previous and Considered Methods

Seat motion does not seem to have been a priority for previous researchers, as until
very recently it has not been measured. This is strange when it is considered that the

motion of the rower(s) within the boat has a large impact on the vessel’s progress.

Three very different methods have been used. Martin et al [50] analysed film of
rowing motion and used the observed beginning and end of seat motion as indicators
in the study of the effect of stroke rate on the velocity of the rowing shell. It is
conceivable that such a system could be used to actually measure the position of the
seat, although this would be problematic since a camera would have to operate at all
times, creating a large computational burden if the camera were computer driven.
Also the film has to be analysed after it is collected to yield any results (unless some
real-time computer vision system is used, which would probably be expensive both

computationally and monetarily.)

More recently, Rosow [58], [59] used a rotary potentiometer to study the motion of
the seat on a rowing ergometer. It is not stated, but it is presumed that a geared wheel

attached to the potentiometer ran on the surface of the ergometer beam. Farquhar [24]
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used a similar approach, with the potentiometer replaced by a rotary encoder. The use

of encoders in the measurement of seat movement is considered below.

Another method of using a potentiometer, implemented by Loschner and Smith [43],
to measure seat displacement is to drive a potentiometer via a cable attached to the
seat. A spring-loaded drum unit that houses the potentiometer prevents slack in the

cable that would cause measurement error. This method is also discussed below.

McBride [40] used a ‘Hall-effect sensor’ and ‘magnetic track’ to measure seat
displacement. It is not stated whether the sensor is incremental, i.e. pulses are
counted, or whether the magnetic track allows for actual position measurement.
Certainly the non-contact approach of the sensor makes it attractive, but the lack of
information meant the approach was not considered further. The methods of

instrumentation that were considered are now described.

At first it was thought that a non-contact sensor would be the ideal solution, since this
would not impede the motion of the seat. To this end an ultrasonic displacement
sensor was considered and a Banner Q45-UL was obtained for trial (Fig. 5.1). This is
an analogue sensor, produced for industrial applications operated on a time of arrival
basis, with stated operating range of 100 to 1400mm, resolution of 0.25mm and
repeatability of 0.1% of the sensing distance. This range is acceptable since the
movement of the seat is limited by the tracks, which are approximately 800mm in
length. The characteristics of the sensor were dependent upon both the material and
physical size of the implemented reflector, with a 30mmx30mm aluminium plate
recommended. The Q45-UL has attractive features, such as a programmable sensing
window and splash proof casing in addition to the non-contact modality. In operation
the sensor would be mounted a distance greater than 100mm behind the extreme rear

seat position and a reflector would be fixed to the rear of the seat.
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Figure 5.1 The Banner Q45-UL Ultrasonic Sensor

Qualitative testing of the Q45-UL was undertaken, with the sensor output level
viewed on an oscilloscope. The amount of fluctuation and noise on the signal when
the sensor and reflector were stationary appearted to be high.  The process ol
differentiation that would be required to estimate velocity and acceleration magnifies
any noise on the displacement signal.  Another potential problem is the sensor
mistakenly identilying another surface as the reflector and returning an erroncous
signal. — All of these problems could probably be overcome through the careful
placement of the reflector and good signal processing, but at a cost ol =S800. it was
decided that the price was too high for the required amount of’ work. Also. in some
hoats. particularly singles, there is very little room behind the extreme travel of the

scal. meaning that mounting the sensor would be diflicult.

An alternative  non-contact method ol measuring  the scat motion 15 0 use
accelerometers. Measuring acceleration rather than position means that rather than
requiring the noisy differentiation process, the signal is integrated to give veloeity and
position.,  Whercas itegration can be said to average the effects of signal noise (over
the short term at least). it certainly does not eliminate 1t. The first and second integral
ol white notse signal are called random walks and ramps respectively. Examples ol

these phenomena are shown in Figure 5.2, A method of reducing the cffect of the

mtegrated signal notse 1s to pertodically reset the integrator at a particular point.  [n
the case of monitoring scat motion this can be achieved through the use of a limit
switch.  In reality this could be a reed switch activated by a magnet on the underside

of the scat, The position would be reset cach time the switeh is activated.
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Figure 5.2 A Gaussian white noise random signal and the first two integrals (cumulative sums), a
random walk and a random ramp. Note the vastly different scales for unit divisions in the plots:
for the original signal, the division is unity, for the random walk, the division is 50 and for the

ramp, it is 1x10°

To trial several methods of measuring seat motion using an accelerometer, a test rig
was set up. An accelerometer and optical encoder were attached to a sliding rowing
seat and sampled during representative motion. The output of the encoder was used

for two purposes, firstly to act as a reference to appraise the integrated signal of the
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accelerometer and secondly to act as a ‘virtual limit switch’. After sampling, the data

was imported into a function written in MATLAB that:

. converted the encoder and accelerometer outputs into compatible units (m and
m/s%)

2. identified the zero crossings* as defined by the encoder and made a vector
with sampling instants corresponding to the locations of the zero crossings

3. doubly integrated the accelerometer signal using the Simpson rule and reset

the displacement at each instant contained in the ‘reset vector’.

*When the instrumentation was started, the value of the encoder was set to zero, thus
zero crossings are associated with instants where the seat is in the same position at the

culmination of sampling.

Trials showed that between resets, the integrated accelerometer output diverged from
the encoder signal considerably. An obvious method of minimising this effect is to
increase the number of limit switches. A set-up that consisted of three magnets on the
seat and five limit switches was conceived, as shown in Figure 5.3. The spacing
between magnets A&C is such that two reed switches may be simultaneously
activated. If only one switch is activated it is known that magnet B must be directly

over that switch (the extreme switches (-2&2) are placed so that it is impossible for
the opposing extreme magnets (C&A) to activate them). Using this method it is

possible to identify the position B as one of nine discrete possibilities.

-2 -1 0 1 2

Figure 5.3 The seat, with three reed switches attached, traverses the track, which has five evenly

spaced magnets on it,
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Results obtained through integration and resets using an obvious extension of the
aforementioned computational method are shown in Figures 5.4 & 5.5. Each time the

integrators are reset, a spike results in the output. Filtering can reduce this effect, but

as shown in Figure 5.6, this introduces a delay to the estimated signal.
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Figure 5.4 Typical results obtained by integrating and resetting accelerometers, using the three

switch, 5 magnet approach, The circles indicate reset points,
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Figure 5.5 Two more examples of the results obtained using the reset accelerometer approach.

The upper plot is the same as Figure 5.4, with the reset indicators removed, while the lower plot

shows a close up of the spikes caused by resetting.

Filtered Reset Integrated Accelerometer Output and Encodsr Signal
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IVignre 5.6 The delay introduced by filtering the integrated and reset output.

While the results of integration, reset and filtering of the accelerometer output were
encouraging there were three problems, the first of which is the lag introduced by the

filtering. Since timing of events was of interest it was desirable that lag be avoided.
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This is actually a small problem when the magnitude of the delay caused by filtering
is considered. The second problem has not yet been mentioned and is concerned with
the motion of the boat. Since the boat is undergoing motion the acceleration measured
by the accelerometer on the seat is a combination of the boat motion, seat motion and
gravity. It was considered that compensating for the motion of the boat would incur
too much computational burden to produce a seat displacement signal in real time.
Lastly, the method of resetting the integrators at known positions does not aid in the
-estimation of velocity. Thus, while position may be found by this method, velocityy
would require another procedure. Such a procedure could be setting the velocity to
zero every time the estimated position experiences a maximum. This would by
necessity be a post-processing measure. While the accelerometer and switch method
was abandoned, it was found, as a matter of interest, that the reed switches by
themselves could emulate the motion of the seat to a high degree of accuracy using

cubic splines. Examples of this are shown in Figures 5.7 & 5.8.

Cubic Spline Interpolation and Encoder Signal
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Figure 5.7 Cubic spline interpolation of the reset points (indicated by circles) and the encoder

output.
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Cubic Spline Interpalation and Encoder Signal
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Figure 5.8 Position estimates achieved by cubic spline interpolation of limit switch data. The

differences between the interpolant and the encoder data are only evident at some of the turning

points.

On the basis of these results, various attempts were made o devise a real time cubic

spline interpolation scheme.

Two algorithms were designed, both of which were

initialised in the same way, by creating an initialising cubic and then enforcing

continuity. This is probably most easily understood by considering Figure 5.9.

Position fixes, corresponding to instants at which reed switches are closed give

temporal-spatial coordinates (f;,d;). At every instant, noisy acceleration measurements

are available. Four conditions are required to specify the initial cubic interpolant,

S(f). At 1, these conditions are available, i.e. the positions and accelerations at t; and

t». Using these conditions is equivalent to giving the endpoints of the curve, as well

as the second derivative of the curve with respect to r.



179

4 $73(1)
T
dy i !
St i !
' |
' i
dy § |
L
| !
d, 5 i
i :
| ]
i ] >
] 1z 3 t

Figure 5.9 An illustration of the implemented cubic spline method. Position fixes d; occur at

times t; and interpolants S; are created between the coordinates (t;,d;) and (t;.;,d;.).

The initial interpolant is of the form:

Si() = Aj + Bi(t — ) + Ci(t — t)* + Di(t — 1)°, H<t<t (5.1)

Consider the seat to be in between position fixes at an arbitrary time ¢ (1< ¢ <1t;). The
only information available at 7 is the acceleration, a(z). It is possible to create a cubic,
S’»(f), to approximate the motion, using this value of acceleration by imposing
continuity of S';(¢) with §,(f,). This continuity involves the actual value of the new .
cubic §'5(7) at t, as well as its slope and ‘curvature’ (velocity and acceleration). At
each consecutive sampling instant only one coefficient of the cubic has to be
recalculated, that corresponding to the (¢ — £,)° term, since all others are fixed by the
continuity requirements. As soon as the seat reaches position ds, the initialising cubic
becomes S3(1), which is calculated in a way entirely analogous to S5,(¢), using (t,d>),
(t3,d3), a(r) and a(t3) (where a(t) is the acceleration at #;). The continuity of S’;(z) at
15 is then used to specify all but one of the coefficients, which is calculated using a(?).
This method suffered from the fact that the value of the interpolant at t depended only
on the value of three values of acceleration, the two that specified the initialising
interpolant, and that at 7. If, in particular, a value of acceleration used to generate the
initialising cubic had a large amount of error, the interpolating cubic was of poor
quality. This is in contrast to numerical integration schemes where the (assumed)
zero mean nature of noise signals is somewhat ‘averaged out’ through summation

over short periods.
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A second algorithm was designed that differed only in the way in which the cubic
term of the function is calculated. The method was to impose a particular slope
(velocity) at the point of interest rather than a ‘curvature’ (acceleration). To
determine the required slope necessitates numerical integration of the acceleration
measurements.  The numerical integration begins at the initial point of the
interpolating cubic (e.g. for S';(t), the integration begins at #;), at which point the
initial value is found by evaluating the differential of the initialising cubic (Sa(%2)).
While this approach did mean that more values of acceleration were taken into
account in the determination of the value of the interpolant between position fixes, it
did not change the fact that only two are used to determine three of the coefficients of
the cubic, thus errors in these two measurements are propagated and magnified into

the estimated position.

The problem with both the above schemes are similar, there are not sufficient
acceleration measurements used in the determination of the initialising cubic to
‘average out’ the effects of signal noise. A method by which this may be overcome is
to specify the initialising cubic using the position fixes and the velocity (obtained by
numerical integration) at the end points. If this approach was combined with the use
of the second of the above-mentioned methods, the estimate may be of much better .
quality. Essentially a position estimate is being obtained through single integration of
noisy acceleration data, thus the error can be expected to behave as a periodically
reset random walk. This is in comparison to regular numerical integration schemes in
which the required double integration results in a random ramp type error. The
downside of the spline approach is a slightly higher computational burden (due to the

calculation of the spline coefficients).

While this approach is appealing, and may warrant further investigation for a simpler
case, it suffers from the same problem as the regular use of accelerometers and limit
switches — the requirement of accounting for the motion of the boat and the possible
influence of gravity. The reason that simple spline interpolation using only the
- position fixes worked so well is the continuity imposed during the calculation, i.e. the
velocity and acceleration are continuous at given data points. The smooth nature of

the seat displacement signal makes it ideal for this type of interpolation, while other
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applications may produce signals where the acceleration is not so ‘well-behaved’.
Stnce it was thought that accelerometers would be too difficult to work with in this

application, transducers that would yield displacement directly were explored.

The use of a cable potentiometer and optical encoder were considered concurrently.
An identified suitable cable-type potentiometer was the LX-PA from Unimeasure, at a
cost of US$160 (see Figure 5.10). The main advantage of the potentiometer over the

encoder is that 1t has a simple analog output as compared to the encoder, which

requires a digital input card with encoder capabilities. The disadvantage of the cable
tvpe sensor is the possibility of slack in the cable during the recovery, 1.e. the seat
moving at a rate higher than the drum can retract. Since there was already an encoder
available for use (that used by Farquhar [24]) the cost of the potentiometer was
compared to that of the necessary digital [/O card. Further, it was found that a card
designed in-house. the Universal Pulse Processor (UPP), had the required capabilitics
and could be used at little cost. It should be noted that a digital VO card was also
necessitated by the use of other sensory devices (impeller speed sensor and heart rate

unit).

Figure 5.10 The LX-PA Cable Displacement Sensor

5.1.3 Chosen Concept

[n the interests of minimising required computer time while maintaining a real time
scat position signal it was considered that a position sensor, e.g. encoder or
potentiometer, that did not significantly alter the characteristics of the motion of the
scat would be the most sensible option. (The magnetic system used by McBride may

¢ optimal 1 at it offers a real time position signal using a non-contact sensor, bu
he optimal 1n that it offers a real time position signal using a non-contact sensor, but
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no precise information was available on this at the time.) Based on the economic

advantages discussed in the previous section, a rotary encoder was chosen.

The main issue with using a rotary encoder to measure position is ensuring that there
is no slip between the wheel of the encoder and the surface on which the wheel is
running. The method by which this is normally ensured, and the method employed
here, is to create a significant force between the wheel and the surface and use a high
grip surface on the wheel. Two potential ranning surfaces for the encoder wheel were
identified, the deck of the boat and a small lip on the seat track, present to prevent the
seat from lifting from the track. The latter site was chosen as it seemed that this was
almost standard from boat to boat, and also, due to the tilt of the track on which the
seat runs, the distance between the seat and deck varies considerably during the
stroke. This difference in distance would have made design of a mounting bracket

difficult.

A bracket was designed to fit under the seat and push the encoder wheel onto the track
(see Figures 5.11 & 5.12). This was an interesting design problem due to the tight
spatial constraints and the requirement that the bracket be adaptive enough to fit a
variety of seats. The main part of the bracket was designed as a single piece to be
manufactured by EDM (Electro Discharge Machining). Each end of this part rests on
the top of the seat axles. Socket head cap screws tightened onto the axles prevent
translation of the bracket with respect to the seat in the direction of motion. The plate
on which the encoder is mounted runs on two brass screws and is pushed downwards
by two compression springs, thus providing the force required to prevent slipping of
the encoder wheel. Blocks can be inserted between the main part of the bracket and
the upper piece to accommodate for larger distances between the top of the axles and

track lip.

While the main problem with using a rotary encoder to measure linear displacement is
ensuring that the encoder wheel does not slip, there is another problem associated
with using the encoder to generate velocity and acceleration estimates. This is due to
the fact that the encoder does not yield a continuous waveform, but a quantized signal,
which can be thought of as a noise contaminated signal, and this ‘noise’ is magnified

by the required differentiation.
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Figure 5.11 Photograph of encoder and bracket in situ.
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IFigure 5.12 SolidWorks® generated views of the encoder mounting bracket.
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5.2 Numerical Differentiation of Encoder Signals

If a rotary encoder could be continuously sampled while the shaft underwent
continuous angular velocity motion, the conditioned signal of the encoder would
appear as a staircase approximation to the true displacement. The depth of the steps is
dependent upon the resolution of the encoder, i.e. the number of pulses per revolution.
In actual application the encoder is attached to a counter card. Simplistically, the card
counts pulses accounting for direction changes and outputs the number representing
the net number of rotations (and parts thereof) to a particular register. The value
contained in the register is then sampled at regular intervals. The quantisation of the
encoder can cause problems at both extremes of speed. When rotation is very slow,
sampling may be such that no pulses are recorded for certain intervals. Conversely

when rotation is occurring at high speed a large step occurs in the output data.

Assuming that no slip is involved, an encoder does provide the exact position at the
instant at which a pulse is emitted. It is rare however that a pulse coincides with a
sampling instant, and thus a position error is introduced, which is dependent on the
average velocity over the period and the time between the pulse and the sampling
instant. Carpenter et al [15] reviewed a number of different algorithms used to
estimate velocity given encoder measurements mainly from a fréquency domain
perspective. Two interesting methods are the ‘least squares filters’ and the ‘trained
least squares filters’. In the former method, a polynomial of order m is passed
through n points using a least squares fit. In possession of the polynomial, the
velocity is simply the derivative of the polynomial at the sampling instant of interest.
In the second method, filter coefficients are generated by running the least squares
filter on representative data. In this way a time-invariant filter is generated.
Independent experimentation showed that if the filter is being used on real-time data
there is a difficult trade-off between filter lag and noise attenuation, i.e. increasing the
order of the filter yields smoother results, but also introduces considerable lag. Post-
processing the data using approximating polynomials centred on the data point of

interest yielded good results.
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Differentiating an encoder signal to get velocity and acceleration estimates is a special
case of numerical differentiation, that of differentiation of noisy signals. The amount
of literature in this field is large, most of it in mathematical numerical method
journals.  The results in these articles are prohibitive in their mathematical

sophistication.

An interesting alternative to normal or modified numerical differentiation is the use of
a ‘Real Time Fourier Series’ as proposed by Tang et al [63]. In this method a finite
length of data terminating at the current sample is represented as a truncated Fourier
series and differentiation is performed analytically on the individual terms. The
effects of high frequency noise are reduced by the truncation of the series, i.e. if n
points are included in the data series, then the first n-1 spectral components are
calculated. A recursive formula for the computation of the Fourier series coefficients
is presented. While this is an attractive idea, the authors state that the calculation of
the Fourier series coefficients is a time consuming task that makes it unsuitable for

real time use on current computers.

The method of numerical differentiation used in this work employs a Kalman filter
(KF). A few previous instances of the use of optimal estimation theory in numerical
differentiation were identified, which 1s not te ‘say that it is not much more .

widespread.

A few brief comments are probably required to indicate the way in which a Kalman
filter aids numerical differentiation. (A probably excessively full derivation and
description of the Kalman filter algorithm is included in Appendix A2). A discrete
time state space model is derived so that the states ‘resemble’ the position, velocity
and acceleration of the seat when the model is driven by white noise. Such a model is
shown in Fig. 5.13, where A represents a unit delay, < is the state transition matrix, "
is the noise coupling matrix, w(k) is the white noise input, and x(k) is the state

(position, velocity and acceleration).

Rather than being able to measure all of the states, there is only a noisy measurement

of the position, z(k), which is modelled as a scaled version of position with additive
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white noise, v(k). The aim of the Kalman filter is to optimally estimate the state of
the system, based on the measurement and the assumed signal model. An alternative
torm of the filter would be to model the dynamics of the rower’s sliding motion and
use the force produced at the feet and that at the oarlock as inputs to the system. Even

in this ‘deterministic’ case a white noise input is still required.

Measurement Mode]l

System/Signal Model i v(k) i

3 x(k+1 x|
w(lo)——p T A H C (k)

! SR PR '

__________________________________________

Figure 5.13 The discrete time state space model used in the Kalman filter

The discrete-time Kalman filter state estimate at the k+1" instant, is given by the
equation:
X (k+1lk+1) = Dx (klk) + K(k+1)[z(k+1) - CD x (klk)] (5.2)

A

where x (klk) denotes the estimate of the state at instant k based on ail measurements
up to and including k and K(k+1) is the recursively calculated Kalman gain matrix at
k+1. The calculation of K(k) involves three equations, that are not shown here (sce
Appendix A2). The estimate equation has exactly the same form as any other
estimator, and is very easily interpreted. Before the measurement at k+1 is made, the
best estimate that can be made is the propagation of the estimate at the k™ instant
using the state transition matrix. Once the measurement becomes available, this a
priori estimate can be corrected using a weighted residual, i.e. the difference between

the measurement and the propagated estimate.

What differentiates the Kalman filter from other estimators is the definition of the KK
matrix. This gain matrix is calculated to minimise the mean square error of the state
estimate. The statistical information that is required to yield this optimal form is

included in the covariance matrices of the system and measurement noise processes,
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Q and R. The noise covariance matrices are usually set roughly using knowledge
about the noise processes, e.g. the variance of noise expected from a certain sensor,
and then tuned to give good performance. Once the model of the system is fixed, i.e.
the state transition and noise coupling matrices have been designed; the Q and R
matrices are the only degrees of freedom available to the designer. Without
complicating matters by introducing the equations by which K is calculated, it can be
stated that when R, the measurement noise covariance matrix, is small compared to
Q, the system noise covariance matrix, this ‘tells’ the filter to ‘believe’ the
measurements more than the propagated estimates, and K is altered accordingly. For
those who are interested in the derivation of the Kalman filter, a full development is

included in the appendix.

Before progressing to discuss previous methods through which Kalman filters have
been applied to the differentiation of signals, and the development of a differentiator
for periodic signals, a couple of notes are required. In the case where Q and R are
constant matrices, it is possible to find K, the static Kalman gain, through solution of
an algebraic Riccati equation, and the filter algorithm is reduced to a single invariant

equation [26].

While the optimality of the Kalman filter algorithm is obviously attractive, the abuse .
of the Q and R matrices as tuning factors and the difference between the ideal and
implemented models means that the optimality is unlikely to be realised in the
application at hand. Even in this disabused state the Kalman filter is of great utility,

as is shown in the following sections.
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5.2.1 Previous Approaches to Numerical Differentiation Using Kalman

Filtering

Three papers concerned with numerical differentiation using Kalman filters were
found. As the Kalman filtering algorithm is fairly standard, the main differences in
the approaches are in the models used in the filter, i.e. the choice of the @ and I’
matrices, or the corresponding continuous time A and G matrices. Two of the papers
[12], [25] used very similar models even though one was designed for general use and
the other was created specifically for the differentiation of data obtained in tracking
points of the human body as recorded by video cameras. The third paper [8], by
Belanger, is concerned specifically with the estimation of angular velocity and
acceleration given shaft encoder measurements. Surprisingly the approach of this
paper is not relevant to the problem at hand and hence is not reviewed in detail here.
The approach taken by Belanger to justify his choice of model is asymptotic analysis
of a general state space model in companion form as the sampling period tends to
zero.  Through this he arrives at a model that is similar, although a little more

simplistic, to those described below.

The first step in the application of the Kalman filter to numerical differentiation is to -
design a random sequence that models the signal or one of its derivatives. This is
where Bortolami [[2] and Fioretti [25] have slightly different approaches. Bortolami
suggests that a discrete time model of the derivative of acceleration can be adequately

described by the first order Gauss-Markov mode]
Ekrl = QB + Wi (5.3)

Fioretti is perhaps a little more conservative in suggesting that the N+1" derivative of
the signal of interest has this model, and that if poor performance is experienced with
the original design, the order of the filter should be increased. In continuous time

lth

formulation, Fioretti’s approach basically means that the N+17 derivative of the

signal is a white noise process.
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Both approaches use a single noisy position measurement

7k = Cxy + vy (5.4)

where CB(;rmlmni = [1 0 0] and CFf(;rﬂfri = [1 00.. ]

Bortolami used his model in a Kalman filter, while Fioretti used a Kalman smoother.
Using a smoother rather than a filter, i.e. using past, present and future values of
output, rather than just past and present to approximate Xy can reduce the error
variance of the estimate. (Incidentally, it seems that Bortolami made an error in the

discretisation of his model in that he did not modify his ‘noise input” matrix.)
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5.2.2 A Kalman Filter Differentiator for Smooth Oscillatory Signals

Measured in Additive Noise

There were two proposed modifications to the previously reviewed methods, although

only one was ultimately adopted.

The major difference in the filter is due to the fact that quite a lot of information is
known about the seat displacement. Later it will become clear that it is local
knowledge of the waveforms, e.g. maximum frequenci‘es of oscillation, rather than
global characteristics such as the gross frequency of the seat motion that aid in the
design of the filter. More comments will be made on this below, but for now it
suffices to state that a ‘periodic random variable’ model is more suitable than the

Gauss-Markov variants implemented by previous researches, as described above.

Apart from the model ‘within the filter’, a second proposed modification was a
method by which measurements ‘enter’ the filter. It was found however that this
method yielded little performance benefit for the increased model size. This proposed

modification is fully described below.

The continuous time kinematic equations relating distance, d, velocity, v, and

acceleration, g, can be written in state space form as:

dl To 1 oTd] [o
vi=(0 0 1|v|+]0]|a (5.5)
al |00 0)al |!

For use in a Kalman filter (before discretisation), the model should be of the form

X = AX+Gw (5.6)
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where w is a white noise process. Since the motion is known to be low frequency, it
is unlikely that modelling the derivative of acceleration as a white noise process will
give good results. To yield a model in the required form, the state of (5.5) is

augmented, e.g.

d 01 0 d 0
¥ 0 0 1 v 0
= + w (5.7)
a 0 0 a, a,|a g
d 0 0 a,, a, | £,

where one state, o, has been added. The new state does not have any physical
meaning, but has been added simply so that the model has a white noise input while
allowing a better model of the derivative of acceleration. This method of
augmentation is sometimes known as a shaping filter, where the input noise, w, is
shaped to statistically resemble a known process. The main part of the design of the
Kalman filter was in this case the design of this shaping filter, the a’s and g’s of the
above state space equation. This is now described for the particular case in which the
output of the shaping filter is to be a random oscillatory waveform. Upon the
completion of the design of the shaping filter, a discretised form of the continuous
state space model is applied in a discrete time Kalman filter. |

Stochastic modelling, which consists of designing a system that gives a desired
response to a randém process input, can be considered in either the time or frequency
domain. These closely related approaches are briefly explained for the special case in
which the input to the system is a white noise process. Additionally, what appears to
be a new method of checking the nature of a signal generated using a discrete time

state-space model in response to a white noise input is presented.
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5.2.2.1 Modelling a Periodic Random Variable

The aim of this section is to design a linear time invariant (LTI) system that will
generate a signal with periodic ‘tendencies’ in response to a stationary white noise
mput. This signal will be known as a periodic random variable, although the output is
not strictly periodic, but oscillatory with a prescribed base frequency. The designed
model is to be incorporated into the state matrix of a discrete Kalman filter. Since the
signal is random, it 1s impossible to actually specify the output of the system; the best
that can be done is to indicate the output’s statistics. - In particular, specifying the
mean and autocorrelation of the output gives a large amount of information about the
expected signal. Both discrete and continuous time concepts are used at different
tites to make the mathematical relationships simpler and to appeal to the mechanical

engineer’s intuition respectively.

When the input to a discrete LTI system is the stationary white noise random
sequence {w(n)}, the output sequence is a wide sense stationary sequence (the mean
is constant and the autocorrelation sequence is a function of a single variable
Ryy(n,mtm) = E[y(n)y(n+m)] = Ry,(m)). Further, the autocorrelation of the system
output is given by a scaled version of the autocorrelation of the impulse response of
the system. The developments of these facts are-in standard signal processing texts
(71, [54]. Mathematically stated, the output autocorrelation in response to a general

stationary random input sequence {w(n)} is given by the convolution sum:

Ry_v (’7l)= Zwa (711 - {)’(’1)

[Z=eo (5.8)

where c¢(/) is the autocorrelation of the system impulse response sequence

()= D nlep(+k) ~ (5.9)

k:—co

and R,.(m-1) = Elw(k)w(k+m-I)]. In the case where {w(n)} is zero mean stationary
white noise sequence, the autocorrelation function Ryyw(m-I) = ¢0(m-[), i.c. a unit
impulse at m = [. This simplifies the above convolution sum to give

Ry, (m)= i Sm—e)=cno. (5.10)

l:—oc
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This result enables time domain design of systems to give outputs of desired
autocorrelation in response to white noise excitation. In the case at hand, an output
signal with periodic tendencies is desired. Using the fact that the autocorrelation of a
periodic sequence has the same period as the original signal [51], it is seen that the
impulse response of the designed system should be oscillatory with a base frequency
similar to that of the desired stochastic signal. The simplest system with an
oscillatory impulse response is of second order. The design of an oscillatory second
order system is obviously possible in discrete time, using the Z-transform, but it is
believed that most readers will be more familiar with continuous time and the
associated Laplace transform.  While the above relations for the output
autocorrelation are for the discrete time case, there are entirely analogous results that
relate the autocorrelation of the input and output sequence in continuous time.
Alternatively, since the model is going to be implemented on a digital computer, the
continuous time model can be discretised and then the aforementioned autocorrelation
relationships can be used. Regardless, the impulse response of a general second order
system is given by an exponentially decaying sinusoid of frequency @,(1-¢ ?y and
decay of ®,{, where @, and ¢ are the natural frequency and damping ratio
respectively. Examples of this response for @ =1 rad/s and varying { are shown in
Figure 5.14. The autocorrelation functions of the impulse responses are shown in
Figure 5.15. The autocorrelation sequences are only sden for positive shift values -
(since they are symmetric about zero) and have been normalised to have unit mean

squared value (value of autocorrelation at zero shift).
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Impulse Response w=1zeta=0.010
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Figure 5.14 Impulse responses of second order systems with ©=1 and £=0.001, 0.01, 0.1, 0.2 0.5

and 0.7 (from top left to bottom right)
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Figure 5,15 Autocorrelation of impulse responses of second order systems with w=1 and £=0.001,
0.01, 0.1, 0.2 0.5 and 0.7 (from top left to bottom right). These represent the theoretical

autocorrelations of the output of the second order systems when the input is white noise,

Because the decay of the autocorrelation shows how dissimilar the signal is to itself as
shift increases, the decay of the impulse response, which is controlled by choice of {,
impacts on the variability of the generated signal. The faster the decay, the less
similar shifted versions of the output signal are to each other. In the case of zero
damping, i.e. a pure oscillator, the autocorrelation function indicates that the random
signal should be entirely periodic. This is of course impossible, but it is true that the

larger the value of { chosen, the higher degree of variability the random signal will
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show ‘period’ to ‘period’. Designing a model in the time domain therefore consists of
choosing the approximate desired frequency of the generated signal, @, and then
choosing a value for { that reflects the desired randomness of the signal. (Note that
the choice of { does have an effect on the frequency of the impulse response
oscillation and also therefore on the output random signal.) There are many ways in
which the designed system may be represented, but since it is desired that the model
be implemented as part of a discrete time Kalman filter it should eventually be
transformed to discrete time state space model. Knowledge of @ and { allows the’

construction of a transfer function

~ 2
Y(S): ot (5.11)
Uls) s2+2lm, +0? |

This transfer function is then simply converted to continuous time state space, with x)

as ‘position’, and x; as ‘velocity’:

0 1] 0
o -0 -2w, | x2| |w;

y=|1 o{xl} (5.13)
X2

This model is finally converted to discrete time state space using a zero-order hold
transformation. The discrete formulation does not have a convenient closed form. A
range of generated outputs for the values of ® and { previously considered are shown
below in Figure 5.16. Note that since these plots are generated by the discrete state
space formulation, the outputs are sequences and should therefore not be plotted as
being continuous. They have been plotted as such for clarity. Note that the deviation

of the signal from pure oscillation increases with C.
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Figure 5.16 Signals generated by second order systems with o=1 and £=0.001, 0.01, 0.1, 0.2 0.5

and 0.7 (from top left to bottom right) when input is unity variance white noise.

In the frequency domain, the development of the equations is entirely equivalent to

those in the time domain to the point where the autocorrelation sequence of the

system output is shown to be equal to the autocorrelation of the system’s impulse

response (5.10):

Ry, (m) = oc(m)

Taking the Fourier transforms of both sides leads to [54]

P () = clH ()"

(5.14)

(5.15)

where Pw(e"“’) is the power spectral density of the output sequence and H @) is the

system’s frequency response function. This result shows that the spectral distribution
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of power in the output sequence is exactly the same as that of the square of the
system’s amplitude frequency response function (excluding the multiplicative
constant of the noise power). Since it is desired that the output signal be periodic, the
bulk of the power of the output signal should be centred at the desired frequency.
This indicates that there should be a peaking behaviour in the system’s frequency
response. Again this leads to the choice of a second order function, since it is a low

order system that exhibits a peak in the frequency domain.

In the time domain { was seen to have the role of roughly indicating the randomness
of the signal. In the frequency domain the parallel is that € controls the peak of the
frequency response function. The smaller the value of £, the higher and narrower the
peak is, and thus the smaller the range of the ‘pass band’. Note also that the choice of
{ impacts upon the power of the generated signal since it controls the height of the
peak at @. The basic trend is that the lower the value of , the higher the power of the
generated signal. This is evident in Figure 5.16, where the signals with low  are seen
to have amplitude higher than that of those with high {. In the time domain, the
impulse response of a system with low £ lasts a lot longer than a system with high &.
This means that the mean-squared value of the impulse response is higher for a
system with low {. This effect was masked in the plots of the impulse response
autocorrelation functions because all the mean-squared values weré normalised to»
more clearly show the effects of { on the decay of the autocorrelation. The
amplifying role of { is secondary to that controlling the randomness (or equivalently
the spectral composition) of the generated signal, and can easily be cancelled out by

altering the power of the input sequence.

It should be noted that below the natural frequency of the system, the spectrum, while
not amplified to the same extent as the ‘pass-band’, is not attenuated and thus these
low frequency components will always be present in the output. Plots of |H(e/)I* for

the previously considered values of @and § are shown in Figure 5.17.
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Figure 5.17 Second order system pewer spectrums for o=1 and =0.001, 0.01, 0.1, 0.2 0.5 and 0.7
(from top left to bottom right).

Since the model is to eventually be transformed into a discrete time representation, it -
seems sensible that the full design procedure take place in this format. Toward this
aim, the following result was attained. (The methods described above, i.e. the
autocorrelation and frequency domain methods, are well known in the literature,
whereas the author derived the following method.) This method is not completely
useful as a design tool since it involves the solution of a discrete Lyapunov equation.
While this makes the technique less useful for design, it can be used as a simulation
tool, as it does show the evolution of the state autocorrelation matrix. This is
advantageous since the cross-correlation between the states of the system is shown.
Also, the possibility of multiple inputs is covered easily. This is the situation

considered in the development below. Consider the discrete time state space model

X = AXp1 + Bwy, (5.16)
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where {w,) is a zero mean stationary white noise vector sequence with covariance
matrix Q. (The time index is indicated by the subscript , to make the presentation
more clear.) Since the slationary sequence is being processed by a lincar time
invariant system, X, is also a stationary process. By finding the expression for the

state at m>k-1 in terms of the state at k-1, e.g.

Xy = AXk_1 + BWk_l
X1 = Axy + Bw, = AZX;{_I + ABWk_1 + Bw,

Xiiz2 = AXpat + Bwiyy = A'x + A’Bwi + ABwy + Bwy,, (5.17)
The following general expression is found:

Xeam = A" + A"Bwiy + A" Bwi+ ... + ABWin2 + Bwiama (5.18)
The correlation between the state at k and the state at k+m is given by

E[xkxk+rllTJ = E[(Axk~l + Bwk-l)(A"Hlx}c—l + Ambk-l +...+ ABWk+m,-2 + BWk+,”_1)TJ
(5.19)
This can be simplified using the fact that x;.; is uncorrelated with w; j = k-1, and smce

{w;} is a zero mean sequence, i.e. E[xk_Jw_{TBT] =K [X;H]E[WJ;T]BT =0j=k-1. Thus

ElXXpam' ] = E[(Axey + Bwe )A™ x50 + A"Bw, )]
= E[AX X T(A™T + Bwigwe "BTA™T] (5.20)

Denoting the correlation matrix of the state vector, x, by R, e.g. R{kk+m) =
E [xkxk+mT], and the correlation matrix of the noise process by Q (which is equivalent

to the covariance matrix since the noise sequence is zero mean):
R(k k+m) = ARk-1.k-D(A"T + BQB"(A™)T (5.21)
Since the state vector sequence is wide sense stationary, the autocorrelation function

should be a function only of the difference between the two arguments leading to the

following statement
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R(m) = AR(OYA™HT + BQBT(A™T , (5.22)
In particular, for m=0,
R(©O) = AROAT + BQB', (5.23)

which is a Lyapunov equation, the solution of which is the ‘mean squared matrix’

R(0). The solution R() can be expanded into the form

R(m) = [AR(O)A” + BQB"|(A™", (5.24)
which is seen to be equivalent to

R(n) = R(O)(A™". (5.25)

The matrix R(m) has the following structure for a two state system: |

Ryj(m) Riy(m) |
R(n)= , (5.26)
Ry (m) R, (m) - ' :
where Rj3(m) is the cross-correlation of the states at a difference of m. There are
situations in which it may be of benefit to design states that are uncorrelated, and
using this method, this may be possible, although knowledge of the behaviour of the
Lyapunov equation would be required. The evolution of the autocorrelation matrix of
the second order system for the previously covered values of @ and ¢ are shown in

Figure 5.18.
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Figure 5.18 The evolution of the elements of the state autocorrelation matrices of second order .

systems in response to white noise excitation.

In Fig 5.18, the autocorrelations have not been normalised, and thus it is possible to
see the effect of £ on the power of the output sequence. Note the periodic nature of
the cross correlations in the highly oscillatory cases. The low value of cross
correlation at zero shift, combined with the similar autocorrelation functions show

that the two states are close to being shifted versions of one another.

Having considered the task of designing a shaping filter using both time and
frequency domain concepts, and identifying a likely model, the generic second order
system, this shaping filter is now added into the continuous time system equation, i.e.
the a’s and g’s of the augmented state space model are determined, at least

parametrically:
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g o1 o o Tdl To
Sjoo 0 |v| O
. + o lw (5.27)
oo o 1 |al o
| 00 -~w -2, | a] |1

As previously mentioned, the value of { is chosen to represent the degree of

variability in the signal, whereas @, is the base frequency of oscillation, in rad/s.

The continuous time model is discretised to give
Xirl = Oxp + Dy (5.28)

where @ and I" do not have elements with closed form. The only measurement actually

yielded by the encoder is the displacement, i.e.
C=[1 0o 0 0] (5.29)

and this measurement is contaminated by the effects of quantisation noise. This is
represented by the white sequence {vi}. Two alternative filter structures were tested.
The first artificially generated velocity and ac’celeratibn signals by the method
described below. The second used only the position measurement. This artificial

generation of measurements is the second departure from previous works.

At each instant the filter generates an estimate of the state vector that includes as its
elements position, velocity and acceleration. It was thought that these estimates could
be used in conjunction with the measured data to create reasonable estimates of
velocity and acceleration that could then be treated as measurements. After collecting

each position measurement, therefore, the following calculations were made

” (z):;[zk(l)— - (1)}
zk(3):;{zk(2)~;k.,l (2)}

(5.30)
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where: xx-1(1) is the first element of the estimated state vector from the (k-1)™ instant
7x(1) i1s the measurement of position at the K® instant, 7x(2) and z(3) are the
‘measurements’ of velocity and acceleration at the k™ instant and T is the sampling

period. Using three measurements, of course, necessitated a new C matrix
Crew = (15 03}(1] (5.3 ])

as well as a 3x3 sensor noise error covariance matrix R, where in the single
measurement case, a scalar, R, was used. In assigning values to the matrix, R, it was
assumed that the ‘noises’ on the true and synthesised measurements were uncorrelated,
resulting in a diagonal matrix. In reality the noises are related due to the way in which
the synthesised measurements are calculated, but the aforementioned assumption
means that R is always non-singular, and hence no problems are encountered during
matrix inversion. A diagonal form also obviously makes the specification of R much

easier.

To compare the two filter designs, they were run concurrently, i.e. on the same noisy
simulated position measurements, for a range of different data sets. In all cases the
‘true’ position was a sum of trigonometric functions so that the derivatives could be
known exactly. Estimation errors for the ‘positiAon, velocity and a"cceleration were
collected in vectors during the operation of the filters. At the conclusion of the filter
operation, the sum of the norms of the three estimation-error vectors for both of the
filter designs were calculated. These values were used to tune the filter, i.e. pick
values for R (or R) and @ to minimise the norms, and also to compare the relative
efficacy of the two designs. It was found that while the synthesised data KF could
perform better than the single measurement KF, the difference in performance was
made small when the assumed covariance of the position measurement noise was
small. It was also found that the filters both exhibited good characteristics with this

value chosen to be very small (R~0.0001).
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5.2.3 Results from Simulated and Experimental Data

This section first presents results showing the effectiveness of the designed Kalman
filter on discretised versions of signals that have analytic derivatives in additive noise.
This was done so that the approximated derivatives could be compared with the ideal.
These results are followed by a representative sample of the collected encoder signal

and the estimated derivatives.

The first simulated position signal is d(f) = 10sin(f) + sin((1.5)7). Added to the
position signal is a Gaussian white noise sequence with variance 0.01. The results
below used a Kalman filter with @=1,{ = .01, R = le-5 and Q = 0.05. The value of @
was chosen since the main part of the signal is “unit’ frequency, while { was chosen to
be small since the variation in the signal was expected to be small (actually zero in this
case). The numerical values of R and ¢ were found by trial and error. The ‘correct
value’ for R, based on the variance of the measurement noise is 0.01, but in actual
operation R, like ) becomes a tuning factor. When ‘tuning the filter’ heuristically,
increasing Q relative to R instructs the filter to weight the measurements more heavily
than the propagated estimate and vice versa. Placing too small a weighting on @ (i.e. a
relatively large number for R since R represents the strength of the noise on the
measurcment) makes the filter ‘lose track’ and a large lag is introduced. Conversely if’
too small a value is used for R, the measurements are ‘trusted’ almost entirely and the
resulting estimates are not much better than those obtained by using finite-differencing

on the noisy measurement.

Figure 5.19 shows the position measurement used in the first trial along with the
results of finite-differencing. Note that the positions measurement signal appears to be

‘clean’ but the noise is significantly magnified when numerical differentiation is used.
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Figure 5.19 The position ‘measurement’ d(t) = 10sin(f) + sin((1.5)f) in additive white noise of

variance = (.01, and the results of the finite-differencing procedure.

The results corresponding to those of Figure 5.19, for the Kalman filter are shown in
Fig. 5.20. The derivatives are clearly of much higher accuracy than those obtained by
finite-differencing. A point of interest is the initial fluctuation in the filter outputs
observable in the velocity and acceleration plots. This behaviour is due to erroneous
initial estimates (position, velocity and acceleration were assumed to initially be

zero), and a high value chosen for the state error covariance matrix.
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Figure 5.20 The position, velocity and acceleration estimates from the Kalman filter for the
measurement d(1) = 10sin(?) + sin((1.5)f) in additive white noise of variance = 0.01. The true

valunes are shown on the same plots.

These results show that the filter works for simulated signals. The design method is
slightly different when the filter is used on real displacement data. While the seat
displacement appears to be almost sinusoidal with a base frequency of the stroke
rating, it is the acceleration that is to be modelled by the output of the shaping filter,
and since the displacement actually consists of a wide range of frequencies (consider
a Fourier series of the seat displacement), the higher components of which are
magnified by the process of differentiation, the shaping filter must be designed so that
these high frequency components are not lost. This magnification of higher frequency
components by differentiation can be mathematically displayed very simply. If a

Fourier series expansion of the seat displacement is considered, there will be an
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infinite sum of terms of the form A;cos(@t +¢;), the derivative of which is mA;sin{wit
+ ¢), and for @ > 1 this leads to a frequency component of greater magnitude than
that in the original signal. The parameter that sets the frequency band of the filter, @,
must be chosen so that it includes all the ‘frequency information’ of the seat
acceleration, without allowing undue measurement noise through. As an aside, it is
because white noise theoretically has a flat spectrum, i.e. it contains all frequencies in
equal quantities, and therefore includes very high frequencies, that signals
contaminated with white noise have such poor signal to noise ratios when they are

differentiated.

A method of designing the filter taking into account the above comments would be to
find, via an FFT, the frequency spectrum of a representative seat displacement, paying
particular attention to the highest frequency component of any great magnitude, and
then setting @ to be this value. The method employed here, however, is much more
qualitative; the derivatives obtained using the filter are compared to those using finite
differencing, and @ is varied so that the filter output matches the gross variations in
the finite difference data, while rejecting the visible noise. The value chosen for @, is
better to be chosen slightly too high rather than too low, since if @ is set too low, valid
oscillations within the derivatives are smoothed out, low frequency oscillations are
introduced where there should be none, and significant delay is introduced. As long |
as @ is not set at an unrealistically high level, the filter yields a frequency-limited
.output that has very little delay. Obviously setting @ far too high allows a large
amount noise through the filter, and the results are degraded. The output of the filter

is shown in Figures 5.21 & 5.22 for one rower, with @= | and 4 ({'=.0001)
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Figure 5.21(¢) Acceleration estimates by finite differencing and Kalman filtering with ® =1. The
finite differencing estimate is very noisy, and the Kalman filtering estimate has a large delay and

is overly smoothed.
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Figure 5.22(a) The Kalman filter displacement estimate is almost indiscernible from the

measurement for o =4.



211

Valaeity ram Finite Differancing and Kalman Fillering w= 4, zela = 0,010
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Figure 5.22(b)&(c) The velocity (b) and acceleration (c) estimates generated by finite differencing

and Kalman filtering for o = 4.
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Figures 5.22(b)&(c) show pleasing results. There is very little delay between the
finite difference and Kalman filter generated estimates while the Kalman filter
estimates clearly have a higher signal to noise ratio. It should be noted that the only
reason that this method of filter tuning was possible is that the noise level in the
displacement measurement was very low. As previously mentioned, the noise level is
a function of the displacement, the number of pulses per revolution of the encoder,
and the sampling rate that is used. The acceleration estimate generated by finite
differencing shows the high frequency magnification characteristic of the process of
differentiation, but gross shapes within the signal are still easily discernable, meaning
that it is possible to qualitatively tune the Kalman filter to mimic the true acceleration.
If this were not the case, i.e. the noise level on the displacement measurement was
higher, then it would be necessary to resort to finding the frequency spectrum of a

typical seat displacement signal, and tuning the filter based on these results.

As discussed at the very beginning of this seclion, it is not believed that the Kalman
filter is generating an optimal estimate of the kinematical variables of the seat
displacement for a number of reasons. Firstly, the simple model used within the
shaping filter to generate a signal ‘somewhat like’ acceleration and its derivative,
while certainly a better fit than the reviewed Gauss-Markov variants, will not be
exact; it was chosen as a trade-off between simp’licify and goodness of fit. Secondly, -
the fact that thé quantisation noise of the encoder is not Gaussian white noise will
cause it to function in a sub-optimal manner. The Kalman filter can be derived under
the assumption of Gaussian white noise processes, in which case the filter is optimal
with respect to a large range of cost functions, or a general white noise, in which case
it is optimal with respect to a quadratic cost function. The smaller the quantisation
Jevel of the encoder the less effect the non-white noise is likely to have. Even with
these two caveats, the above results show that the Kalman filter performed well. An

insight into a method by which the Kalman filter can be used as a frequency limited

differentiator was also gained.

Up to this point, while this section is concerned with the measurement of the motion
of the system centre of mass, only the movement of the seat, which approximates that
of the rower’s centre of mass has been measured. The other significant component of

the system is the boat, the motion of which is now considered.
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5.3 Measurement of Boat Motion

Before rowing data was captured it was believed that the motion of the boat would
have to be considered as two dimensional, with considerable pitching and dipping
components. This made the analysis more challenging, and if it were the case, the

measurement of boat motion would surely have received a chapter all of its own!

However, collected data showed that tilt was only on the order of a few degrees,
meaning that to estimate the boat motion as being one-dimensional was acceptable,

and hence the analysis was considerably simplified.

This section reviews the few methods that have previously been applied to measure
the motion of a rowing shell before explaining the choice of sensors that were used in
this work. A pair of sensors was used to estimate instantanecous boat displacement,
velocity and acceleration. A Kalman filter sensor fusion technique, which is a very
basic extension of the differentiator developed in 5.2.2 is used to combine the outputs

of the two sensors.

5.3.1 Previous Methods

Aside from Martin, who considered the effect of stroke rate on boat velocity through
film analysis [50], two sensors have dominated the area of boat motion measurement.
These sensors are the accelerometer and the submerged magnetic impeller. These two
sensors have very different characteristics and measure the boats motion relative to

two different frames, one moving with the water, and the other fixed on the land.

Young and Muirhead [69] used a 1g single axis accelerometer to measure longitudinal
acceleration during rowing. Velocity was obtained through integration, but no details
are given as to special signal processing measures employed to eliminate drift. In a
somewhat more bizarre application of accelerometry, Lin et al [41] fixed
accelerometers to various parts of the rowing system, including the seat, oars and the

rower’s shoulders during ergometer and on-the-water rowing. The intention of Lin’s
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work was to find characteristics of good rowing, i.e. accelerometer outputs yielded by
expert rowers, and then compare these results with novices. There is no discussion of

any transformation from accelerometer output to physical motion.

The other sensor commonly applied in the measurement of boat motion is a
submerged impeller [39], [43], [46], [64]. Each of the references citing the use of
these impeller, simply state that they were used, without discussing signal processing
or sensor characteristics, thus little was known about their performance. The
SpeedCoach is a small commercially available magnetic impeller system that is
commonly used in rowing training. A magnet is mounted in the impeller, and there is
a coil pickup mounted inside the boat directly above the impeller. The rotation of the
magnet creates a current in the coil that is then converted to pulse waveform by a
high-gain amplifier acting as a comparator. The faster the magnet spins, the greater
the changing flux and the higher the frequency of the output pulse waveform. The
overall system has a small signal-processing/display unit that displays information in
a variety of forms, including current speed, distance travelled and projected 500m
times. The distance is presumably calculated by multiplying the number of pulses
counted by a factor, and velocity is estimated by multiplying the number of pulses in a

certain period by another constant.

The company who manufacture the SpeedCoach system, Nielsen-Kellerman, insist
that the current of the water in which the boat is moving does not affect the distance
or speed indicated by the sensor. This strangf; claim is justified by the statement that
it 18 the motion through the water that is measured, i.e. if a boat is allowed to drift
with the current, the sensor will indicate a speed of Om/s and a distance of Om.
Rowing a distance measured on the land upstream therefore gives a different result

from rowing the same distance downstream.

Almost all the previous researches who have used impeller sensors such as the
SpeedCoach have also used accelerometers although none state how, or indeed if, the
outputs of the two sensors are combined to yield estimates of the boat kinematics.
Before the method by which the data is combined in this work is described, the

sensors used are briefly described.
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5.3.2 Sensors and Sensor Calibration

The two sensors that are used o measure boal motion are the ADXL210
accelerometer (Analog Devices) and the SpeedCoach impeller (Nielsen-Kellerman).
The accelerometer, which was used for orientation estimation in Chapter 4., is triaxial,
but due to the assumed one-dimensional motion of the boat, only the axis in the

longitudinal direction of the boat i1s used for the measurement of boat motion.

(Obviously it is one ol the axes of the fixed accelerometer that is used for this
purposc.)  The method of accelerometer calibration is exactly that deseribed in
Chapter 4 (the first method). Now, however, the accelerometer output has a physical
meaning, and hence must be assoctated with units. Therefore. during calibration the

3 P
cain musl be calculated as Volts/[m/s7].

50 mm

Figure 5.23 The SpeedCoach impeller unit.

A description ol the operating principle of the SpeedCoach has alrecady been given.
The system as a whole comes with built in calibration factors to convert the incoming
pulses to measures of distance travelled and speed. These parameters are assumedly
calculated by experimental means and set to whole batches of the sensors as a
preshipping operation. It is possible to update the values by rowing with the impeller
over a known distance and, at the conclusion of the picee, ‘telling” the
display/processing unit. via button presses, what the true distance was. The values ol

the constants are not given with the sensor. Since the impeller was to be used without
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the display unit, it was required that the values of these constants, or some more
accurate set, be determined. This is the process of calibration. The location of the
impeller within the boundary layer makes it very difficult to calibrate without actually
mounting on a shell. This difficulty is compounded by the fact that the ‘true’
constants depend to some extent on the location of the impeller on the hull of the boat,
i.e. placing the same sensor at different locations on the hull will yield different
results. Ideally, the sensor should be calibrated using a reliable external source, such
as a radar speed gun. It was intended that such a calibration take place, using the
Department’s Stalker Radar Gun, but questions to the manufacturers of the device
regarding the interface of their product with a general data acquisition system were
unanswered. Calibration, therefore was a crude affair, consisting of connecting the
SpeedCoach display unit to a signal generator producing a square wave and recording
the input frequency and speed indicated on the display. This approach gave a good
linear fit (see Fig 5.24) and exposed the factory calibration, but revealed nothing of
the accuracy of this calibration. Rowing a known distance in still water and
comparing the indicated and true distances could approximately appraise the

accuracy.

In operation the SpeedCoach is used as a distance rather than a speed sensor. Since

the calculated constant, ¢, that relates pulse frequency to speed

Speed = c(Pulse Frequency) (5.32)

Is relating the distance travelled per unit time to the number of pulses counted per unit

time, the corresponding relationship for distance is
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Figure 5.24 The data used to determine the constant relating speed to pulse frequency for the

SpeedCoach.

Distance = ¢(Number of Pulses Counted) - (5.33)

In the following section the means by which the outputs of an accelerometer and a
SpeedCoach sensor are combined using a very simple extension of the IKKalman filter
developed in the previous section is described. This basic method yields apparently
sound results. (Apparently, because there is nothing to check the results against, but

the waveforms are consistent with those of previous researches.)

5.3.3 Sensor Fusion via Kalman Filtering

The traditional approach to sensor fusion using Kalman filtering techniques has the
sensors’ error characteristics included within the state as parameters to estimate. One
particular technique is to take the difference of two measurements of the same
parameter from two sources, say a velocity readings obtained through: integration of
an acceleration measurement, and a speed reading from a Doppler radar. The
difference between the two measurements will be due to the errors of the Doppler
reading, and the integral of the error characteristics of the accelerometer. Thus, the
state of the Kalman filter includes the error characteristics of the two measurement
sources and is ‘fed’ by the difference of the two sources. At each instant the estimates
of the measurement errors are subtracted from the sensor data to yield better estimates

of the body’s velocity and acceleration.



This is not the approach taken here, for a number of reasons. Firstly, as in the case of
seat motion, the general nature of the boal motion is reasonably well known, The
displacement will be a non-decreasing function, the velocity will fluctuate about a
positive mean, and for most of the time (once a ‘steady-state’ has been achieved) the
acceleration of the boat will be oscillatory with zero mean. Again, it is not the gross
variations that are modelled, but the local oscillations of the waveform. This
oscillation lends itself to the same model as was used in the previous section, i.e. the
motion of the boat can be modelled along with the characteristics of the sensors. This
is not the case in applications such as inertial navigation systems for aircraft where
during straight flight there may be no predictable ‘dynamics’ in the kinematical
parameters, i.e. all motion may be due to random factors such as turbulence. For
short periods of time, the output of the accelerometer can be modelled to a reasonable
degree of accuracy as a quantity directly proportional to acceleration in additive noise,
thus if the accelerometer output ‘enters’ the filter as an acceleration measurement,
rather than as integrated velocity or position, there are no error dynamics to model.
The goodness of this hypothesis can be tested by observing the output of the
accelerometer in response to a known acceleration. The simplest possible case is
constant acceleration, i.e. subjecting the stationary accelerometer to some component
of gravity. If the error on the signal is indeed -‘white’, the autocorrelation of the -
deviation of the signal from the mean will be a “spike at zero shift’ (As can be seen
from Fig 5.25 the approximation of the accelerometer error as white noise is justified,
assuming of course that the error is independent of the incident acceleration.)
Equivalently, the Fourier transform of the output should give a spectrum that is
constant at all frequencies. In reality, this will never happen exactly, but if significant
deviations occur, this is when modelling of the error characteristic must be used.
Typical approaches to use are the applications of Gauss-Markov models, or use of the

Yule-Walker equations [32].
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Figure 5.25 Typical autocorrelation of accelerometer error. If the error were totally ‘white’ the

autocorrelation would be a ‘spike’ at zero shift and zero everywhere else.

The SpeedCoach sensor, as has already been mentioned measures the speed of the
boat relative to the water, thus even if the sensor functions perfectly, it will still, in a
constant current, have a constant error in speed, and a linearly increasing error in
distance. Additional to this error due to the method of sensor operation, rather than
any defect, will be the sensor characteristics. If the current is very slow, as it is in
most cases where rowing training is undertaken, theﬁ the effect may possibly be
ignored. Certainly, this should be tried before unnecessarily complicating the filter
design. Since pulses are counted every sampling period, as they were in the case of
the encoder, there is the possibility of quantisation error, which was modelled as
white noise for the encoder. Operating, as it does, on a pulse counting basis, it is
difficult to see how any drift in the output could occur, provided the impeller is
operating as intended. Thus, under the assumption of no (or low) current, and in
possession of no extra information to suggest otherwise, the SpeedCoach sensor can
also be modelled as a measurement of distance travelled in combination with white
noise. It would not be a simple task to model the error characteristics of the
SpeedCoach sensor, this is because of its place within the turbulent boundary layer of

the boat, a location that also prohibited any real calibration, as previously discussed.
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In addition to the easily modelled variation of boat motion and the lack of real
dynamics for the sensor error characteristics, the situation is simplified by the short
timescales over which the system will be used. Whereas over many hours an
accelerometer may heat and therefore have its offset change, it is expected that this
system will only be used for short periods of time. The conditions in which the
accelerometer will be operating are also relatively standard. The temperatures will
not be extreme (rowing is not possible when the water is solid!) and the accelerometer
is located within an enclosure that is itself sheltered from radiant and convectional
effects. The combination of these factors mean that the Kalman filter for sensor

fusion may be of very simple design.

Just as the motion of the seat was modelled as a periodic process, the motion of the
boat, which is of course affected by the periodic fluctuation of oar force and seat
motion, is also modelled as an oscillating random process. Thus, the system matrices,
the system transition and noise input matrices, remain parametrically similar, i.e. in

continuous form the state space equations can again be written

41 o1 0 0 Jd] [0

vl 100 1 0 |v| 0] ° ~

"= | w (5.34)
al 100 0 1 lal| |0

x| 00 —w -2, |a| |1

where @, is the base frequency of oscillation (in radians/sec), and ¢ is chosen to
reflect the variability of the signal. The difference is in the measurements, where
previously only one measurement was available, there are now two, distance and
acceleration, each with associated additive white noise. Thus the measurement

equations are

d

1 00 Ofv v, :
7= + (5.35)
0 01 0]a v, ‘

o
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where v, is the noise associated with the SpeedCoach furnished position
measuremeht, and v, 1s that of the accelerometer. It is assumed that the two noise
processes are independent, and thus the covariance matrix, R, is diagonal, with
elements K| and R,. As before, the variance of the system noise is (. The design

parameters and their criteria for selection for the filter are therefore:

@, — chosen to reflect the highest frequency component of the boat motion

¢ -controls the width of the frequency band of the modelled process, or equivalently
the variability of the motion from oscillation to oscillation

Q — has dual purpose. Firstly it ensures that the model has enough power to simulate
a motion of the correct amplitude, and secondly ‘tells’ the filter how much to believe
the model in comparison to the measured data.

Ry,R, — tell the filter how reliable each of the sensors is at each of their tasks, e.g. a
large value of R; (relative to R and Q) suggests that the accelerometer measurements
are very noisy, so that the model, and the derivative of the position measurements are

weighted more heavily.
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5.3.4 Results

This section presents results from the Kalman filter sensor fusion technique. To
show the utility of this method, the signals obtained from direct numerical integration

and differentiation of the appropriate signals are also given.

Figure 5.26 shows the data obtained from the SpeedCoach impeller, which, as
mentioned above, was used to measure distance travelled. Also shown are the
estimates of boat velocity and acceleration obtained using finite differencing. A large
amount of noise is present here due to the quantisation involved in the measuring
system, i.e. a finite number of pulses occur during a sampling period. For
comparison, the output of the accelerometer is shown in the same plot as the

acceleration estimate.
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Figure 5.26 The distance output of the SpeedCoach impeller and the velocity and acceleration

estimates obtained through finite differencing.

Shown in Figure 5.27 are the accelerometer output and the velocity and position

estimates obtained through numerical integration. Shown for comparative purposes is
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the position measurement obtained from the SpeedCoach sensor. The large amount of
drift in the velocity and position estimates belie the amount of noise on the signal, and
perhaps also a DC offset in the accelerometer, which could very easily be caused by

the accelerometer axis being subjected to gravity.
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Figure 5.27 The accelerometer output and the velocity and position estimates obtained through
numerical integration. The SpeedCoach position estimate is shown to show the degree of drift in

the integrated accelerometer output.

Figures 5.26 & 5.27 have shown that, as implemented, neither of the sensors can by
themselves reliably record the kinematic parameters of the boat. As already discussed
in detail, the Kalman filter combines the sensors’ outputs to produce ‘optimal’

estimates of the parameters of interest.

The figures below show what are very believable results. First, in Figure 5.28, the
acceleration estimate of the Kalman filter 1s plotted with the accelerometer output.

They clearly match each other well. Any lag in the KF estimate at this stage would
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suggest that the frequency of the model needs to be increased, and in fact, this delay

was used as a measure of adequacy of the filter frequency (as discussed in 5.2.3),
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Figure 5.28 The accelerometer output, and the Kalman filterr generated acceleration estimate.

While the accelerometer output and KF estimate appear to match very closely, there is
a difference, as is made evident through the velocity estimate, Figure 5.29, which -
now, after an initial increase, oscillates about a reasonably steady mean (as compared

to the integral of the accelerometer signal, which exhibited ramping)..

Finally, the position estimate of the KF is shown in Figure 5.30 . The difference
between the estimate and the SpeedCoach data could suggest that the factory

calibration of the sensor was a little low,
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Figure 5.29 The Kalman filter generated velocity estimate.
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Figure 5.30 The Kalman filter position estimate and the SpeedCoach position measurement.

The results of Kalman filtering as differentiator, for seat motion measurement, and
sensor fusion algorithm, for boat motion estimation, have now been presented. The
next brief section combines the estimates produced by these two filters to investigate

the motion of the system centre of mass.
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5.4 Centre of Mass

The following equation of motion for the boat/rower system was developed in
Chapter 1, (1.9):

Ir{?[{lde COS 9{!{”" - 7717'(”1?87'617'()1VI”' - D = ("”‘b(}(!r + n”‘l’()‘r\’(l") czb(}(". (5 N 3 6)
Using the substitution:

(m'rmum* + ”lboar)a.\‘y.\* = nlmumr(amwm' + abrmr) + MpoarBhoat (537)

where dy.- 18 the acceleration of the rower relative to the boat and agy is the

acceleration of the centre of mass of the two-body system, (5.36) may be rewritten

F Dblade COS Hrmr -D= (mbaar+ "lrmwr‘) Apgar T Mrgwerlrower

= "11‘(}1l!er(amwm' + ab()ar) + Mpoarllboat

= ("b‘mver + mbour)asys (53 8)

Thus, the acceleration of the system, or the centre of mass of the system (the two
major components of which are the rower and the boat) is seen to be a variable of
interest. It is also clear, as was indicated at the\beginni’ng of this chapter, that the
acceleration of the system centre of mass can be estimated through knowledge of the
hoat acceleration and the acceleration of the seat relative to the boat (assuming one
has knowledge of the masses of the components of the system). The velocity of the
centre of mass is also of interest, and is perhaps more easily comprehended by the
viewer. For example, neglecting the effects of drag and oar forces (quite a significant
neglect!) and considering only the rower and boat in the system, system momentum
should be conserved. This means that when the rower slides towards the stern during
the recovery, the boat should move faster in the direction of the bow. When the water
is reinstated, this effect will still be present, but will be somewhat damped. The
periodic application of oar force also, of course, causes fluctuation in the boat motion,

upon which the other effects are superimposed.
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Along with plots showing the motion of the system centre of mass, this section

includes plots showing the timing between oar force, seat and boat motion.
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Figure 5.31 The velocity of the system centre of mass, the absolute velocity of the rower, and the

velocity of the boat.

Figure 5.31 shows the velocity of the centre of mass (COM) along with the absolute
~velocities of the rower and boat. Note how closely the velocity of the COM matches
the velocity of the rower. This is of course due to the fact that the rower is the major
component of the system. In this case, the rower’s mass was 100kg, while that of the
boat and all components moving with it (notably ORAC and sensory devices) was

less than 30kg.
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Figure 5.32 The acceleration of the system centre of mass, the absolute acceleration of the rower,

and the acceleration of the boat.

The acceleration of the system components and COM are shown in Figure 5.32.
While this plot is not particularly aesthetically plcasiﬁg, there are a number of
interesting aspects to note. Chiefly, note that the when the rower’s acceleration is
most positive, during the drive phase, the boat actually shows negative acceleration,

due to the previously discussed momentum effects. This is perhaps more evident in

plots shown below.,

The timing of events during the rowing cycle is displayed in Figure 5.33. As
expected, the force is applied as the rower slides in the direction of motion of the boat.

The rower from whom this data was collected was a little out of practice, as can be

seen from the lack of



229

Qar Fores
S B s
!
- o P— —
I . il
gﬁ‘-” | [0 B . ;' """" i ] by [
T L A
I: ! | f ! 1 ( i :
NN 0
PP WOV Lo A J’J st i‘”} PN ﬂ) \M TR Y, l /
¥ ! g f l ! ’
0 5 0 Tmo ) 15 i
AR R\\ ff#\ AREA f[\\ AR AR W AR W A )
VT ' / I D
K; E;f%f\tfa,/\f\.kf \\i\,f \‘/\‘f\‘
€ i i ] 1 ; f
; B \Is’j ]l ; ‘ﬁ; f 1‘; \ f; ‘\\ f \ j \\ ’l \ Ii! \\1 1 \ " \K 'V(
e L N N A
4 i Ur H i; i
| I L
i
& 5 16 Tne ) -3 20

Figure 5.33 Oar force and seat displacement

congistency in both the seat movement and force profiles. An area of interest for
athletes and coaches is the relative timing of both the initiation of seat movement and
force generation, and the conclusion of force production and seat motion. If force is
generated before the seat moves, it is mainly the back or arms that are doing work,
while if the rower continues to move in the direction of motion of the boat after he
stops pulling on the oars, he has wasted a portion of the stroke. Both of these effects

are visible in Figure 5.33.
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Figure 5.34 Qar force, relative seat velocity and absolute bhoat velocity.

Very interesting results are shown in Figure 5.34, the relative velocity of the rower is -
shown along with the oar force and the velocity of the boat. Considering the first
variables, it is seen that the force is initially generated with a fast increase in velocity.
This may be identified as the portion of the drive immediately following the catch.
During the drive development, the velocity decreases, but remains positive during
force generation. Inconsistencies in the seat movement are easily seen in this plot as
peaks during the rower’s deceleration. Considering now the oar force and seat
movement with the boat velocity, it is seen, that when the oar force is peaking, the
boat velocity is actually in a trough. This is due to the previously mentioned

momentum effects.
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5.5 Discussion & Conclusions

The results of the preceding section indicate that the methods used to measure seat

and boat motion are usetul.

The encoder-mounting bracket was sometimes a little difficult to position but held the
encoder in position well, the only problems with the encoder’s use being the tendency
of the encoder wheel to slide along the spindle and become disengaged with the track.

This can easily be fixed.

Using a Kalman filter as a differentiator for encoder measurements was an interesting
pursuit. While the high resolution of the encoder lead to relatively accurate velocity
estimation by finite differencing, the Kalman filter acceleration estimates were
qualitatively seen to be of better quality than those obtained by standard numerical
differentiation. The design of system transfer matrices so soon after working with
rotation matrices allowed some interesting comparisons. The matrices chosen for the
shaping filters are effectively 2D rotation matrices with a small amount of decay

added.

While previous rescarchers have mentioned the use of impellers in combination with
accelerometers in the measurement of boat motion, none have discussed how, or
indeed if, the data from these two instruments are combined. The simple Kalman

filter presented in this chapter appears to be a useful sensor fusion technique.

While only a small attempt was made to analyse the collected results, it is clear that
there is significant scope for research in the area of the timing of the events during the

rowing stroke and the biomechanical implications of this timing.
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Chapter 6

Many encouraging developments were made during this work. Perhaps a more robust
system could have been created, but the work was a development exercise and it is
thought that as such, it has been very successful. The author enjoyed unexpected
excursions into the worlds of estimation theory and theoretical kinematics along the

way, and it is hoped, and believed, that these will prove fruitful.

This brief chapter makes recommendations for further research. Aside from the
section covering the performance of the data acquisition system, which is presented in
Appendix A4, the items are discussed in the same order as they were presented in the

thesis.
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6.1 System

Several components of the system hardware limited the utility of the system. Among
these was the very poor performance of the wireless LAN card. This card was
specified to have a range of around 100m, but during testing it seemed that a more
reasonable estimate would be around 10m. This meant that testing was performed in
standalone mode, i.e. the data acquisition program was started manually and the boat
was sent off with no feedback to ensure that the sensors were indeed working. This
would not have been so problematic if all the other system hardware was functioning -
correctly, but unfortunately this was not the case. Output from the SpeedCoach
sensor was very temperamental. Sending it out on two runs with seemingly identical
operating conditions, it would function very differently; sometimes it would work
well, at other times there would be no output at all. In addition to this, some strange
effects were sometimes noted on the analog channels, where one channel would
greatly alter the output of its neighbours. This problem was also sporadic, and despite
the best efforts of the electronics technicians could not be identified or eliminated. It
was initially thought that this problem was due to the short length of time between
consecutive samples of the multiplexer, but increasing this time did not fix the

problem. Luckily some data runs were free of this problem.

Apart from problems with system performance and reliability, it is desirable that the
physical size and mass of the system be reduced. Rowers sometimes looked at the
computer balanced by the foot-stretcher with suspicion, and both the mass and the

consequences of capsizing the boat affected their rowing styles.

An interesting idca, conceived of by electronics technician, Julian Phillips, is
constructing the sensors to have ‘on-board’ power supplies, signal processing and
short-term data capture facilities. This would reduce the mass of the system and the
set-up time. The obvious problems are the increased cost, and the synchronization of
data from the numerous sensors. The former problem will reduce with time, and the
latter may be overcome by some simple wireless form of communication between the

sensors, making these ‘smart sensors’ a very attractive option for future development.
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6.2 Oar Force

The developed oar force sensor is appealing because of its simplicity, wide
applicability, and the quality of the results it offers. It is recommended that future
work be directed into improving the design of the sensor, and eliminating the
mysterious long-term drift that was observed. With this drift removed, it is believed

that the oar force sensor could be a useful tool for rowers, coaches and biomechanists.

6.3 Foot Force

As mentioned at great length in Chapter 3, the foot force sensors shear force
characteristics were very poor. Although this is the case, it is believed that the sensor
justifies further work, due to the encouraging normal force and coordinate estimation
capabilities that were displayed. Improving the shear response could be achieved in a

number of ways that are now briefly detailed.

Increasing the dimensions of the slots at either end of the sensor would allow for the
p]aceinenl of strain gauges on both sides of the shear sensing beams.- This should
increase the sensitivity and linearity of the shear response. The response, however, |
will never be fully linear, due to the stress state of the beams, caused by the end
constraints. This can be seen, since when a central downward force is applied to the
plate, the ends of the sensing beams will deflect downward, but rather than being a
case of simple bending, additional compressive stress is superimposed due to the
manner in which the beams join the plate.

6.4 Oar Orientation

This part of the work was the most inspiring and also the most annoying. Once the
sensors are calibrated as described at the end of Chapter 4, the sensors should yield
sound estimates of relative orientation in 3D space. Among the fields of application
for this technology are: virtual reality, prosthesis control, haptic interfaces, personal
navigation and, of course, sports performance measurement. It is hoped that future

researchers will pursue this technology to its conclusion. The author is currently
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undertaking work to expand the generality of the sensors from ‘spherical’ to truly

spatial applications.

6.5 Seat and Boat Motion

As mentioned in Chapter 5, the use of an accelerometer to measure the motion of the
seat was ruled out because of the necessity of accounting for the motion of the boat,
which prior to actually collecting data was expected to be a complex affair. Based on
the 1D motion of the boat, and a little hindsight, using an accelerometer in
combination with the rotary encoder, as described below, would be an interesting
option. The 1D boat motion may even make a variant of the described real-time-

spline methods viable.

If an accelerometer and rotary encoder, were both connected to the seat, the output
data of these sensors and the SpeedCoach could be combined in one Kalman filter.
This filter would be a simple extension of that derived in Chapter 5, with two shaping
filters, one for the derivative of the seat acceleration relative to the boat, the other for
the derivative of the boat acceleration. Clearly the seat accelerometer measures the
absolute acceleration of the seat; that is the sum of the acceleration of the seat relative -
to the boat and the acceleration of the boat itself. With the filter designed
accordingly, the outputs would include all the kinematic parameters of interest for the

system.

While the above approach would be more academically interesting, the results

presented in Chapter 5 were pleasing.
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6.6 Comments on Possible Studies

The above comments, and indeed the entire thesis, have been concerned with the
development of the instrumentation system. The collected data has only been
analysed so far as to show that the macroscopic features agree with intuition. Once
the elements of the instrumentation system are developed, a wealth of information
will be available for wide ranging investigations of rowing. The studies rendered
possible include both biomechanical studies, of the rowers and their interactions with
the boat, and the pure mechanical performance of the boat itself. It will, for example,
using a combination of boat motion, oar force, fo’ot force and/or rower motion data, be
possible to estimate, using system identification techniques, the drag characteristics of

a boat during actual rowing, rather than during simulated tests.

There is also scope for extension or alteration of the instrumentation system. In
particular, a simpler oar angle sensor, such as a potentiometer, may be applied to yield
the sweep angle of the oar. Extensions to the system include the use of feedback for
the athlete, which may be presented using dedicated goggles with head up display, a
small touch screen within the boat, or in the simplest case, some audible indications of

the rowing parameters.

It is of interest to rowing coaches and athletes that the boat be configured in the most
optimal way, i.e. the energy of the athlete is used efficiently. There are a number of
parameters involved in the rigging of a boat, including foot-stretcher position and
angle, distance between oarlocks, oarlock height and pitch and oar length, and the
optimality is therefore a function of each of these parameters. To find the optimal
combination of rigging parameters would be a large task, but varying single
parameters at a time and collecting data should lead to meaningful results and
improved athlete specific rigging. For example, measuring the oar sweep angle and
the force at the oarlock shows how much of the generated force is in the direction of
motion, and how much is ‘wasted’ by compression of the hull of the boat. Altering
the stroke characteristics by shifting the foot-stretches or oarlock spacing will change

the oarlock-force/time and oar-angle/time curves, resulting in different efficiencies.
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Measuring the multi-axial force components in the oar shaft at the same time as the
oarlock force and rotation will give some indication of the force generation
mechanisms. In this way, in combination with video of the blade-water interaction,

the fluid dynamics of the rowing at various stroke ratings could be well investigated.

When the relative orientation sensor is functional, it will be possible to add extra
dimensions to the study of the blade-water interaction. In particular, the effects of the
pitch and roll of the oar during the drive will be able to be investigated. The pitch
will indicate how deep the blade is in the water, while the roll measures how
orthogonal the blade is with respect to the water. The symmetry of the rower’s
technique will also be able to be studied down to the degree. This tool is not limited
to rowing studies, and should find applications in diverse fields such as feedback for
prosthesis control and virtual reality, The further development and miniaturisation of

these sensors is considered to be very worthwhile.
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6.7 Achievements and Contributions of Research

The part of this research that had the most potential; the estimation of relative
orientation using accelerometers and magnetoresistive sensors, was unfortunately not
realised beyond the theoretical development. The developed theory, including the
revised method of calibration, which takes account of assembly (non-orthogonality)
errors, should enable the construction of sensors that will accurately estimate the
relative orientation of consecutive rigid bodies in a kinematic chain connected by
spherical joints undergoing general spatial motion. With the exception that the bodies
be non-ferrous (so as not to saturate the magnetoresistive sensors) the applications of
these sensors are boundless. Within the conceptual developments of the theory, a new
method of orientation estimation was developed, which was found to outperform all

reviewed methods.

The combination of accelerometer and impeller has been used by previous researchers
to estimate the position, velocity and acceleration of the boat. In these instances,
however, no mention was made of the method in which the outputs of the sensors
were combined. The discrete Kalman filter was shown to be very suitable for this
purpose. A very similar filter was also used to differentiate a quantized random
signal. As this filter was being designed, a new (as far as the author is aware) method
of checking the evolution of the autocorrelation matrix of a discrete-time state-space
model driven by white noise. This method could conceivably be used to design, given

required autocorrelation functions, state-space models for random sequences.

Aside from theoretical developments, two strain gauge sensors were designed. The
oar force sensor is of a new design, which does not alter the external geometry of the
oarlock and does not require the rower to use a specially instrumented oar. The
minimal disturbance to the feel of rowing, and the maintenance of the ability to easily
alter the pitch angle of the oarlock are pleasing aspects to the sensor’s design. In
addition to fulfilling these design constraints, the sensor is easy to calibrate in a way
consistent with loading during rowing and yields sound data. A sensor of similar
design may be useful in other situations in which the compressive force on an axle (or

shaft) inside a cylindrical enclosure be measured. Examples of such cases are:
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measuring the loads on the axles of a truck, to ensure that cargo is well distributed;
measuring the forces on an axle during mountain biking to aid in the design of

optimal wheels.

The design of the foot force sensor was based upon commercially available force
plates. Unlike a force plate, the sensor incorporates the sensing elements into the
actual structure and has the advantages of relatively low cost and weight. The use of
least squares estimation techniques in the processing of the outputs of the foot force
sensor proved to be effective, and was also useful in the analysis of the sensor’s

response, especially its poor shear characteristics.
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A1 Alternative Method for Determination of
Normal Force and Coordinates for Foot Force

Sensor

The method described below assumes (incorrectly) that the four ‘normal force
channels’ labelled 1,2,3,4 are not sensitive to shear, and hence the normal force and
coordinates are estimated without consideration of shear. The method was found to
give almost exactly the same results as the least squares method that was used in its
place, its main disadvantage was the large number of constants that had to be
determined for its implementation. Even using Maple® to perform the calculus and

algebra, the method was very time-consuming.

Recall, from Chapter 3, that the approximate equation for the output of the /™ channel

of the foot force sensor is given by:
Vi=JCph+ xCx + fyCy (A1.1)

Treating x and y (the coordinates of the centre of force) as independent variables, this
equation represents a continuum of ‘voltage planes’ in R, corresponding to a range of
[ At each sampling instant, each channel has an associated measurement plane ,
which passes through this force dependent continuum of planes. The intersection of
the i measurement plane (parallel to the xy plane) and the ™ voltage plane continuum

is the line

—C.. V.- jC,
— - Xi ¥+ ) ‘j b
Cy, fCy

y, (A12)

These lines, for given f give the required relationship between x and y to yield the

measured i voltage. The equations of the lines can be rewritten in a simpler form:
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v =m;x+c;(f) (A1.3)

which makes it explicit, that the force, f, only changes the intercept of the line, i.e. the

gradient is invariant to force.

The intersection of the lines at an arbitrary instant is shown below. The intersection
of lines y; and y; occurs at the point (x; , y;). The diagram approximately reproduces
the ‘sense’ of the solution lines in that they are nearly in orthogonal parallel pairs (as
is discussed in Chapter 3). The intersection of two lines, of course, represents an
agreement between two channels on the coordinate of the centre of force for a
particular f. As a consequence of the approximate nature of the planes, and also the
fact that the lines are in near parallel pairs, an agreement between all four channels,
represented by an intersection of all four lines, is very unlikely. Intuitively, the best
agreement between the channels, which are all assumed to be providing valid
information, is achieved when the area bounded by the four lines is minimised. When
the area is small, the lines representing the coordinates deemed ‘allowable’ by each of

the channels will be in closest agreement.

Va=max+cy(f)

ya=mzx+cs(f)

Yo=max+co(f)

yi=nnx+c(f)

Figure Al.1 Estimation problem geometry
A procedure for solution, therefore, is to find f for which the enclosed area is smallest
and average the coordinates of the four intersections at this value. This yields, what

is in some sense, the most likely combination of £, x and y.
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Consider the problem of minimising the quadrilateral area bounded by four lines of
fixed gradient and variable intercept. It is evident that the minimisation of the arca is
* equivalent to the minimisation of either of the regions diagonals, as the opposing
intercepts are dependent upon all four lines. The mathematics required is simplified if
the minimised function is the square of the length of the diagonal, and as this does not

affect the result, this is the approach taken.

Referring to the Figure Al.1, the square of the length of one of the diagonals is:

D=(x34 —x12)° +(yay = ¥12)° (Al.4)

Substituting:

_ca(N=es(f)

X34
My — My
g, = e -aln (Al5)
my — mz
Vg = ITL3X34 + Cy (f)
Yo =M Xp + Cl(.f)
and,
v, Cp
O
JLyi C}’l (Al1.6)
‘ Va 3
c3(f)= j _%
fCys Cys

gives
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C

2

Vi Cra Vs Cpoo vy Cppovyp Cp
D—- .ny4 Cy4 .fC)vj Cy3 _ .nyz va:l f‘Cy] Cy] N .

My — My My — My

Vo Cr vy Cpy) v, Cpp v C
My 4 AEN f3 my| 2 f2 _  1 e

fCu Cyy fC3 Cpg e C s fCy2 Ciy fCy Cy v,

M3 — Ny fCyz Cyy my — Ny 1Cy
(A1.7)

This function is then minimised with respect to f (i.e. the first differential w.r.t. f is set

to zero and the resulting equation solved for f). The resulting expression can be

simplified to give the following:

f _ (ﬂ]Vlz + a2V22 + a3V32 + C£4V42 + (l5V]V2 + a6V1V3 + C£7V[V4 + a8V2V3 + a9V2V4 + (110V3V4

(A1.8)

where the constants are obviously algebraic combinations of the constant terms of the

expressions of the equations of the channel performance surfaces.

Having estimated f, the coordinates of the intersections of the lines are found by

substituting f into equations of the form as those given above for xs4, ya4. The final

estimate of the load coordinates is given as the average of the coordinates of the line

intersections.

f

2l

- y)
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A2 Relative Orientation Estimation

The approaches reviewed in this Appendix are all least squares techniques of
estimating the rotation matrix. The rotation matrix is not of course the only method
by which orientation can be specified. A popular alternative, the use of unit
quaternions is mentioned in section A2.4. While it may seem a little extraneous to
include limited derivations of previously used methods, it acts to highlight possible
problems. It is also interesting to see the way in which new mathematical methods

have altered the algorithms over the last few decades.

A2.1 Wahba’s Problem

In 1965, Wahba [66], posed the following problem for fellow mathematicians to solve

(where the notation has been modified for simplicity):

Given two sets of n points {r, Iz, ... I,} and {Ry, Ry, ... R,}, where n > 2, find the
rotation matrix A which brings the first set into the best least squares coincidence with

the second. That is, find A which minimises

2 - .
R;-Ar;| . (A2.1)

it

>

i=l

There were several replies to this problem. We review here two methods of solution,
one that was first stated in reply to Wahba, and the other that strangely does not even

refer to the original challenge.

Of the replies to Wahba’s problem, the most often quoted is that devised by Brock,
which is now explained in detail. The initial steps of the derivation are common to
both reviewed methods of solution and consist of transforming the minimum norm
problem into the equivalent ‘minimum trace’ problem. This makes the solution

easier, since the following properties of traces can be exploited [14]

tr(QR) = tr(RQ) for conformable matrices Q and R
tr(Q + R) = tr(Q) + tr(R) for matrices, Q and R of the same dimension



tr(Q") = tr(Q) for any square matrix, Q

The equivalence of the norm problem to a trace is now shown.

suppose that we are concerned with the quantity:

=

2 ,2 p T
b}H :ij; bjszTbl +b2Tb2+ +b”1bn
7=l

If we form a matrix, B = [b; b, ... by], then clearly
IH 2 T
ZHbjn =uB"B
J=1

Following this approach, we define measurement matrices R = [Ry Ry
[r; rz ... r,] so that we have the following equality, from (A2.1):
I 2
EHR]- ~ Ar, H = tr(R — Ar)"(R-Ar)
Ji=1

Defining this cost function as J(A), and expanding gives

J(A) = tr(R-Ar) (R-Ar) = tr(R'R - R"Ar - r"A"R + r'A"Ar)
=tr(R'"R - R"Ar - r'"A™R +r'r),

For simplicity,

(A2.2)

(A2.3)

. Ry]andr =

(A2.4)

(A2.5)

where the orthogonality of A has been used to simplify the last term. Clearly the cost,

J, 18 minimised by maximising the trace of the two middle (negative) terms, i.e. we

aim to maximise

K(A) =tr(R"Ar + r'A™R).

(A2.6)

The method by which this number is minimised is where the differences between

solutions normally begin.

Brock’s approach is to find the orthogonal matrix A such that the cost, K, is stationary

with respect to variation in any of the elements of A. Denoting partial differentiation

with respect to an arbitrary element of A, a, by ( - )*, and using the readily observed

fact that [tr( - )]* = tr[( - )*]
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K*(A) = tr((RTAr]* + [r"A'R]*) = tr[R"A*r + r (AT )*R] (A2.7)
Differentiating the equation, AA" = 1, with respect to a gives

A AT + AAT)* =0,
A =-AATVA, (A28

and substituting (A2.8) into (A2.7) gives

K*(A)=t[-RTAAN*Ar + ' (AD*R]. (A2.9)
Now, reordering the matrix products within the trace

K*A) = tr[-(AD*ATRTA + (AD*Rr"| = tr[(AT)*{ArR'A -Rr'}] (A2.10)
we see that K*(A) is stationary with respect to variation in the elements of A, if

ArR™A = Rr'. | (A2.11)
Multiplying on the right by rR” we get

(ArR")* = Rr'rR’, (A2.12)
o A=RrTRN?ERY' = BBH B! (A2.13)
where B = Rr'. There are a number of things to note with regard to this solution.
Firstly for the solution to exist, B must be non-singular, i.e. of rank three. The
minimum number of measurements that will ensure the full rank of B is three, with
the requirement that the measurements be linearly independent. Consider first the

case of two non-collinear vector observations, i.e. R =[R; Ry, r = [r; r2], then

B=Rir," + Ry, =[(rRy + 721R) (7R + r2Ry) (3R + 753R)]
(A2.14)



and the columns of B are clearly linearly dependent since they all lie in the plane of

R; and Ry. Similarly for three measurements:

B = [(riRi + 1Ry + r31R3) (r2Ry + 1Ry + r3R3) (73R + rsRa + r33R3)].
(A2.15)
This matrix is non-singular unless R;, Ry and Rj all lie in a plane, since then the

matrix is effectively

B = [(ri+ro)R+H(ra+3B)Ry  (ro+r5200Ri+(ra+rB)Ry  (ris+r3s0)R +(r3 +
r3sP)Ral,

(A2.16)
where R; = oR; + BR,. Thus the requirement for Brock’s solution to be useful is that

we are in possession of three linearly independent measurements in each frame,

The second point to note with Brock’s solution is that a matrix square root is required.
The method by which this square root is obtained through an eigendecomposition is
now described. The matrix, C = B"B, of which the square root is required, is

symmetric and thus can be expressed,
C =EAE" (A2.17)

where E is an orthogonal matrix of eigenvectors and A is a diagonal matrix containing

the eigenvalues of C. The square-root of C is that matrix D such that
D?*=C = EAE" (A2.18)

Note that (EAENEAET) = EA’E", therefore D = EAYE". Brock states that there is
freedom in calculating the square root of the diagonal matrix A, since each element

may be either +(1,)"%, i.e.

A" = diag(x00)"? +(00)"* £(0)"*) (A2.19)
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It can be shown however, as was stated in Carta and Lackowski [16], that the
maximum value of K is always assumed when the positive roots are taken. This is

proved by manipulating the definition of K from (A2.6):

K(A) = tr(R"Ar + r'A™R) = 2tr(R"Ar)
= 2t[R"(Rr'rRD" (R ']
= 2t{rR"(Rr'TRNH" (R} = 2tr[Rr TR
= 2tr(EA'ET) = 2tr(A"?) (A2.20)

Thus K is maximised by choosing all positive roots of the eigenvalues of C. This
method is Brock’s ‘constrained’ method. It is constrained in that the generated matrix
is forced to be orthogonal. An unconstrained method Brock detailed in the same
paper seems to be more popular with following researchers, principally because of its
simplicity. Before this, and more modern unconstrained methods are detailed, a more
recent solution of Wahba’s problem is discussed. It is considered worthwhile to

discuss this second method because

e it offers solutions when only two vector observations are available

e certain geometric insights are offered

e It is also interesting to sce how a ‘new’ mathemavti'cal method, singular value
decomposition (SVD) has both simplified the derivation and allowed for a

more general solution.

The first steps of ‘Arun’s Solution’ [4] are the same as those of Brock’s in that the

problem is reduced to that of maximizing (see (A2.6)):

K(A) = tr(RTAr + r"ATR) = 2tr(RTAr) = 2tr(ArR") = 20(AH)  (A2.21)

t

where H = rR”. The problem is therefore solved by the rotation matrix, A, that

maximises the trace of (AH). The singular value decomposition of H is given by

H = QAS' (A2.22)
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where Q and S are orthogonal matrices and A is a diagonal matrix of non-negative
elements (the singular values of H). If we select A° = SQT, which is orthogonal,

since it is the product of two orthogonal matrices, then
A°H = SQ'H =SQ"QAS" = SAS™ (A2.23)

which is both symmetric and positive definite. The lemma below shows that this
choice of A is optimal since tr(A°H) = tr(CA°H), for any orthogonal matrix, C. This
fully satisfies the requirements of the optimal orthogonal matrix since to form another
orthogonal matrix requires that A° be multiplied by a second orthogonal matrix.
While A” is assured of being orthogonal it is not necessarily a rotation matrix since
the determinant has not been restricted to being +1. The other possibility is that
det(A°) = -1, in which case A° describes a reflection. Since the columns of r and R
are related by a rotation, in the situation in which A® is a reflection matrix it must be
possible to relate the vectors by both types of transformation. Geometrically it can be
seen that the requirement for this case is that the observation vectors from each frame
are linearly dependent. This case has been described in Section 4.6.3. Studying Fig.

4.12, it is clear that the vectors may be related by a reflection or a rotation.

If the vectors are linearly dependent, then the matrix H = rR" will not be of full rank
(it will be of rank 2, unless the vectors are collinear). (Note that H = B" from Brock’s
method.) Correspondingly the last singular vatlue of H will be zero, and the SVD can

be written
H= qulslT + quzszT + Oqgng (A2.24)

where G; 1s a singular value of H and q; and s; are the columns of Q and S. The zero
singular value means that the sign of the last column vector of § can be changed
without affecting the decomposition. (Neither does it affect the orthogonality of S).
Making this change alters the sign of the determinant of A°, i.e. if the matrix is
originally a reflection matrix, changing the sign of the last vector of § leads to a

rotation matrix and vice versa.
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If the measurements are coplanar (which they are by necessity if only two
measurements are taken) there is no way of telling in advance whether the matrix A°
will be a reflection or rotation matrix, it is purely a matter of chance. Once A° has

been calculated one has to check its determinant, and if necessary change a column of

S.

As a matter of interest, the reader may compare Arun’s method with that used by
Farrell and Stuelpnagel in the original reply to Wahba’s Problem [66]. In this
method, the B matrix is first decomposed into the product of orthogonal and
syminetric matrices so that when the eigendecomposition of the symmetric matrix is
taken, orthogonal eigenvector matrices result. SVD is much more concise in its

creation of orthogonal matrices.

Lemma: For any positive definite matrix DD' and any orthogonal matrix C

tr(DD") = tr(CDD™) (A2.25)

n n
Proof: tr(CDD") = w(D'CD) = Y.d[ Cd; = d;.Cd, (A2.26)

=l i=1
By the Cauchy-Schwarz inequality, d.Cd; < Il d; | | Cd; || = (di.d)"*(d;"C"Cd)"* =

d;..d;. Since each element of the sum is bounded by d;.d; it follows that
t(CDD") =) d,Cd, <Y d,d,= u(DD") (A2.27)
=1 i=]

which proves (A2.25).

Before considering unconstrained methods, what may be a useful trick is presented.
This technique was first presented by Black [9], and is potentially useful in situations
where only two vector observations are available but three are required by the

orientation estimation procedure.

In possession of two linearly independent (i.e non-collinear) vector observations there

are two equations,

R=Ar (A2.28(a))
B =Ab. (A2.28(a))
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Black’s method was to state that as well as these two equations there is also the
equation that relates the vector that is normal to the two observations in either

orientation:

RXB = A(rxb). (A2.29)
Further, forming the following matrices,

[R B RxB]=A[r b rxb] (A2.30)

it is possible to solve for A simply by inverting the matrix on the right. The non-
singularity of the matrix [r b rxb] is guaranteed since the vectors r and b are linearly
independent by definition, and their cross product is orthogonal to them both. Black

also notes that the matrices may be made orthogonal by choosing them as follows

[ BX(RxB/IRxBI) B RxB/IIRxBII |1 = A[ bx(rxb/lirxbll) b rxb/lirxbll ],
(A2.31)

under the conditions that all vectors are normalised. Since the matrices are now
orthogonal, the matrix inversion is reduced - to transposition. - Additionally, ‘
normalising and orthogonalising the matrices in this way forces the calculated matrix,
A, to be orthogonal (since the product of orthogonal matrices is itself orthogonal). It
will also always be a rotation matrix since it is impossible for a reflection to be
associated with full rank measurement matrices. It should be noted that this method
takes no account of any noise on the vector observations. Also, the cross product of
two noisy Vectoré is intuitively ‘noisier’ than the original two vectors. Thus, while
Black’s method is useful in that it permits the calculation of a rotation matrix in the
possession of only two sets of independent vector observations, the lack of

optimization in the computation limits its use in the case of real sensor outputs.
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A2.2 Unconstrained Orientation Estimation

Brock’s unconstrained method [14] follows the same approach as the constrained
method described above, with the exception that the orthogonality of A is not
enforced. Rather than present this method, a technique that allows for a more general
result is introduced. This is a simple variant on the technique of Markley and Bar-
Itzhack [45]. The added gencrality allowed by this method is the inclusion of an nxn

symmetric matrix, W, that weights the observations to varying degrees:
J(A) = [ W(R-Ar) (R-Ar)]. (A2.32)

The method of derivation used is calléd a ‘directional derivative’, the cost function is
formulated for a general matrix A, + eH, where H is a general non-zero matrix and A,
is the optimal (non-orthogonal) matrix. The derivative of the cost function with
respect to € is then taken at € = 0 so that the cost is stationary with respect to any

general variation in A,. When the cost function
J(Ao + eH) = trfWR-(A, + eH)Ir) (R-(A, + eH)D)] (A2.33)

is expanded, it results in terms that are constant, linear and quadratic in €.
Differentiating and evaluating the result at € = 0, leaves only the coefficient of the

linear term, which leaving out some trace manipulations is

H'[ArWr' - RWr']. (A2.34)
Therefore for the cost to be invariant to any change in A,:

Ao=RWr rWr)! (A2.35)
In the case of an identity weighting matrix A, = Rr'(rr"), which is Brock’s solution

for the unconstrained problem. Clearly A, can only be calculated if (rr’) is of full

rank, the requirement for this being that at least three linearly independent
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measurements are made (or two non-collinear measurements and Black’s approach).
In the case of three linearly independent measurements, r is a square matrix, thus r

exists and
A= RWEIrWrDY ! = RWr (o) "W i)' = R, (A2.36)

which is exactly Black’s solution. Note that this solution is independent of the
weighting matrix, W, and it is therefore impossible to weight observations differently
for the case n = 3. For vector observations to be weighted differently requires that
more than three pairs of measurements be made. Markley and Bar-Itzhack do a
simple error analysis for the case in which the r measurements are error free and the
R measurements are subject to zero mean white noise and show that the deviation of

A, from orthogonality is directly related to the noise on the measurements.

Now that both constrained and unconstrained methods of attitude estimation have
been presented, one may ask what the benefits of each branch are. The unconstrained
methods, at least those described here, have the advantage of computational simplicity
over the constrained methods (matrix inverse vs. eigendecomposition or singular
value decomposition). Also, in some cases where the vector observations are very
noisy, it is possible that a non-orthogonal matrix will have less error than the
corresponding matrix formed via a constrained method. The advantage of creating an
orthogonal matrix is the inherent structure. Each of the columns may'be used directly
to estimate angles of one body with respect to the other. Also, if the matrix is a
rotation matrix, it is possible to find the associated axis and angle of rotation, which
may be useful in some situations. When the matrix is non-orthogonal, the columns
have no particular structure, although they will presumably be ‘close’ to having the
orthogonal structure, if the vector observations are indeed able to be related by a
rotation matrix. With this ‘almost orthogonal’ structure it is unclear which of a
continuum of rotation matrices in the neighbourhood of the unconstrained solution is
indeed true. If information such as included angles between the axes of the two
coordinate frames, or the orientation of the axis of rotation are to be easily gathered, it
is necessary that the matrix be orthogonal. Driven by the simpler computation offered

by unconstrained methods, some researches have devised methods by which the
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yielded non-orthogonal matrices may be ‘optimally orthogonalised’. One such

method is now presented.
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A2.3 Orthogonalising Unconstrained Estimates

Carta and Lackowski [16] have presented a method by which unconstrained estimates
can be ‘orthogonalised’ using Lagrange multipliers. Denoting the deviation of A, (the
optimal non-orthogonal matrix) from orthogonality by the matrix E, i.e. A, = A + E,

where A is the desired orthogonal matrix, the aim is to minimise

L(A) = tr(E"E) = tr[ (A, — A) (A, — A)]. (A2.37)
That is, to minimise the sum of the squares of the elements of E (this is the square of
the Frobenius norm of E). The constraint, which is adjoined to the cost function via a
symmetric Lagrange multiplier matrix A, ensures the orthogonality of the solution
matrix A, i.e

LAA) = tr[(Ao Ay — 2A.°A + 1+ A(ATA-D)] (A2.38)

This function is then differentiated with respect to A, using the rules

-y T 1 T ! ¥
MlaBC—C)=B and 272CTC 5 ep it p=D".

The resulting equation is then set equal to zero to give
-2A,+ 2AA =0. (A2.39)

Thus A = A,A"'. The inverse of the Lagrange multiplier matrix is found by enforcing

the orthogonality of A:

ATA-1=0
(AA N (AAHY-1=0
A'ATAA =1

(A'ASA) = AA,, (A2.40)
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where the Jast equality is found by multiplying on the right by A,"A,. Now A'A,"A,
= (,,‘ﬁ\o'r/,i‘.o)”2 SO

A= (ATA) HAAY  =(A A (A241)
Giving (from (A2.39)):
A=A, ASAY (A2.41)

The matrix square root is found by the same eigendecomposition method as
previously described (Brock’s solution), and again, all positive roots of the
cigenvalues are chosen. While this method does indeed yield an orthogonal matrix
from a non-orthogonal matrix, the actual benefit using an unconstrained estimate has
been lost, since the computation required for the orthogonalisation process is the same

as that used in Brock’s method, which yields an orthogonal matrix directly.
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A2.4 Other Methods of Orientation Estimation

The above algorithms are concerned with the estimation of the rotation matrix, but
just as there are other methods of specifying an orientation, there are other approaches
to its estimation through vector observations. Probably most notable among these
alternatives is the use of quaternions [11], such an approach was taken by Horn [35].
This method, which was developed primarily for computer vision applications, is
applicable to the problem at hand but is not elaborated upon, as it would require the

mtroduction of quaternions.

Another alternative is the computation of the Rodrigues’ vector, which was shown in
Section 4.5 to fully describe a rotation. Only one instance of Rodrigues’ vector
estimation was found in a brief literature search, and the method, which was based
upon an Extended Kalman Filter algorithm, required both vector observations and
measurements of the angular velocity through the use of gyroscopes [37]. It was not
desired that more instrumentation be added, so this method also, was not considered

further.
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A3 The Kalman Filter

The discrete Kalman filter is a recursive algorithm that generates the minimum mean
square estimate of a vector x, given linearly related measurements observed with
additive white noise and a discrete time state space model for the evolution of the
state vector in response to a white noise input. This derivation first covers general
minimum mean square estimation and properties that are required for the
development of the Kalman filter algorithm. Next the problem is defined and the

development of the algorithm is completed.

A3.1 Minimum Mean Square Estimation

Given a random vector y, we seek a linear estimate of a related random vector 3, i.e.
Ky + b, such that the sum of the variances of the elements of the estimation error

vector are minimised. Mathematically stated, let € be the estimation error vector:
e=Ky+h-p. (A3.1)
The covariance matrix of € is given by E[(e - Ele])(e - E[E])T], which has as its

diagonal entries, the variances of the components of estimation error, we therefore

aim to minimise the sum of the diagonal elements, i.e. the trace of the matrix
J=tw{E[(e - E[e])(& - E[e]) ']} (A3.2)
Additionally it is desired that the estimate be unbiased, i.e. E[g] = 0. The combination
of the minimum variance and unbiased properties give the minimum mean square
error estimate, which is equivalent to minimising the length of the estimation error

vector in n-space. Expanding and simplifying J,

J=tr{E[ee’] - E[e]E[e]"} = trE[ee’] - wE[e]Ele]" (A3.3)
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Substituting for £ and expanding the first term of (A3.3):

trE[ee'] = tr{ E[Kyy K" + Kyb" - Kyp" + by'K" + bb" - bp" - py"K" - pbT + pp™}
= tr{ E[(Kyy'K' - 2Kyp" + 2Kyb" + bb" - 2pb" +pp™]}
= tr{(KE[yy']K" - 2KE[yp"] + 2KE[y]b" + bb" - 2E[BIb" + E[ppT])
(A3.4)

where the linearity of the expectation operator has been used (also property that tr(A)

=tr(A")). Similarly, expanding the second term:
trE[e]E[e]’ = tr{(KE[Y1E[Y]'K" - 2KE[y1E[p] "+ 2KE[y|b" + bb' - 2E[pIb" +
[BIE[B™T)

(A3.5)

Summing (A3.4) and (A3.5) to form J gives:

J=u{KE[yy K" - 2KE[yp"] + E[BB"] - KE[YIE[y]"K" + 2KE[y]E[p"] - EIBIE[B"1}.
(A3.6)

Defining the covariance matrices Py = E [ny] — ElylEly]" and Ppg=F [yBT] -
E[yIE[P]", Pys= E[BP"1 - E[BIEB]T, (A3.6) simplifics to |

J=tr{KPy,KT - 2KPy3 + P . (A3.7)

The matrix K for which J is minimum is found by differentiating J with respect to K

and setting the resulting equation to zero.

2KPy, —2Pgy =0, (A3.8)
where Pgy = PVﬁ Solving for K gives

K = Ps,P,," (A3.9)

In the case E[y] = E[B] =0, Pgy = [ByT], Py =F [yy'] and the result is
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K = E[py"1(E[yy'])’ (A3.10)
While it is seen that the choice of the vector b does not effect the variance of the
estimation error, it is required, in the case of non-zero mean vectors, to ensure that the
estimate is unbiased. Having determined I, we are now in the position to calculate b
(see A3.1):

Ele] = E[Ky +b - B] = KE[y] — E[B] +b. (A3.11)
For E[e] =0, i.e. unbiased error:

b = E[B] - KE[y]. (A3.12)
Thus the minimum mean squared error estimate of  giveny is

Ky +b = Py,P,, " (y — E[y]) + E[p] ' (A3.13)
which in the case of zero mean random vectors y and 3 (E[y] = F[B] = 0) results in

EBY' 1(Elyy' )y (A3.14)

This estimate (both the non-zero and zero means cases), which will be denoted by

E*[Bly] has many important properties.

I. If y and B are jointly distributed Gaussian vectors E*[Bly] = E[Bly], i.e. the
conditional expectation, and the estimate is optimal with respect to a large range of

criteria [38], [2].

2. A property of the estimation error, € = E*[Ply] - B, that is very useful is that Eley"]
= (. Random vectors that have this property are termed orthogonal. This is useful in
simplifying terms during the derivation of the Kalman filter. The orthogonality can

be shown by direct calculation:



E[(E*[Bly] - B)y"] = E[{Pp, Py, ' (v — E[y]) + E[B] - B}y"]
=Py, P,  E(yy" — ElyIETy]") + EIBIELY]" - E[By"]
= Pg, - Pp, =0 (A3.15)

It can also be shown that orthogonality is a sufficient condition for an optimal
estimate [60]. It is due to the orthogonality that E*[ply] is known as the ‘orthogonal
projection’ of B onto y. Furthermore, the property of orthogonality can be used to
derive the filter in a Hilbert space where the inner product is defined using the

expectation operator [44].

3. The notation E*[Ply,,y.] implies that the estimate of B is conditioned upon two
random vectors, y; and y,. This condition is also denoted FE*[BIY], with

corresponding covariance and cross-covariance matrices Pyy and Pgy are as follows

PBY = lPﬁyl PﬁyZJ

poo {Pylyl Pylyz] (A3.16)
YYop P
yly2 y2y2

A particularly important, and useful, case is that in which y, and y, are uncorrelated.

In this case the covariance matrix Pyy is diagonal:

Py 0
p.=| " A3.17
Yy I: 0 Py2y2} ’ ( )

since the oft diagonal terms are of the form Py, = Ely\y2'] — E[y11Ely.]" and for
uncorrelated random vectors E[ylsz] = E[yle[yz]T. The inverse of this matrix is
simply the inverse of the matrices on the diagonal. The cross-covariance matrix is of

the same form as that given above:

E*[BIY] = PpvPyy ' [(v1 - Ely)(y2 - Ely2))']" + E[B]
= Ppiy i Pyiyi ' (y1 - EIyi]) + PpayaPyoy ' (v2 — Ely2)) + EIB].
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(A3.18)
Thus it is seen that
EX[BIY] = E¥[Bly,,y2] = E*[plyr] + E*[Plys] - EIp] (A3.19)
and in general
EX[Blyya,...¥al = EX[Bly1] + E*[Blya] + ... + E*[Blya] ~ (n-DE[P]
(A3.20)
or in the case of E[B] = 0O:
EX[Blynya,...¥al = EX[Plyi] + EX[Blya] + ... +E*[Blyy] (A3.21)

This has a good geometrical interpretation, especially when the y’s are uncorrelated
and zero mean (which means the vectors are orthogonal, with respect to the inner
product defined by the expectation operator). Projecting B onto (y,y2,...yn} in the
case in which all the y’s are orthogonal is the same as the sum of the projections of [
onto each of the individual y’s. This is equivalent to finding the components of a
vector in Buclidean space by taking the scalar pfoduct \iﬁth each of the coordinate

axes.

4. If A 1s an arbitrary non-singular square matrix, and ¢ is an arbitrary vector, E*[BIAy
+ ¢] = E*[Ply], i.e. conditioning on a random variable y is equivalent to conditioning
on a linear transformation of y. This can be seen by direct calculation, i.e. let z = Ay

+ ¢, then
Z— E[z] = Ay + ¢ — AE[y]l —c=A(y - E[y]) (A3.22)

Py, = E[(B - EIPD(z - E[2])'] = E[(B - EIPD{A( - E[yD}']
= E[pyA" + BE[Y]'A" - E[BIyA" + E[BIE[y]'A"]
= E[By + BE[y]" - E[Bly + E[B1E[y]"]A"
=P, A" (A3.23)
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P, = E[(z - E[z])(z - E[z])"] = E[{A(y - ElyD}{ Ay - E[yD}"]
= E[Ayy'A" - AyE[y]'AT - AE[yly'A" + AE[y]E[y]'A"]
= E[yy" - yEly]" - Elyly' + E[y]E[y]']A"
= AP, A" (A3.24)

P, =ATP, A (A3.25)

E*[Blz] = Pp,P,, ' [z — E[2]] + E[B] = Py, A"A P, A Ay - E[y]) + E[B] = E*[Bly].
(A3.26)

5. T random vectors are related by the general equation 3 = Ac + d, where A is a
known matrix and d is a vector (a number of properties of which are discussed
below). The minimum mean square estimate of B conditioned on correlated random

vector y is given by
E*[Bly] = Pp,Pyy " (y - Ely]) + E[B], (A3.27)
where obviously Py, is as before, and P, and E[B] are giv;;n by
E[P] = AE[c] + E[d] (A3.28)
Py, = E[(B - EIBD(- ElyD)'] = E[{A(c - E[c]) + (d - E[d]) y - E[y])']
= AE[(c- E[e])(y - ElyD)'] + E[(d - E[d])(y - E[y])']

= AP, + Py (A3.29)

Substituting this into (A3.27) gives

E*[Bly] = [APey + Py, Py (y - Ey]) + E[B]
= AP, P, (y - Ely]) + AE[c] + Po,Py," (v - Ely]) + E[d]
= AF*[cly] + E*[dly] (A3.30)
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Based on this result the estimator is seen (o be linear, i.e. the best estimate of a linear

combination is the corresponding linear combination of estimates of the components.

An important case arises when d is uncorrelated with y, meaning that Pgy = 0. If in

addition E[d] =0, then

E=[Bly] = AE*[cly] (A3.31)

The definition of the lincar minimum mean square estimate and the five properties

listed above are the main theoretical basis Tor the Kalman filter.
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A3.2 Kalman Filter Problem Statement

The Kalman Filter is a recursive algorithm that calculates the linear minimum mean
square estimate of the state of a dynamic system driven by white noise, based on the
model of the system and noisy measurements. Using the notation of the previous
section, the state of the system, X, is equivalent to the vector B, and the measurement z
is comparable to y. The state, x, however is not a constant vector, but is related by the

discrete time state space model:

X(k+1) = Dx(k) + I'w(k) (A3.32(a))
z(k) = Cx(k) + v(k) - (A3.32(b))

where [ - (k) denotes the value of a random vector sequence at a discrete instant.

A v(k)
x(k+1) x(k)

wik) — I B A P C 7(k)

o l¢g— |

Figure A3.1 Discrete Kalman filter block diagram

The process {w(k)} is known as the system noise and has the following properties

Elwk)]=0Vk (A3.33(2))
ElwOw() = Qdx (A3.33(b))

i.e. w(k) is a zero mean white noise vector secquence (it is uncorrelated with itself
from one instant to the next). Similarly, {v(k)} is the measurement noise with

properties:

Elvik)]=0Vk (A3.34(a))
Elv(v() T = R (A3.34(b))
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It is assumed that the measurement and system noise processes are uncorrelated
E[w)v()'1=0Vk,; (A3.35)

and that the initial value of the state is uncorrelated with both {w(k)} and {v(k)}
Ex(O)wk)"] = E[x(O)v(k) =0V k (A3.36)

The model for the system can either be composed in discrete time or a discretised
version of a continuous model. The above model is not completely general for a
number of reasons. Most importantly, the model matrices are assumed to be constant,
and there is no deterministic input. These situations are easily dealt with and are
commented on below. Extra generality can also be added by allowing the system and
measurement noises to be correlated, or for the system noise to have a ‘feed-through’
term to the measurements. The above model is all that is required in this work, and
simplifies the derivation. The general derivation is covered in Anderson and Moore

[2].

In the Kalman filter, at each instant, k, an estimate of the state of the system is-
conditioned on all available data, i.e. z(j), j = 1, 2, ...., k. For simplicity, and to be
consistent with almost all Kalman filtering literature, the following notation is

adopted

E¥[x()12(1),2(2), ....2(K)] = E¥[x(K)IZK)] = ;(klk) (A3.37)

i.e. the estimate of the state at the k™ instant based on all measurements available up
to the k™ instant. Tt is stated that the estimate E*[x(K)IZ(K)] is conditioned on Z(k).
This is suggestive of the fact that in the Gaussian case E*[x(k)IZ{k)] = E[x(k)IZ(k)]

(as mentioned in the previous section), the conditional expectation.
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Consider the estimate based on all available data at the (k+1)™ instant

X (k+11k+1) = E*[x(k+ Dlz(1),2(2), ...,2(), z(k+1)] = E¥[x(k+1)Z(k+1)]
(A3.38)

The following previously derived properties are now exploited:

1. the linearity of the estimator

=

the linear minimum mean squared error estimation error is orthogonal to the

data on which it is conditioned.

3. conditioning on a linear transformation of a random vector is equivalent to
conditioning on the original random vector

4. an estimate based on orthogonal random variables is equal to the sum of the

estimates based on the individual random variables

Using the first property note that

z (k+11k) = Cx (k+1lk) + v (k+11k) ‘ (A3.39)

Consideration of the measurement equation (A3.32(b)) and the white characteristics
of {v(k)} (A3.34) shows that v(k+1) is uncorrelated with z(j) j = 1,2,...k and since it is
zero mean the linear minimum mean square estimate is zero, meaning (A3.39)

simplifies to:

;(k+fl, k) = C; (k+11k) (A3.40)

The predictive error in estimating z(k+1) known as the innovation is denoted

e,(k+11k) = z(k+1) - ;(k+;|, Ik) | (A3.41)
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Using the second property, this estimation error is orthogonal to all the data on which
it is conditioned, i.e. Z(k). Since e,(k+1lk) it is a linear {ransformation of z(k+1), the

third property shows that the following is true

)/; (k+11k+1) = E*[x(k+ DIZ(k+1)] = E*[x(k+1)z(1),2(2), ...,z(k), z(k+1)]
= E*[x(k+1)IZ(k) e (k+11k)] (A3.42)

Finally, the fourth property shows that since Z(k) and e,(k+1lk) are orthogonal the
estimate can be expanded to the sum of the estimates based on each of these

quantities;

x (k+11k+1) = E*[x(k+ DIZ(K),e,(k+11K)]
= E¥[x(k+ DIZK)] + E*[x(K)le,(k+11K)] - E[x(K)] (A3.43)

[t should be noted that it is customary to show all conditioning as occurring on the

innovations sequence, rather than the actual measurements, 1.e.

x (k1 ke 1) = E*x(ke Dley(1).4(2).. (k) e,k 1)] = EX[x(kt DIE,(k+1)]
‘ . C O (A3.44)

this has the conceptual benefit that the estimate is the sum of the projections of each
of x(k+1) onto each of the k+1 orthogonal vectors; conditioning occurs on a white
zero mean sequence. While this is theoretically and intuitively interesting, it iS not

required, since the estimates are generated recursively, as is now shown.

To evaluate E*[x(k+1)IZ(k+1)], is equivalent to calculating the sum of
E*x(k+DIZ)] and E*[x(k+1)le,(k+1k)]. The former is known as the predictive
estimate since it predicts the value of the state at x(k+1) using all previous
measurements.  The latter is the corrective estimate and uses only the new
information at the (k+1)™ instant. The term ‘new information’ is ambiguous since it

means both the new measurement and, more correctly, also that part of the new
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measurement that could not be predicted from all previous measurements. We

proceed now by evaluating the predictive and corrective estimates.

Using the linearity of the estimator and the model of the state (A3.32(a)) it is seen that
the predictive estimate of the state (the estimate of the state at (k+1)th instant based on

information up to the k™ instant) is given by

X (k+11k) = ®x (klk) + " w (klk) (A3.45)

Note from (A3.32(b)) and (A3.33) that w(k) is uncorrelated with z(k), therefore the

linear minimum mean squared error estimate of w(k) is E[w(k)] =0, and

; (k+1lk) =D ;( (klk) (A3.46)

Before the second term can be calculated, definitions of estimation errors and the
associated covariance matrices need to be made. There are estimation errors
associated with both the predictive and corrected estimate, both of which are zero

mean due to the unbiased characteristic of the linear minimum mean square estimator.

The prediction error is denoted

e(k+1lk) = x(k+1) - ;(k+fllk) = Px(k) - ;:(klk)] + I'w(k). (A3.47)

The corrected estimation error in the estimate when all possible information is

included is defined

e(klk) = x(k) - x (ki) (A3.48)

and thus it is seen (using (A3.32(a)), (A3.45) and (A3.48)) that the predictive and

corrected estimation errors actually fulfil the difference equation:

e(k+1lk) = De(klk) + I'w(k). (A3.49)
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The covariance matrix of the predictive estimation error (which is zero mean) is

calculated as follows

P(k+11k) = E[e(k+11K)e(k+11k)"]
= E[{De(klk) + Tw(k)) {De(klk) + Tw(k)) "]
= DE[ekk)eklk) 1P + OE[ekIwWE) 1T + TE[wK)ekk) [T
+ TEw{low) "I (A3.50)

Examination of the definitions of the quantities e(klk) and w(k) show that they are

uncorrelated, hence (A3.50) simplifies to

P(k+11k) = ®Ee(kik)eklk) 10T + TE[wk)wk) " T"
= OPKK)D" + TQI™, (A3.51)

where P(klk) is the covariance matrix associated with e(klk) and Q is the previously
defined system noise covariance matrix. Some mote work needs to be done before

P(klk) can be evaluated, which is actually the last step of the derivation.

Recall that the filtered estimate is given by (A3.43):
X (k+1lk+1) = E*[x(k+DIZ(K)] + E*[x(K)le,(k+11k)] - E[x(k)]

A

= x (k+11k) + E¥[x(k)le,(k+11k)] - E[x(k)] (A3.52)

the second part of the estimate, the component conditioned upon the innovation at the
(k+1)™ instant, is now calculated. Following from the definition of the linear

minimum mean square estimator:

E*[x(k+1)le,(k+11k)] =
cov[x(lc+1).e e+ D]covlescr ).e,(k+ D] (e(kr1) - Eleg(k+1)]) + Elx(k+1)]
(A3.53)

where cov[a,b] denotes the covariance matrix of the random vectors a and b. Note

firstly that since the estimate of z(k+1) is unbiased, E[e,(k+1)] = 0, therefore
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E¥[x(lc+Dley(k+ 11K)] = cov[x(k+ 1) e,(k+ D1E[ e (k+ Dey(k+1) T e (k1) + E[x(k+1)]
(A3.54)

Consider the cross-covariance matrix cov[x{k),e(k+1)]:

cov[x(k+1),e,(k+1)] = E[(x(k+1) — E[x(k+1)]e,(k+1)T] (A3.59)

using X(k+1) = x (k+1lk) - e(k+11k) and e,(k+1) = Ce(k+11k)+v(k+1):

cov[x(k+1),e,k+1)] = E[(; (k+11K) - e(k+11K) — E[x(k+D](Ce(k+11k) + v(k+1)"]
(A3.56)

This expression can thankfully be significantly simplified, since the predictive
estimate is orthogonal to the associated error, and v(k+1) is uncorrelated with both
quantities. Combining these facts with E[e(k+1lk)] = 0 and Ejv(k+1)] = 0 means
(A3.55) simplifies to:

cov[x(k+1),e,(k+1)] = E[e(k+11k)e(k+11k)"1CT = P(k+11k)C" (A3.57)

The next matrix of (A3.54) to evaluate is E[ez(k+1)ez(k+1)T]. This is achieved by

again using the relation e,(k+1) = Ce(k+11lk)+v(k+1):

Ele(k+1)e,(k+ 1] = E[{Ce(k+1/K)+v(k+1) } { Cek+11K)+v(k+1)} "]
(A3.58)

Since e(k+1/k) and v(k+1) are uncorrelated and zero mean this simplities to give

Ele,(k+ e, (k+1)'T = CE[e(k+1IK)e(k+11)ICT + E[v(k+1)v(k+1)"]
= CPk+1I)C" + R (A3.59)

Combining these matrix definitions shows that
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ExIx(k+Dley(k+11K)] = Pk+11K)CTTCPk+11K)C" + R e, (k+1) + E[x(k+1)].

(A3.60)
Substituting this result into the (A3.52) gives
X (k+ Llk+1) = E*[x(k+ DIZ)] + E*[x(K)le,(k+11K)] - E[x(k)]
= x (k+11k) + P(k+1IK)CTICPKk+11K)C" + R] e, (k+1)
= x (k+11k) + K(k+D[z(k+1) - Cx (k+11K)], (A3.61)
where
K(k+1) = Pk+1K)CTICP(k+11K)C" + R} (A3.62)

is the Kalman gain matrix.

The only matrix of the KF algorithm yet to be evaluated is P(klk), which is required
for the calculation of P(k+1lk) and consequently K(k+1). Recall that P(klk) is the

covariance matrix associated with the corrected error measurement:
P(k+11k+1) = E[e(k+1lk+1D)ek+11k+ 1), (A3.63)

where
e(k+1k+1) =x(k+1) - x (k+11k+1)

= x(k+1) - ; (k+11k) + K(k+1)[z(k+1) - C; (k+11k)]
= e(k+1k) + K(k+1D[Ce(k+11k) + v(k+1)]
=[1 - K&+1)Clek+1lk) + Kk+1)v(k+1) (A3.64)

Letting K = K(k+1) for brevity

P(k+11k+1) = E[{[1 = KCle(k+11k) + Kv(k+1)} {[1 - KCJe(k+11k) + Kv(k+1)}"]
(A3.65)
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Since e(k+1lk) and v(k) are uncorrelated and zero mean the expectations of their

products are equal to zero and

P(k+1lk+1) = [1- KC1E[e(k+11K)ek+1k)[1 - KC]"+KE[v(k+ v+ D) TTKT
=[1-KCIP(k+11k)[1 - KC]" + KRK"
= P(k+11K)[1 - KC]" - KCP(k+11k) + KCP(k+11k)C'K™ + KRK"
= P(k+11k)[1 - KC]" - KCP(k+11k) + K[CP(k+1Ik)CT + RIKT
(A3.66)

Since K =P(k+1k)CTTCPK+1k)CT + R,
K[CP(k+1Ik)C + R] = P(k+1k)C", (A3.67)
and therefore (A3.66) simplifies to:
P(k+1lk+1) = P(k+11k)[1 - KC]" - KCP(k+11k) + P(k+1lk)CTK"
= P(k+11k) - P(k+1IK)CTK" - KCP(k+11k) + P(k+1lk)CTK"
= P(k+11k) - KCP(k+11k)

=[1 - KC]P(k+1lk) : « (A3.68)

In summary the Kalman filter equations are

x (k+11k) = ®x (klk) (A3.46)
P(k+11k) = dPklk)®" + QI (A3.51)
K(k+1) = P(k+1Ik)C[CP(k+1k)C" + R]™ (A3.62)
x (k+1k+1) =x (k+11k) + K(k+D[zk+1) - Cx (k+11k)] (A3.61)
P(k+1k+1) =[1 - KCIP(k+11k) A (A3.68)

Furnished with measurements, z(k), a system model consisting of the state transition
matrix @, the noise input matrix I', the input and measurement noise covariance

matrices, Q and R, an initial state estimate, and an initial estimate of the state
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estimation error covariance matrix P(0I0), this algorithm recursively generates the

minimum  mean  squared  estimate  of  the  state for all k.
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A4 Data Acquisition Hardware, Software and

Protocols

The subsequent chapters describe sensors and signal processing methods that were
developed for the purpose of rowing instrumentation. These sensors, of course, need
to be connected to a data acquisition system, for the collection and storage of data.
This brief chapter describes the hardware and software that were developed for this

purpose. The method by which data was collected is also described.

Both the hardware and software were designed in consultation with the author and Dr.
David Aitchison, but Julian Phillips, Julian Murphy and Dejan Metrovic performed

the bulk of the work described in this chapter.
A4.1 Computer Hardware

The aim of this work was to create an instrumentation system for rowing capable of
producing real time results. As such it was necessary to somehow transmit the data
from the sensors to a remote viewing station. The system was therefore comprised of
two computers, one that acts as a data acquisition system on board the boat (ORACQC),
and one that received and displayed data on the shore (Rocky). The two computers
were to be linked using a wireless LAN (Local Area Network) connection, but trials
showed the range to be insufficient. An alternative product for data transmission is

being searched for.

A4.1.1 ORAC

The data acquisition computer was dubbed ORAC, On-the-water Rowing data
Acquisition Computer. This acronym will be familiar to those aufait with archaic

British science fiction.

ORAC is a fully functional PC, with 400 MHz Celeron processor, mounted on a small
footprint KA-6110 motherboard, chosen for its size and multiple ISA (Industry
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Standard Architecture) slots, 64 MB ram and a 7.5 GB hard drive. The case for the
computer is a large polypropylene clear tub, with an aluminium lid for hear
dissipation. The motherboard is fastened to the bottom of the tub, while other
components, described below, are fastened to the lid. A rubber gasket is located

between the lid and tub to give a reasonably watertight seal.

Two data acquisition cards were used, one for the analog sensors, and the other for the
digital sensors. The NUDAQ 9114 has 32 analog channels (single ended) and 16
digital channels available. It was used only for the analog channels, of which there
were a total of 19. Space is available for system expansion, the most pressing of these
items is a second oar force sensor, so that sculling can be fully monitored. The 9114
occupied an ISA slot. The Universal Pulse Processor was designed and constructed
by Julian Murphy of the Electronics Workshop. In this work it was used to process
the quadrature output of a rotary encoder as well as the pulse type outputs of

miscellaneous digital devices requiring counter/timer facilities.

In addition to the sensors described in the following chapters, the system was
designed to capture linked video images. ‘Linked’ is used in the sense that the
sensory data is synchronised with the video data, providing very useful information
for biomechanists/coaches. A Matrox video card was used for video capture and also -
allowed for, in combination with a small transmitter, the use of ORAC with a portable
television instead of a regular computer monitor. While this was initially seen as a
good way to keep costs down, it was found, as is described below, to be too

troublesome for the saving.

ORAC was controlled using a wireless keyboard (an infrared receiver is located on
top of the case) or an FM wireless mouse. The keyboard normally performed well,

but required a clear line of sight between the transmitter and receiver.

A number of options for display were trailed, the least successful of which was using
a small wireless TV, with the transmitted within the case. A lot of time was spent
manoeuvring a small aerial, with one foot in the river, sheltering the small screen
from any incident light! Towards the end of the work, a flat screen monitor was

trailed. In operation, one ‘docked’ with the boat and passed the monitor connection
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cable to the rower to connect to ORAC. This technology made data collection a lot
faster. The final choice, however, was a flat touch screen, so that the user-interface

and display could be combined into one.

Power is provided to the computer by an external 6.5 Ahr Lead Acid battery, which is
connected through a watertight socket on the lid. Mounted on the lid are two switch-
mode power supplies, one providing 3.3V, +12V and -12V lines, and the other
dedicated to provide 5V. One battery allowed approximately one hour of operation.

A similar battery was also used to power the flat screen display.
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A4.1.2 Rocky

Rocky is the ‘base unit’ of the data acquisition system. While one could perhaps
think of a clever acronym, the fact is that Rocky is the brand name of the ruggedised,

splash-proof laptop. Apart from robustness, Rocky did not have any special features.

A4.1.3 Methods of Operation; Planned and Reality

As previously mentioned, it was desired that the system be able to produce real time
results, that is results viewable at a distance from the boat, without any appreciable
delay. To achieve the transmission of data, a Diamond Homefree® Wireless LAN
system was purchased. This system consisted of an ISA card, that was installed
within ORAC and a PCMCIA card inserted into Rocky. Within the laboratory,
communication between the two machines was often difficult to initiate, a process that
seemingly had to be repeated every time a new piece of hardware was installed. In its
favour, some simple land based testing showed that the transmission distance was
around 150 m. For some reason, this value dropped to closer to 5m as soon as one of
the computers was over water. This meant that communication between the
computers was not a viable option. Regardless of this fébt, the planned methods of

operation, one of which was luckily a ‘standalone’ mode are described below.
Radio-linked Operation

In this method, Rocky is used to remotely start data collection; ORAC is set adrift,
powered on, with the Dataview software (described below) running, but no user
intervention is required. Once data collection is initiated by the operator, ORAC
processes the incoming data, writes it to hard disk and also transfers to Rocky for
viewing purposes. When Rocky’s user issues the command to stop data collection

duplicate data files are created on Rocky and ORAC.
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Standalone

ORAC is operated using the previously mentioned infrared keyboard and flat screen
display. Dataview is started, data collection initiated and the monitor disconnected
and then the boat is set adrift. Data collection is stopped in a similar way. Once the
data is stored within ORAC, one has the option of either connecting a drive and
writing the data to a floppy disk, or using the wireless LAN to transmit it to Rocky for

further analysis.
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A4.2 DataView

DataView is the name of the data collection and display program written by Dejan
Metrovic for this work. It was written in Visual C++ to give a simple and attractive
user interface while still allowing for reasonably low level commands required for fast

data acquisition.

The program is operable in three modes. One collects, records and displays data, one
collects, saves and sends data, and the last receives data, via the LAN, displays and
saves the data. Due to the aforementioned problems with the LAN, DataView was

most often run in the second mode, with no display.

During operation the traces of the input signals scroll across the screen. Most of the
signals appear in their raw state, i.e. voltages, although it would be a small task to
include the transformations from voltage to physical parameter. The program allows

the user to toggle the display of the channels, as well as control the colour of the trace.

At the conclusion of data capture, a ‘.dat’ file is created. Each sample is
‘timestamped’, and the columns of the file correspond to the recorded channel. The
timestamping was performed to facilitate synchrohisation'between video and sensory
data. At the time of writing, there were still some problems with the video capture

facility.
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A4.3 System Performance Summary

The cbnstruction of computer hardware and software required for this project was a
large undertaking. The data acquisition system, ORAC, performs well, apart from a
strange problem that was sometimes found in the collection of data from the analog
channels. One channel would sporadically influence the output of the next. It was
initially thought that this was caused by an insufficient delay during multiplexing, but
extending the period did not remove the effect. This problem baffled all who
witnessed it! ORAC has the benefit of being a total PC, which gives flexibility; an
important quality for future research. The downsides of this generality are the power

requirement and physical size of the computer.

The software, DataView, is also general, and if ORAC, or a successor, are reduced in

size, perhaps to a ‘single card’ computer system, the program will still be of utility.

To offer real time results, as was initially intended, it is required that a more effective

telemetry package be secured. Such a system is currently being sought.
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