Quick chemical equilibration times of hadrons within a hadron gas are
explained dynamically using Hagedorn states, which drive particles into
equilibrium close to the critical temperature. Within this scheme master
equations are employed for the chemical equilibration of various hadronic
particles like (strange) baryon and antibaryons. A comparison of the Hagedorn
model to recent lattice results is made and it is found that for both Tc =176
MeV and Tc=196 MeV, the hadrons can reach chemical equilibrium almost
immediately, well before the chemical freeze-out temperatures found in thermal
fits for a hadron gas without Hagedorn states.Comment: 8 pages, 3 figures, talk presented at the International Conference on
Strangeness in Quark Matter, Buzios, Rio de Janeiro, Brazil, Sept. 27 - Oct.
2, 200