5,419 research outputs found
On the stability of Bose-Fermi mixtures
We consider the stability of a mixture of degenerate Bose and Fermi gases.
Even though the bosons effectively repel each other the mixture can still
collapse provided the Bose and Fermi gases attract each other strongly enough.
For a given number of atoms and the strengths of the interactions between them
we find the geometry of a maximally compact trap that supports the stable
mixture. We compare a simple analytical estimation for the critical axial
frequency of the trap with results based on the numerical solution of
hydrodynamic equations for Bose-Fermi mixture.Comment: 4 pages, 3 figure
Colour-singlet strangelets at finite temperature
Considering massless and quarks, and massive (150 MeV) quarks in
a bag with the bag pressure constant MeV, a colour-singlet
grand canonical partition function is constructed for temperatures
MeV. Then the stability of finite size strangelets is studied minimizing the
free energy as a function of the radius of the bag. The colour-singlet
restriction has several profound effects when compared to colour unprojected
case: (1) Now bulk energy per baryon is increased by about MeV making the
strange quark matter unbound. (2) The shell structures are more pronounced
(deeper). (3) Positions of the shell closure are shifted to lower -values,
the first deepest one occuring at , famous -particle ! (4) The shell
structure at vanishes only at MeV, though for higher
-values it happens so at MeV.Comment: Revtex file(8 pages)+6 figures(ps files) available on request from
first Autho
Model for hypernucleus production in heavy ion collisions
We estimate the production cross sections of hypernuclei in projectile like
fragment (PLF) in heavy ion collisions. The discussed scenario for the
formation cross section of hypernucleus is: (a) Lambda particles are produced
in the participant region but have a considerable rapidity spread and (b)
Lambda with rapidity close to that of the PLF and total momentum (in the rest
system of PLF) up to Fermi motion can then be trapped and produce hypernuclei.
The process (a) is considered here within Heavy Ion Jet Interacting Generator
HIJING-BBbar model and the process (b) in the canonical thermodynamic model
(CTM). We estimate the production cross-sections for light hypernuclei for C +
C at 3.7 GeV total nucleon-nucleon center of mass energy and for Ne+Ne and
Ar+Ar collisions at 5.0 GeV. By taking into account explicitly the impact
parameter dependence of the colliding systems, it is found that the cross
section is different from that predicted by the coalescence model and large
discrepancy is obtained for 6_He and 9_Be hypernuclei.Comment: 9 pages, 4 figures, 3 tables, revtex4, added reference
Probing Pair-Correlated Fermionic Atoms through Correlations in Atom Shot Noise
Pair-correlated fermionic atoms are created through dissociation of weakly
bound molecules near a magnetic-field Feshbach resonance. We show that
correlations between atoms in different spin states can be detected using the
atom shot noise in absorption images. Furthermore, using time-of-Flight imaging
we have observed atom pair correlations in momentum space
Color plasma oscillation in strangelets
The dispersion relation and damping rate of longitudinal color plasmons in
finite strange quark matter (strangelets) are evaluated in the limits of weak
coupling, low temperature, and long wavelength. The property of the QCD vacuum
surrounding a strangelet makes the frequency of the plasmons nearly the same as
the color plasma frequency of bulk matter. The plasmons are damped by their
coupling with individual excitations of particle-hole pairs of quarks, of which
the energy levels are discretized by the boundary. For strangelets of
macroscopic size, the lifetime of the plasmons is found to be proportional to
the size, as in the case of the usual plasma oscillations in metal
nanoparticles.Comment: 9 pages (REVTeX), 2 Postscript figures, to be published in Phys. Rev.
1D Bose Gases in an Optical Lattice
We report on the study of the momentum distribution of a one-dimensional Bose
gas in an optical lattice. From the momentum distribution we extract the
condensed fraction of the gas and thereby measure the depletion of the
condensate and compare it with a theorical estimate. We have measured the
coherence length of the gas for systems with average occupation and
per lattice site.Comment: 4 pages, 3 figure
The Quasi-Molecular Stage of Ternary Fission
We developed a three-center phenomenological model,able to explain
qualitatively the recently obtained experimental results concerning the
quasimolecular stage of a light-particle accompanied fission process. It was
derived from the liquid drop model under the assumption that the aligned
configuration, with the emitted particle between the light and heavy fragment,
is reached by increasing continuously the separation distance, while the radii
of the heavy fragment and of the light particle are kept constant. In such a
way,a new minimum of a short-lived molecular state appears in the deformation
energy at a separation distance very close to the touching point. This minimum
allows the existence of a short-lived quasi-molecular state, decaying into the
three final fragments.The influence of the shell effects is discussed. The
half-lives of some quasimolecular states which could be formed in the Be
and C accompanied fission of Cf are roughly estimated to be the
order of 1 ns, and 1 ms, respectively.Comment: 12 pages, 6 epsf, uses ws-p8-50x6-00.cl
- …