5,419 research outputs found

    On the stability of Bose-Fermi mixtures

    Full text link
    We consider the stability of a mixture of degenerate Bose and Fermi gases. Even though the bosons effectively repel each other the mixture can still collapse provided the Bose and Fermi gases attract each other strongly enough. For a given number of atoms and the strengths of the interactions between them we find the geometry of a maximally compact trap that supports the stable mixture. We compare a simple analytical estimation for the critical axial frequency of the trap with results based on the numerical solution of hydrodynamic equations for Bose-Fermi mixture.Comment: 4 pages, 3 figure

    Colour-singlet strangelets at finite temperature

    Full text link
    Considering massless uu and dd quarks, and massive (150 MeV) ss quarks in a bag with the bag pressure constant B1/4=145B^{1/4} = 145 MeV, a colour-singlet grand canonical partition function is constructed for temperatures T=130T = 1-30 MeV. Then the stability of finite size strangelets is studied minimizing the free energy as a function of the radius of the bag. The colour-singlet restriction has several profound effects when compared to colour unprojected case: (1) Now bulk energy per baryon is increased by about 250250 MeV making the strange quark matter unbound. (2) The shell structures are more pronounced (deeper). (3) Positions of the shell closure are shifted to lower AA-values, the first deepest one occuring at A=2A=2, famous HH-particle ! (4) The shell structure at A=2A=2 vanishes only at T30T\sim 30 MeV, though for higher AA-values it happens so at T20T\sim 20 MeV.Comment: Revtex file(8 pages)+6 figures(ps files) available on request from first Autho

    Model for hypernucleus production in heavy ion collisions

    Full text link
    We estimate the production cross sections of hypernuclei in projectile like fragment (PLF) in heavy ion collisions. The discussed scenario for the formation cross section of hypernucleus is: (a) Lambda particles are produced in the participant region but have a considerable rapidity spread and (b) Lambda with rapidity close to that of the PLF and total momentum (in the rest system of PLF) up to Fermi motion can then be trapped and produce hypernuclei. The process (a) is considered here within Heavy Ion Jet Interacting Generator HIJING-BBbar model and the process (b) in the canonical thermodynamic model (CTM). We estimate the production cross-sections for light hypernuclei for C + C at 3.7 GeV total nucleon-nucleon center of mass energy and for Ne+Ne and Ar+Ar collisions at 5.0 GeV. By taking into account explicitly the impact parameter dependence of the colliding systems, it is found that the cross section is different from that predicted by the coalescence model and large discrepancy is obtained for 6_He and 9_Be hypernuclei.Comment: 9 pages, 4 figures, 3 tables, revtex4, added reference

    Probing Pair-Correlated Fermionic Atoms through Correlations in Atom Shot Noise

    Full text link
    Pair-correlated fermionic atoms are created through dissociation of weakly bound molecules near a magnetic-field Feshbach resonance. We show that correlations between atoms in different spin states can be detected using the atom shot noise in absorption images. Furthermore, using time-of-Flight imaging we have observed atom pair correlations in momentum space

    Low temperature sintering of PZT

    Get PDF

    Color plasma oscillation in strangelets

    Get PDF
    The dispersion relation and damping rate of longitudinal color plasmons in finite strange quark matter (strangelets) are evaluated in the limits of weak coupling, low temperature, and long wavelength. The property of the QCD vacuum surrounding a strangelet makes the frequency of the plasmons nearly the same as the color plasma frequency of bulk matter. The plasmons are damped by their coupling with individual excitations of particle-hole pairs of quarks, of which the energy levels are discretized by the boundary. For strangelets of macroscopic size, the lifetime of the plasmons is found to be proportional to the size, as in the case of the usual plasma oscillations in metal nanoparticles.Comment: 9 pages (REVTeX), 2 Postscript figures, to be published in Phys. Rev.

    1D Bose Gases in an Optical Lattice

    Full text link
    We report on the study of the momentum distribution of a one-dimensional Bose gas in an optical lattice. From the momentum distribution we extract the condensed fraction of the gas and thereby measure the depletion of the condensate and compare it with a theorical estimate. We have measured the coherence length of the gas for systems with average occupation nˉ>1\bar{n}>1 and nˉ<1\bar{n}<1 per lattice site.Comment: 4 pages, 3 figure

    The Quasi-Molecular Stage of Ternary Fission

    Get PDF
    We developed a three-center phenomenological model,able to explain qualitatively the recently obtained experimental results concerning the quasimolecular stage of a light-particle accompanied fission process. It was derived from the liquid drop model under the assumption that the aligned configuration, with the emitted particle between the light and heavy fragment, is reached by increasing continuously the separation distance, while the radii of the heavy fragment and of the light particle are kept constant. In such a way,a new minimum of a short-lived molecular state appears in the deformation energy at a separation distance very close to the touching point. This minimum allows the existence of a short-lived quasi-molecular state, decaying into the three final fragments.The influence of the shell effects is discussed. The half-lives of some quasimolecular states which could be formed in the 10^{10}Be and 12^{12}C accompanied fission of 252^{252}Cf are roughly estimated to be the order of 1 ns, and 1 ms, respectively.Comment: 12 pages, 6 epsf, uses ws-p8-50x6-00.cl
    corecore