8,801 research outputs found

    Density correlators in a self-similar cascade

    Get PDF
    Multivariate density moments (correlators) of arbitrary order are obtained for the multiplicative self-similar cascade. This result is based on the calculation by Greiner, Eggers and Lipa (reference [1]) where the correlators of the logarithms of the particle densities have been obtained. The density correlators, more suitable for comparison with multiparticle data, appear to have even simpler form than those obtained in [1].Comment: 9 pages, 3 figures, uses epsfig.st

    Optical counterparts of ROSAT X-ray sources in two selected fields at low vs. high Galactic latitudes

    Full text link
    The optical identification of large number of X-ray sources such as those from the ROSAT All-Sky Survey is challenging with conventional spectroscopic follow-up observations. We investigate two ROSAT All-Sky Survey fields of size 10 * 10 degrees each, one at galactic latitude b = 83 deg (Com), the other at b = -5 deg (Sge), in order to optically identify the majority of sources. We used optical variability, among other more standard methods, as a means of identifying a large number of ROSAT All-Sky Survey sources. All objects fainter than about 12 mag and brighter than about 17 mag, in or near the error circle of the ROSAT positions, were tested for optical variability on hundreds of archival plates of the Sonneberg field patrol. The present paper contains probable optical identifications of altogether 256 of the 370 ROSAT sources analysed. In particular, we found 126 AGN (some of them may be misclassified CVs), 17 likely clusters of galaxies, 16 eruptive double stars (mostly CVs), 43 chromospherically active stars, 65 stars brighter than about 13 mag, 7 UV Cet stars, 3 semiregular resp. slow irregular variable stars of late spectral type, 2 DA white dwarfs, 1 Am star, 1 supernova remnant and 1 planetary nebula. X-ray emission is, expectedly, tightly correlated with optical variability, and thus our new method for optically identifying X-ray sources is demonstrated to be feasible.Comment: 92 pages, 521 figures, A&A (accepted

    The Discovery of Quasisoft and Supersoft Sources in External Galaxies

    Full text link
    We apply a uniform procedure to select very soft sources from point sources observed by Chandra in 4 galaxies. This sample includes one elliptical galaxy (NGC 4967), 2 face-on spirals (M101 and M83), and an interacting galaxy (M51). We have found very soft X-ray sources (VSSs) in every galaxy. Some of these fit the criteria for canonical supersoft sources (SSSs), while others are somewhat harder. These latter have characteristic values of kT < 300 eV; we refer to them as quasisoft sources (QSSs). We found a combined total of 149 VSSs in the 4 galaxies we considered; 77 were SSSs and 72 were QSSs. (See the paper for the original long abstract)Comment: 20 pages, 6 figures. Accepted for publication in Ap

    Review of the "Bottom-Up" scenario

    Full text link
    Thermalization of a longitudinally expanding color glass condensate with Bjorken boost invariant geometry is investigated within parton cascade BAMPS. Our main focus lies on the detailed comparison of thermalization, observed in BAMPS with that suggested in the Bottom-Up scenario. We demonstrate that the tremendous production of soft gluons via gg→ggggg \to ggg, which is shown in the Bottom-Up picture as the dominant process during the early preequilibration, will not occur in heavy ion collisions at RHIC and LHC energies, because the back reaction ggg→ggggg\to gg hinders the absolute particle multiplication. Moreover, contrary to the Bottom-Up scenario, soft and hard gluons thermalize at the same time. The time scale of thermal equilibration in BAMPS calculations is of order \as^{-2} (\ln \as)^{-2} Q_s^{-1}. After this time the gluon system exhibits nearly hydrodynamic behavior. The shear viscosity to entropy density ratio has a weak dependence on QsQ_s and lies close to the lower bound of the AdS/CFT conjecture.Comment: Quark Matter 2008 Proceeding

    Thermalization through Hagedorn states - the importance of multiparticle collisions

    Full text link
    Quick chemical equilibration times of hadrons within a hadron gas are explained dynamically using Hagedorn states, which drive particles into equilibrium close to the critical temperature. Within this scheme master equations are employed for the chemical equilibration of various hadronic particles like (strange) baryon and antibaryons. A comparison of the Hagedorn model to recent lattice results is made and it is found that for both Tc =176 MeV and Tc=196 MeV, the hadrons can reach chemical equilibrium almost immediately, well before the chemical freeze-out temperatures found in thermal fits for a hadron gas without Hagedorn states.Comment: 8 pages, 3 figures, talk presented at the International Conference on Strangeness in Quark Matter, Buzios, Rio de Janeiro, Brazil, Sept. 27 - Oct. 2, 200
    • …
    corecore