550 research outputs found

    Interstitial compounds as fuel cell catalysts - Their preparative techniques and electrochemical testing

    Get PDF
    Preparation and electrochemical testing methods for fuel cell catalysts using interstitial compound

    Development of an improved oxygen electrode for use in alkaline H2-O2 fuel cells Quarterly report, Oct. 1 - Dec. 31, 1966

    Get PDF
    Interstitial compounds of transition elements prepared for improving oxygen electrode in alkaline hydrox fuel cel

    Development of an improved oxygen electrode for use in alkaline H2-O2 fuel cells Quarterly report, Apr. 1 - Jun. 30, 1967

    Get PDF
    Preparation of institial compounds of transition metals for hydrogen oxygen fuel cell cathode

    Electronic Structure of Te and As Covered Si(211)

    Get PDF
    Electronic and atomic structures of the clean, and As and Te covered Si(211) surface are studied using pseudopotential density functional method. The clean surface is found to have (2 X 1) and rebonded (1 X 1) reconstructions as stable surface structures, but no \pi-bonded chain reconstruction. Binding energies of As and Te adatoms at a number of symmetry sites on the ideal and (2 X 1) reconstructed surfaces have been calculated because of their importance in the epitaxial growth of CdTe and other materials on the Si(211) surface. The special symmetry sites on these surfaces having the highest binding energies for isolated As and Te adatoms are identified. But more significantly, several sites are found to be nearly degenerate in binding energy values. This has important consequences for epitaxial growth processes. Optimal structures calculated for 0.5 ML of As and Te coverage reveal that the As adatoms dimerize on the surface while the Te adatoms do not. However, both As and Te covered surfaces are found to be metallic in nature.Comment: 17 pages, 9 figures, accepted for publication in Phys. Rev.

    A Numerical Study of the Superconducting Proximity Effect in Topological Surface States

    Full text link
    We study the superconducting proximity effect induced in the surface states of the 3-d topological insulator Bi2_2Se3_3 by a singlet, s-wave superconductor deposited on its surface. To this effect, the kp\mathbf{k}\cdot\mathbf{p}-Hamiltonian of Bi2_2Se3_3 and the BCS-Hamiltonian are mapped onto tight-binding chains which we couple through a transfer-Hamiltonian at the interface. We then employ the Recursive Green's Function technique to obtain the local spectral function and infer the dispersion of the interface-states from it. In agreement with earlier microscopic studies of this problem, we find that the Fu-Kane model is a reasonable approximation at energies ϵΔSC\epsilon\ll \Delta_{\rm SC}. However, for energies close to the SC bulk gap, the Fu-Kane model is expected to break down. Indeed, our numerical calculations show strong modifications of the interface-state dispersion for ϵΔSC\epsilon \gtrsim \Delta_{\rm SC} . We find that the proximity effect can be strong enough to induce a gap in the surface state that is comparable to the superconducting gap. An analysis of the spatial profile of the states shows that their weight shifts towards the SC as the coupling strength increases. We conclude that an intermediate coupling is ideal for realising the Fu-Kane scenario.Comment: JOP: Conference Series (Proceedings of SCES 2011), accepte

    Intraocular pressure fluctuations in professional brass and woodwind musicians during common playing conditions.

    Get PDF
    BACKGROUND: We investigated the effects on intraocular pressure (IOP) and blood pressure (BP) of playing brass and woodwind instruments by monitoring IOP and BP in a representative group of professional musicians under a variety of common playing conditions. METHODS: IOP and BP measurements were recorded from 37 brass and 15 woodwind instrument players, before and after playing tones of low, middle and high frequency. We also measured IOP and BP before and during playing common exercises of 10 minutes duration, as well as after playing a sustained high-pitched tone, to test for changes in IOP under conditions of maximum effort. RESULTS: Playing tones on brass and woodwind instruments causes a temporary elevation in IOP and BP, depending on the tone frequency: brass instrument players showed a significant elevation after playing high and middle frequency tones (p < 0.0001) whereas woodwind instrument players showed a significant increase only for high frequencies (e.g., oboe, 17 ± 2.9 mm Hg to 21 ± 4.4 mm Hg; p = 0.017). Playing a typical exercise of 10 minutes temporarily increased IOP in both groups of musicians. Finally, playing a sustained tone of high pitch caused a significant elevation in IOP in brass instrument players only (16.6 ± 3.5 mm Hg to 23.3 ± 8.9 mm Hg; p < 0.0001). CONCLUSIONS: The temporary and sometimes dramatic elevations and fluctuations in IOP observed in this study, coupled with daily exposure to instrument play, puts professional wind instrument players at increased risk of developing glaucoma. Consequently, these musicians should be monitored for signs of glaucoma, especially those with co-existing risk factors

    Finite temperature studies of Te adsorption on Si(0 0 1)

    Get PDF
    We perform first principles density functional calculations to investigate the adsorption of Te on the Si(0 0 1) surface from low coverage up to a monolayer coverage. At low coverage, a Te atom is adsorbed on top of the Si surface dimer bond. At higher coverages, Te atoms adsorption causes the Si-Si dimer bond to break, lifting the (2 × 1) reconstruction. We find no evidence of the Te-Te dimer bond formation as a possible source of the (2 × 1) reconstruction at a monolayer coverage. Finite temperature ab initio molecular dynamics calculations show that Te covered Si(0 0 1) surfaces do not have any definitive reconstruction. Vibrations of the bridged Te atoms in the strongly anharmonic potentials prevent the reconstruction structure from attaining any permanent, two-dimensional periodic geometry. This explains why experiments attempting to find a definite model for the reconstruction reached conflicting conclusions. © 2002 Elsevier Science B.V. All rights reserved

    Te covered Si(001): a variable surface reconstruction

    Get PDF
    At a given temperature, clean and adatom covered silicon surfaces usually exhibit well-defined reconstruction patterns. Our finite temperature ab-initio molecular dynamics calculations show that the tellurium covered Si(001) surface is an exception. Soft longitudinal modes of surface phonons due to the strongly anharmonic potential of the bridged tellurium atoms prevent the reconstruction structure from attaining any permanent, two dimensional periodic geometry. This explains why experiments attempting to find a definite model for the reconstruction have reached conflicting conclusions.Comment: 4 pages, 3 gif figure

    Ultrafast Optical-Pump Terahertz-Probe Spectroscopy of the Carrier Relaxation and Recombination Dynamics in Epitaxial Graphene

    Full text link
    The ultrafast relaxation and recombination dynamics of photogenerated electrons and holes in epitaxial graphene are studied using optical-pump Terahertz-probe spectroscopy. The conductivity in graphene at Terahertz frequencies depends on the carrier concentration as well as the carrier distribution in energy. Time-resolved studies of the conductivity can therefore be used to probe the dynamics associated with carrier intraband relaxation and interband recombination. We report the electron-hole recombination times in epitaxial graphene for the first time. Our results show that carrier cooling occurs on sub-picosecond time scales and that interband recombination times are carrier density dependent.Comment: 4 pages, 5 figure
    corecore