6 research outputs found

    The Birimian event in the Baoulé Mossi domain (West African Craton) : regional and global context

    Get PDF
    The crystalline basement of the West African Craton (WAC) was established during the Siderian to Orosirian (circa 2.35-1.95 Ga) Birimian event through accretion of extensive tracts of juvenile crust that was tectonically juxtaposed with Archean cratons. The Birimian crust is comprised of volcanic belts and sedimentary basins that have been intruded by multiple generations of intrusive rocks and experienced several tectonothermal events. The basement is mainly exposed in two shields in the northern and southern WAC, respectively, both of which are comprised of a western Archean and an eastern Birimian domain. The southern shield is called Man-Leo and includes the Archean Man and Birimian BaoulĂ© Mossi domains. The aim of this thesis has been to create a preliminary regional-global geodynamic model for the Birimian event in the BaoulĂ© Mossi domain using mainly available literature data but also including some new data from Ghana in the SE BaoulĂ© Mossi domain. Based on this compilation, the geodynamic evolution of the BaoulĂ© Mossi domain is divided into four phases; the Eoeburnean (>2.13 Ga), Eburnean I (2.13-2.10 Ga), Eburnean II (2.10-2.07 Ga) and Eburnean III (<2.07 Ga). The Eoeburnean phase likely began around 2.4-2.3 Ga and is characterized by the accretion of juvenile crust formed in island arcs. A rise in magmatic zircon ages after circa 2.25 Ga may be related to an increase in felsic magmatism as a result of crustal thickening and maturation but also increased preservation of accreted island arcs as a decrease in the number of active subduction zones may have reduced the rate of crustal recycling. Intrusive rocks emplaced during this phase were dominantly sodic granitoids but granites and monzogranites also occur. Tectonothermal and magmatic activity indicate that the Birimian crust in the BaoulĂ© Mossi domain experienced both compression and extension during the Eoeburnean phase. By the end of this phase, an eastward dipping subduction zone had been established along the western margin of the Birimian crust in the BaoulĂ© Mossi domain. Several sedimentary basins in central and SE BaoulĂ© Mossi were established during the Eburnean I phase. The opening of the sedimentary basins may have taken place during regional NE-SW dextral shearing leading to block rotation and development of N-S sinistral shear zones. This also coincided with the collision between the Archean crust of the Man domain and the Birimian crust in the SW BaoulĂ© Mossi domain. The collision also affected the extension of the BaoulĂ© Mossi domain in the Guyana shield of the Amazon Craton. The Eburnean II phase is the most complex. Westward-directed slab rollback in NW BaoulĂ© Mossi led to extension within the overriding Birimian crust. This led to the emplacement of high-K intrusive rocks and explosive extrusive magmatism in NW BaoulĂ© Mossi, in what may constitute a siliceous large igneous province. Extension also led to the opening of younger sedimentary basins in central BaoulĂ© Mossi, possibly along NE-SW oriented shear zones established during the Eburnean I phase. Ongoing collision between the Man domain and the BaoulĂ© Mossi domain led to crustal thickening and associated high-P granulite facies metamorphism in the SE Man domain, possibly around 2.10-2.09 Ga. Granulite facies metamorphism is also recorded in the Archean AmapĂĄ block in the E Guyana shield at this time. The AmapĂĄ block is separated from the Man domain by a wide belt of low-grade Birimian crust. Simultaneous granulite facies metamorphism in both these areas may be explained by lower crustal detachment in hot Birimian crust. This may allow the upper crust to be displaced without significant thickening until it reaches cooler and more rigid crust were thrust belts are developed. Crustal thickening was followed by a switch to post-collisional sinistral transpression coupled with emplacement of extensive leucogranites between 2095-2080 Ma as the sedimentary basins in central BaoulĂ© Mossi were closed. In contrast to other parts of the BaoulĂ© Mossi domain, the NE part did not experience any significant magmatic activity during this phase, but may have been affected by tectonothermal activity. The BaoulĂ© Mossi domain experienced post-collisional extension during the Eburnean III phase that coincided with the formation of the Bakhuis UHT-granulite belt in the Guyana shield and decompression melting in the Archean crust of SE Man domain and the AmapĂĄ block. Limited intrusive and extrusive alkalic post-collisional magmatism was present within the Birmian crust, which cooled and stabilized between 2.0-1.9 Ga. Limited reactivation of the Birimian crust during this period may have taken place in response to far-field events. On a global scale, the Birimian event led to the assembly of a continent — here referred to as Atlantica-Midgardia-Ur — that incorporated continental blocks now present in Africa, South America, India, East Antarctica, Western Australia and Eastern Europe, India, Antarctica and Western Australia. The assembly of Atlantica-Midgardia-Ur coincided with rifting and breakup among crustal blocks now present in North America, northern Europe, North and south-central Australia, East Antarctica and northern Asia. These blocks were subsequently assembled along 2.0-1.7 Ga accretionary belts culminating with the formation of the supercontinent Columbia around 1.8-1.7 Ga, which also included Atlantica-Midgardia-Ur. The assembly of Atlantica-Midgardia-Ur has many similarities with the assembly of Gondwana in the Neoproterozoic regarding the timing and duration as well as spatial distribution of tectonothermal and magmatic activity. In addition, many of the crustal blocks which formed part of Gondwana also formed part of Atlantica-Midgardia-Ur. Likewise, the behavior of the crustal blocks in North America, northern Europe, North and south-central Australia, East Antarctica and northern Asia during the assembly of Columbia is equivalent to the behavior of these blocks during the late Paleozoic (0.3 Ga) assembly of the supercontinent Pangea. The assembly of both Atlantica-Midgardia-Ur and Gondwana coincided with distinct positive excursions in 87Sr/86Sr and ÎŽ13C in marine carbonates. The peaks of ÎŽ13C excursions coincide with accretionary orogenic activity during both the Birimian event and the assembly of Gondwana. Meanwhile, peaks in 87Sr/86Sr during both cycles coincide with collisional orogenic activity related to the assembly of Atlantica-Midgardia-Ur and Gondwana, respectively. The similarities between the assembly of Columbia and Pangea indicate that they represent two iterations of a particular type of supercontinent, here called Pangea-type. The similarities between the tectonic events and the excursions in 87Sr/86Sr and ÎŽ13C indicate that the global tectonic evolution during the Paleo- and Neoproterozoic was fundamentally the same. A supercontinent (Kenorland) equivalent to Rodinia should therefore have existed during the Neoarchean-Paleoproterozoic and broken up in a similar manner to Rodinia. For this reason, Kenorland and Rodinia, as well as the next supercontinent Amasia, can therefore be assumed to represent three iterations of another type of supercontinent, here called Rodinia-type. Supercontinent cycles thus record the transition from either a Rodinia- to Pangea-type supercontinent, or vice versa. The Rodinia- to Pangea-type supercontinent cycles coincide with periods during which the oxygen concentration in the atmosphere was significantly increased. Rodinia- to Pangea-type supercontinent cycles therefore appear to be particularly important for the evolution of the atmosphere, biosphere and hydrosphere. If Kenorland was the first supercontinent, then a “true” supercontinent cycle corresponds to the breakup of one Rodinia-type supercontinent and the subsequent assembly of the next Rodinia-type iteration. In this context, Pangea-type supercontinents are only transient stages when enough crust is aggregated to form a supercontinent. The breakup of Kenorland should have mirrored the “inside-out” breakup of Rodinia in the Neoproterozoic and the ongoing assembly of Amasia. This allows for a reverse schematic reconstruction of the continental blocks of Rodinia as they were positioned in Kenorland. The consistent behavior of most continental blocks since the breakup of Kenorland suggests that they may be divided into three “continental cells”. Each cell is characterized by a particular behavior during a Rodinia- to Rodinia-type supercontinent cycle. Transfer of continental blocks between cells may take place during the breakup of a Rodinia-type supercontinent. Transfer seemingly occur in a dynamic fashion in which a given cell “loses” a block to one cell but at the same time “gains” a block from the other cell. As such, the continental blocks are rotated between the cells even as the size of the cells remains unchanged. Although there are differences between successive Rodinia- to Rodinia-type supercontinent cycles — as shown by the apparent absence of an Atlantic-type ocean during the Kenorland-Rodinia cycle — they are still controlled by the same fundamental cyclicity, which was established during the formation and subsequent breakup of Kenorland.PopulĂ€rvetenskaplig sammanfattning Det Birimiska eventet i VĂ€stafrika – regional och global kontext för bildningen av en bergskedja för 2.35–2.00 miljarder Ă„r sedan Den era som kallas Paleoproterozoikum omfattar en tidsperiod för 2500 till 1600 miljoner Ă„r sedan. Den tidiga delen av denna period (för cirka 2500–2000 miljoner Ă„r sedan) kĂ€nnetecknas av omvĂ€lvande förĂ€ndringar i geobiosfĂ€ren. Det anses av mĂ„nga vara den period i jordens historia under vilken plattektoniska processer motsvarande de som verkar idag etablerades, vilket följde pĂ„ en övergĂ„ngsperiod under Meso- till Neoarkeisk tid (3200–2500 miljoner Ă„r sedan). Den tidiga delen av Paleoproterozoikum sammanföll ocksĂ„ med att atmosfĂ€ren för första gĂ„ngen blev syresatt. Detta var viktiga steg pĂ„ utvecklingen mot den vĂ€rld vi lever i idag. Den hĂ€r utvecklingen gör den tidiga delen av Paleoproterozoikum till en i högsta grad intressant period att studera. Det hĂ€r arbetet har fokuserat pĂ„ bergskedjebildning i VĂ€stafrika under det sĂ„ kallade Birimiska eventet som Ă€gde rum för cirka 2350–2000 miljoner Ă„r sedan. Den exponerade Birimiska kontinentalskorpan utgörs av vulkaniska bĂ€lten och sedimentĂ€ra bassĂ€nger som intruderats av flera generationer av granitoider. De Birimiska bergarterna Ă€r i huvudsak isotopiskt juvenila. Detta innebĂ€r att de hade sitt ursprung i jordmanteln vid tiden för deras bildande, till skillnad frĂ„n Ă€ldre Arkeisk kontinentalskorpa. De Birimiska bergarterna utgjorde alltsĂ„ ett tillskott till den totala mĂ€ngden kontinentalskorpa. Syftet med det hĂ€r arbetet har varit att skapa en regional-global modell för det Birimiska eventet i VĂ€stafrika, med andra ord att försöka förklara i vilket sammanhang den Birimiska skorpan bildades. Arbetet har utförts genom litteraturstudier samt analys av geokronologisk och geokemisk data frĂ„n VĂ€stafrika. UtifrĂ„n dessa studier har det Birimiska eventet i detta arbete delats in i fyra faser. Dessa kan i sin tur fördelas pĂ„ tvĂ„ perioder. Den första perioden var en ackretionĂ€r fas (mellan cirka 2350–2130 miljoner Ă„r sedan) vilken omfattade subduktion av ocean jordskorpa och smĂ„skaliga kollisioner mellan vulkaniska öbĂ„gar, men mindre kontinenter med Arkeisk skorpa kan ocksĂ„ ha varit inblandade. Under denna period bildades huvuddelen av de vulkaniska bĂ€ltena, tillsammans med tidiga plutoniska bergarter. Den andra perioden av det Birimiska eventet motsvarar tiden dĂ„ den oceana jordskorpan hade konsumerats (mellan cirka 2130–2000 miljoner Ă„r sedan). Detta ledde i sin tur till att tidigare separata landmassor kolliderade och sammanfogades till en stor kontinent. Vad som följde var en vĂ€ldigt komplex utveckling, under vilken olika delar av den Birimiska skorpan – som etablerades under den första perioden – utsattes för kompression och/eller extension. Detta Ă€gde huvudsakligen rum under en period för 2130–2070 miljoner Ă„r sedan. I samband med detta utvecklades skjuvzoner utmed vilka block av den Birimiska skorpan försköts gentemot varandra. De omrĂ„den som utsattes för extension kĂ€nnetecknades av bĂ„de vulkanisk och intrusiv magmatisk aktivitet samt bildandet av sedimentĂ€ra bassĂ€nger. För cirka 2070 miljoner Ă„r sedan avtog den magmatiska aktiviteten inom den nu exponerade Birimiska skorpan. Den kyldes dĂ„ av och stabiliserades för cirka 2000–1900 miljoner Ă„r sedan. Det Birimiska eventet i VĂ€stafrika har mĂ„nga likheter med den Östafrikanska orogenesen (ett annat ord för bergskedjebildning), som Ă€gde rum i Neoproterozoisk tid för cirka 900–550 miljoner Ă„r sedan. Den Östafrikanska orogenesen var en del av bildandet av en kontinent för cirka 600–500 miljoner Ă„r sedan som kallas Gondwana. Detta var ett viktigt steg pĂ„ vĂ€gen mot bildandet av superkontinenten Pangea, vilket Ă€gde rum under sen-Paleozoisk tid för cirka 300 miljoner Ă„r sedan. I likhet med det Birimiska eventet kan den Östafrikanska orogenesen delas in i en tidig ackretionĂ€r period som i sin tur följdes av en period med storskaliga kollisioner mellan olika kontinenter. PĂ„ samma sĂ€tt som den Birimiska skorpan utgörs Ă€ven betydande delar av den Östafrikanska orogenesen av juvenil skorpa. BĂ„de det Birimiska eventet och den Östafrikanska orogenesen sammanföll med positiva exkursioner i kol- och strontium-isotoper uppmĂ€tta i marina karbonater, vilka hade sina toppar under de ackretionĂ€ra respektive kollisions-relaterade perioderna. BĂ„de kol- och strontium-isotoper anses vara kĂ€nsliga för tektoniska processer. I ett större sammanhang var det Birimiska eventet och den Östafrikanska orogenesen delar i bildandet av större kontinenter. BĂ€gge av dessa kontinenter innefattade kontinentalskorpa som nu Ă„terfinns i Afrika och Sydamerika. De ovan nĂ€mnda likheterna indikerar att den globala tektoniska utvecklingen under Paleoproterozoikum hade stora likheter med den under Neoproterozoisk-Paleozoisk tid. Den senare innefattade uppbrytandet av den tidig-Neoproterozoiska superkontinenten Rodinia för cirka 1000 miljoner Ă„r sedan, följt av bildandet av först Gondwana och – 700 miljoner Ă„r senare – superkontinenten Pangea. Den Neoproterozoiska-Paleozoiska globala tektoniska utvecklingen skulle dĂ€rför kunna anvĂ€ndas som en modell för utvecklingen under Paleoproterozoisk tid. Det skulle i sĂ„ fall innebĂ€ra att en superkontinent motsvarande Rodinia existerade för cirka 2500 miljoner Ă„r sedan. Den skulle dĂ€refter ha brutits upp i mindre landmassor pĂ„ motsvarande sĂ€tt som Rodinia. Följt pĂ„ detta skulle en del av dessa landmassor 400 miljoner Ă„r senare ha sammanförts i en större kontinent – av vilken den Birimiska skorpan var del av – som motsvarade Gondwana. Slutligen skulle denna kontinent ha kolliderat med andra landmassor för att tillsammans bilda den sen-Paleoproterozoiska superkontinenten Columbia för cirka 1800 miljoner Ă„r sedan, som dĂ„ skulle motsvara Pangea. Att det i likhet med Paleoproterozoisk tid ocksĂ„ skedde en kraftig ökning av syre i Neoproterozoisk tid indikerar att just den hĂ€r utvecklingssekvensen kan vara kopplad till syresĂ€ttningen av atmosfĂ€ren

    A hypothesis for Proterozoic-Phanerozoic supercontinent cyclicity, with implications for mantle convection, plate tectonics and Earth system evolution

    Get PDF
    We present a conceptual model for supercontinent cycles in the Proterozoic-Phanerozoic Eons. It is based on the repetitive behavior of C and Sr isotopes in marine carbonates and U–Pb ages and ΔHf of detrital zircons seen during the Neoproterozoic-Paleozoic and Paleoproterozoic Eras, respectively. These records are considered to reflect secular changes in global tectonics, and it is hypothesized that the repetitive pattern is caused by the same type of changes in global tectonics. The fundamental premise of this paper is that such repetitive changes should also be recorded in orogenic belts worldwide. This carries the implication that Neoproterozoic-Paleozoic orogenic belts should have Paleoproterozoic equivalents. It is proposed that this is the case for the East African, Uralides and Ouachita–Alleghanian orogens, which have Paleoproterozoic analogs in the West African–Amazon, Laurentian and East European cratons, respectively. The Neoproterozoic-Paleozoic orogenic belts are not isolated features but occur in a specific global context, which correspond to the relatively well-constrained Neoproterozoic break-up of Rodinia, and the subsequent Late Paleozoic assembly of Pangea. The existence of Paleoproterozoic equivalents to Neoproterozoic-Paleozoic orogens requires that the same cycle defined the Paleoproterozoic. We therefore hypothesize that there were Paleoproterozoic supercontinents equivalent to Rodinia and Pangea, and that Proterozoic-Phanerozoic supercontinents are comprised of two basic types of configurations, equivalent to Rodinia (R-type) and Pangea (P-type). The Paleoproterozoic equivalent of Rodinia is likely the first supercontinent to have formed, and Proterozoic-Phanerozoic supercontinent cycles are therefore defined by R- to R-type cycles, each lasting approximately 1.5 Gyr. We use this cyclic pattern as a framework to develop a conceptual model that predicts the configuration and cycles of Proterozoic-Phanerozoic supercontinents, and their relation to mantle convection and Earth system evolution

    Petrology of Birimian granitoids in southern Ghana : petrography and petrogenesis

    No full text
    Den Paleoproterozoiska Birimiska terrinen bestĂ„r av vulkaniska och sedimentĂ€ra bergarter i grönstensbĂ€lten och metasedimentĂ€ra bassĂ€nger som har blivit intruderade av tvĂ„ generationer granitoider. Den Birimiska terrinen utgör en stor del av den vĂ€stafrikanska kratonen. Den bildades under en period med omfattande juvenil magmatism som skapade stora volymer med kontinental jordskorpa. MĂ„nga frĂ„gor angĂ„ende den tektoniska miljön i vilken denna process Ă€gde rum Ă€r fortfarande obesvarade. De tvĂ„ generationer av granitoider - grovt indelade i Ă€ldre bĂ€lt- och ocu yngre bassĂ€ng-typer - utgör en viktig nyckel till förstĂ„elsen för den Birimiska terranens geodynamiska utveckling. Syftet med detta examensarbete var att bestĂ€mma i vilken tektonisk miljö granitoider - bĂ„de bĂ€lt- och bassĂ€ngtyper - frĂ„n den Birimiska terranen i södra Ghana bildades. BĂ€lt-granitoiderna bildades i en subduktions-miljö mellan 2232-2169 Ma. De har mĂ„nga likheter med TTGs sĂ„som att dem Ă€r Na-rika och uppvisar lĂ„ga HREE-vĂ€rden vilket indikerar att de bildades genom smĂ€ltning av en subducerande oceanskorpa. Dock uppvisar de ocksĂ„ tecken pĂ„ interaktion med mantel samt ett calc-alkalint beteende. De verkar dĂ€rför som om granitoiderna bildats genom en slab-smĂ€lta men dĂ€r subduktionsvinkeln pĂ„ oceanskorpan var tillrĂ€ckligt stor för att smĂ€ltan skulle kunna reagera med mantel-kilen. BassĂ€ng-granitoiderna bildades genom krustal anatexis i samband med den Eburniska orogenesen och har Ă„ldrar mellan 2134-2098 Ma. Undantaget Winneba-graniten sĂ„ skedde smĂ€ltningen i vatten-mĂ€ttade förhĂ„llanden vilket ledde till preferentiel smĂ€ltning av plagioklas. SmĂ€ltning kan ha skett i diagonal-förkastningar dĂ€r vatten har tillförts frĂ„n dehydrerande sediment. Winneba-graniten bildades genom dehydreringssmĂ€ltning. Detta kan förklara varför den Ă€r yngreĂ€n nĂ€rliggande bassĂ€ng-granitoider dĂ„ dehydrerings-smĂ€ltning Ă€ger rum vid högre temperaturer Ă€n vatten-mĂ€ttad smĂ€ltning. Metamorfos i Birimiska terrinen under den Eburniska orogensen uppgick till grönskiffer-facies. TvĂ„ granitoider frĂ„n Sefwi- och Ashanti-bĂ€ltena har blivit kraftigt omvandlade av hydrothermala fluider, möjligen i anslutning med bildandet av hydrotermala guld-mineraliseringar.The Paleoproterozoic Birimian terrane consists of volcanic and sedimentary rocks occurring in greenstone belts and metasedimentary basins that have been intruded by two generations of granitoids. The Birimian terrane comprises a large part of the West African craton. It formed during a period of extensive juvenile magmatism that led to the creation of a large area of continental crust. Many questions remain unanswered regarding the tectonic setting in which this crust-forming event occurred. The two generations of granitoids—broadly divided into older belt and younger basin types - are an important key to understanding the geodynamic evolution of the Birimian terrane. The purpose of this thesis has been to determine in what tectonic setting granitoids - both belt and basin types - from the Birimian terrane in southern Ghana were emplaced in. The belt type granitoids were emplaced in a subduction setting between 2232-2169 Ma. They share many similarities with TTGs such as being sodic and HREE-depleted indicating that they were derived from a slab melt. However, they also show variable interaction with the mantle as well as a calc-alkaline behavior. It would therefore appear that the granitoids originated as slab melts but were the angle of the subducting slab was steep enough to allow the melt to interact with the mantle wedge. The basin granitoids formed through crustal anatexis in association with the Eburnean orogeny and have ages between 2134-2098 Ma. With the exception of the Winneba granitoid melting occurred in water-saturated conditions leading to preferential melting of plagioclase. Melting may have initiated in transcurrent deformation zones where water was supplied from dehydrating sediments. The Winneba granitoid formed through dehydration melting. This may explain why it is younger then adjacent basin granitoids given that dehydration melting occurs at higher temperatures then water-saturated melting. During the Eburnean orogeny the Birimian terrane was subjected to greenschist facies metamorphism. Two granitoids from the Sefwi and Ashanti belt has been extensively altered by hydrothermal fluids, possibly in association with the formation of hydrothermal gold mineralizations

    A geodynamic model for the Paleoproterozoic (ca. 2.27–1.96 Ga) Birimian Orogen of the southern West African Craton – Insights into an evolving accretionary-collisional orogenic system

    No full text
    corecore