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Abstract

We perform first principles density functional calculations to investigate the adsorption of Te on the Si(0 0 1) surface

from low coverage up to a monolayer coverage. At low coverage, a Te atom is adsorbed on top of the Si surface dimer

bond. At higher coverages, Te atoms adsorption causes the Si–Si dimer bond to break, lifting the (2� 1) reconstruction.

We find no evidence of the Te–Te dimer bond formation as a possible source of the (2� 1) reconstruction at a

monolayer coverage. Finite temperature ab initio molecular dynamics calculations show that Te covered Si(0 0 1)

surfaces do not have any definitive reconstruction. Vibrations of the bridged Te atoms in the strongly anharmonic

potentials prevent the reconstruction structure from attaining any permanent, two-dimensional periodic geometry. This

explains why experiments attempting to find a definite model for the reconstruction reached conflicting conclusions.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Adsorption of Te on the Si(0 0 1) surface is of

great relevance to various technological applica-

tions including its role as a surfactant in epitaxial

growth. While the objective in the homoepitaxial

growth of Si on the Si(0 0 1) surface is growth with
the least possible number of defects, the relatively

large diffusion length of Si adatoms on the surface

does not permit this objective to be achieved. The

growth usually takes place in the Stranski–Kras-

tanov mode, where three-dimensional (3D) islands

form. Similarly, the epitaxial growth of Ge on the

Si(0 0 1) surface falls in the same category, where,

after the first few layers of Ge, the subsequent

growth is in the form of 3D islands. However,

thick layers of Ge can be grown layer-by-layer on

Si by introducing a monolayer or submonolayer of
a surfactant like As [1–3], Sb [4,5] or Te [6–8]. Such

layer-by-layer homoepitaxial growth of Si crystals

can also be achieved by introducing Te surfactants

on the Si(0 0 1) surface. Te is also known to be an

excellent surfactant in the growth of GaAs(0 0 1)

[14]. However, the detailed surfactant mechanism

is not understood in either situation [9–13].

The goal of combining large infra-red detector
arrays with relatively cheap and well developed Si
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integrated circuit read out technology has led to

efforts to grow HgCdTe (MCT) on Si(0 0 1). Be-

cause of a large (�19%) lattice mismatch between

Si and MCT, thick buffer layers of CdTe are often

grown prior to depositing active layers of MCT.

MCT is the actual infra-red detector material. It
has been observed [15] that the growth of CdTe

layers on the Si(0 0 1) surface commences with an

initial monolayer or submonolayer of Te. An un-

derstanding of the atomic configuration of ad-

sorbed Te, which forms the first grown layer on the

bare Si(0 0 1) surface, is crucial for the fabrication

of high performance devices since it determines

how growth nucleates and hence the quality of the
epilayer [16]. Because of the immense technologi-

cal applications of these materials, it becomes

important to understand the reconstruction of the

Si(0 0 1) surface with a Te ad-layer.

Recently a number of experiments [15,17–21,24]

have investigated the structural transition of the

Si(0 0 1)-(2� 1) surface due to Te adsorption. But

there have been only a few theoretical studies
[25,26]. In particular, the issues that need to be

understood are the relative energetics of Te ada-

toms at low coverages at various sites on the

Si(0 0 1)-(2� 1) surface, breaking of the Si–Si di-

mers with increasing Te coverage and the possi-

bility of Te–Te dimer formation at nearly 1 ML

coverage, and the geometry of the surface with 1

ML of Te. This last point has generated some
debate. While most of the experiments conclude

that at 1 ML, Te atoms break the Si dimer bonds

and lead to a (1� 1) surface, Tamiya et al. [24]

claim that though the surface is (1� 1) at low

temperatures, at around 600 �C the Te adatoms

undergo rearrangement and the surface becomes

(2� 1). Wiame et al. [21] interpreted their STM

data in terms of a (2� 1) surface reconstruction
and the formation of asymmetric Te–Te dimers.

The Te adsorbed GaAs(0 0 1) surface is known to

show such variable reconstruction with changing

temperature [22,23]. The differing reconstruction

geometries deduced from different experiments

present a puzzling situation.

In this work, we make substantial efforts to

resolve these issues by performing ab initio density
functional calculations. Particular atomic struc-

tures with well-defined reconstruction geometries

are verified by performing extensive total energy

calculations at T ¼ 0 K and geometry optimiza-

tions. Atomic configurations corresponding to the

global or local minima on a Born–Oppenheimer

surface are then attributed to stable surface

structures. We also perform finite temperature
molecular dynamics (MD) calculations to access

different reaction pathways that can lead to pos-

sible reconstruction patterns and hence to address

the question of a (2� 1) surface at elevated tem-

peratures, as reported in Ref. [24].

We find that the on-top position above the

dimer bond on the Si(0 0 1) surface is energetically

the most favorable for a Te ad-atom. At a cover-
age between 0:5 < H6 1, where H is the fractional

coverage of the Si surface (i.e., the number of Te

atoms per surface Si atom), the Si–Si dimer bonds

are broken and Si atoms are pushed to their ideal

bulk positions. The Te–Te dimer formation is

found to be energetically unfavorable in our cal-

culations. There is also no indication of a (2� 1)

surface reconstruction at any temperature. The
energy barrier for the Te atoms to move from their

optimal positions is very small for displacements

of up to � �0:5 �AA. Uncorrelated lateral excursions
of Te atoms bridged to surface silicon atoms, in

this flat potential well, prevent them from attain-

ing any definitive surface reconstruction pattern.

The organization of the rest of the paper is as

follows. In Section 2, we briefly describe the
method and the relevant parameters of our cal-

culations. Results of our extensive total energy

calculations at T ¼ 0 K and geometry optimiza-

tions for the clean and the Te adsorbed Si(0 0 1)

surface at very low coverage are presented in

Section 3. Here, we have calculated binding ener-

gies of Te adatoms at H ¼ 0:0625 at four special

symmetry positions of the Si(0 0 1) surface and
have studied the behavior of Si–Si dimer bonds on

the reconstructed surface with increasing uniform

Te coverage 0:0625 < H < 0:5. In Section 4, we

investigate the breaking of the Si–Si dimer bond by

the adsorbed Te atom, and address the issue as to

whether the adsorbed Te atoms form Te–Te dimer

bonds leading to a (2� 1) surface reconstruction.

In Section 5, we discuss ab initio MD calculations
performed at 600 and 1000 K, and analyze the

nature of atomic displacements at finite tempera-

80 P. Sen et al. / Surface Science 519 (2002) 79–89



ture which reveal the physics underlying the un-

usually long excursions of the Te atoms. We also

discuss the implications of these uncorrelated

displacements in the observed reconstruction pat-

terns. Our key results are summarized in Section

6. Some of our results were reported briefly re-
cently [27].

2. Method

Calculations were carried out within density

functional theory. The wave functions are ex-

pressed by plane waves with the cutoff energy
jk þ Gj2 6 250 eV. The Brillouin zone (BZ) inte-

grations are performed by using the Monkhorst–

Pack scheme [28] with (2� 2� 1), (2� 8� 1) and

(4� 8� 1) k-point meshes for (4� 4), (4� 1) and

(2� 1) cells, respectively. The convergence with

respect to the energy cutoff and number of k-

points was tested. Ionic potentials are represented

by ultra-soft Vanderbilt type pseudopotentials [29]
and results for the fully relaxed atomic structures

are obtained using the generalized gradient ap-

proximation (GGA) [30]. The preconditioned

conjugate gradient method is used for wave func-

tion optimization and conjugate gradient method

for ionic relaxation at T ¼ 0 K. At finite temper-

atures, the Nos�ee–Hoover thermostat [31] is em-

ployed for constant temperature MD of ionic
motions in the self-consistent field of the electrons

[32,33]. The time step in MD calculations, Dt, is
chosen such that a typical phonon time period is

divided into a few tens of time steps. We picked Dt
to be 2 fs to ensure that the ionic trajectories are

smooth. The Si(0 0 1) surface is represented by a

repeated slab geometry. Each slab contains 5 Si

atomic planes with hydrogen atoms passivating
the Si atoms at the bottom of the slab. Consecutive

slabs are separated by a vacuum space of 9 �AA. For
calculations at T ¼ 0 K, Si atoms in the top four

atomic layers are allowed to relax, while the bot-

tom Si atoms and passivating hydrogens are fixed

to simulate bulk-like termination.

In finite temperature calculations, all atoms,

including H atoms at the bottom, are allowed to
move to avoid a large temperature gradient. Lat-

tice parameters are expanded according to the

temperature under study using the experimen-

tal thermal expansion coefficient in order to pre-

vent the lattice from experiencing internal thermal

strain. We reproduced the energetics and geometry

of the cð4� 2Þ, pð2� 2Þ and pð2� 1Þ reconstruc-
tions of a clean Si(0 0 1) surface using the above
parameters [34].

3. Low Te coverage

In order to test the parameters described in

Section 2, we calculated the total energies of the

cð4� 2Þ, pð2� 2Þ and pð2� 1Þ reconstructions of
the clean Si(0 0 1) surface in a supercell comprising

a (4� 4) ideal cell (composed of 80 Si atoms and

32 H atoms). The Si atoms in the top four layers

are relaxed for the optimization of the atomic

structure. Our results are in good agreement with

the earlier density functional calculations [34]. For

the pð2� 1Þ surface with asymmetric Si–Si dimers,

there is an energy gain of 1.6 eV per dimer. The Si–
Si dimer distance is 2.30 �AA and the dimer bond

makes an angle of 18� with the horizontal plane.

The optimized atomic positions are given in Table

1. Though the pð2� 2Þ and cð4� 2Þ surfaces have
slightly lower energies, the energy differences with

the p(2� 1) surface are small, and we work with

the latter reconstruction for further adsorption

studies.

Table 1

Ideal bulk terminated atomic positions (in �AA) for the top four

layers of Si(0 0 1) in a 2� 1 supercell and the displacement of

each atom in reaching the optimized 2� 1 reconstructed surface

N Ideal lattice Optimized

x y z Dx Dz

1 0.0 0.0 6.30 1.15 	0.60
2 3.84 0.0 6.30 	0.51 0.14

3 0.0 1.92 4.94 0.06 0.01

4 3.84 1.92 4.94 	0.13 0.11

5 1.92 1.92 3.58 0.05 	0.10
6 5.76 1.92 3.58 	0.06 0.12

7 1.92 0.0 2.23 0.0 	0.08
8 5.76 0.0 2.23 	0.01 0.06

The y coordinates do not change for this reconstruction and

hence Dy�s are all zero.
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We calculated the binding energies of a single

Te adsorbed on the four symmetry sites of the

Si(0 0 1)-ð2� 1Þ unit cell, i.e. on-top T, cave C,
hollow H, and bridge B sites shown in Fig. 1(a).

Calculations were performed using a large square

supercell of sides 15.36 �AA consisting of eight

(2� 1) cells, laid out in a ð2� 4Þ configuration.

The large size of the supercell ensures that the in-

teraction between an adsorbed Te atom and its

periodic images is negligible so that results repre-

sent an ‘‘isolated’’ Te (H ¼ 0:0625). In Fig. 1, only
one (2� 1) cell of the supercell is shown. The

binding energies, Eb, are defined as

Eb ¼ ET½Si� þ Ea½Te� 	 ET½Siþ Te�; ð1Þ

where ET½Si� is the total energy of the Si slab;

ET½Siþ Te� is the total energy with a Te adsorbed

on it, and Ea½Te� is the energy of a single isolated
Te atom. The total energies of the slab with and

without Te are calculated in the same supercell

with fully optimized atomic configuration at T ¼ 0

K. The binding energies are found to be T: 4.5 eV,

C: 3.5 eV, H: 3.4 eV, and B: 3.2 eV. The most

energetic site at low coverage is the T site, where

the Te atom adsorbs above the middle of the dimer

bond of the Si(0 0 1)-(2� 1) surface and is bonded

to the two Si atoms forming the dimer. This is

consistent with our intuitive chemical notion that

Te(5p4) tries to fill its outermost p-shell by coor-
dinating with two surface Si atoms. This way the

dangling bonds of the surface Si atoms are also

saturated. Our results are consistent with STM

experiments [17] and are also in agreement with

two earlier calculations [25,26]. Miwa et al. cal-

culated the binding energies for an isolated Te at

five different sites on the Si(0 0 1)-(2� 1) surface.

The ‘‘bridge’’, ‘‘vacancy’’ and ‘‘cave-a’’ sites in
their paper are the same as T, H and B sites here.

We find the H and B sites to have very similar

binding energies, though the H site energy is a bit

more favorable. The T site binding energy is 1.3 eV

higher than the B site binding energy. They also

find the ‘‘bridge’’ (T) site to be the most favorable

one for a Te with a binding energy 0.7 eV higher

than that at the ‘‘cave-a’’ (B) site. Like us, their
calculations also find ‘‘vacancy’’ (H) and ‘‘cave-a’’

(B) sites to have very similar binding energies with

the ‘‘cave-a’’ (B) site having marginally higher

binding energy. Takeuchi, on the other hand,

considers the T and B sites (note that the ‘‘cave’’

site in his paper is our B site) and finds the T site to

have higher binding energy by about 0.8 eV. Thus

Fig. 1. (a) The unit cell of the Si(0 0 1)-(2� 1) surface. The possible sites for the adsorption of Te at very low H are marked by X. Large

empty, small empty, and smallest empty circles denote first layer Si, second layer Si, and third layer Si atoms, respectively. The lines

between circles indicate bonds. The surface dimer bond is shown by a thicker line. (b) Ideal (1� 1) Te covered Si(0 0 1) surface at

H ¼ 1. The filled circles denote the Te atoms. (c) Charge density contours on the Si–Te–Si plane for the structure shown in (b). There

is a small charge transfer from the Si to the Te atoms.
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all the calculations reach the same conclusion, that

the top of the Si dimer bond is the most favorable

site for adsorption of an isolated Te. There are

some differences in the binding energy values and

that may be due to different system sizes used in
various calculations. For example, Miwa et al.

used a (2� 2) surface supercell while we have a

(4� 4) supercell for these calculations.

We examined the stability of the adsorbed Te

atom and the underlying Si–Si dimer at higher

coverages. At H ¼ 0:5, we placed one Te adatom

on top of each Si–Si dimer bond in a (2� 1) unit

cell. Upon optimizing the structure, the dimer
bonds are only slightly weakened but not broken.

The Si–Si dimer distance increases marginally to

2.31 �AA from the clean surface value of 2.30 �AA. But
more importantly, Te atoms remove the asymme-

try between the two Si atoms in the dimer. The

height of the adsorbed Te atoms is 2.25 �AA above

the top Si layer, and the calculated Si–Te distance

of 2.53 �AA is in good agreement with experiment
[20]. This value is also close to the sum of covalent

radii of Si (1.17 �AA) and Te (1.32 �AA). However,
we do not see any �ripple� in the Te overlayer

at H ¼ 0:5 or at any other coverage, as reported

in the Ref. [20].

4. Te coverage up to one monolayer

For H > 0:5, Te atoms must start occupying

other less favorable sites since all the on-top dimer

sites are already occupied at H ¼ 0:5. We begin

with an initial configuration where one Te is ad-

sorbed at the T site and the second one at the B site

on the Si(0 0 1)-(2� 1) surface corresponding to

H ¼ 1, and optimize this structure at T ¼ 0 K. The
occupation of the B site at high Te coverage is

consistent with experiments [15], even though the

B site is not the second most bound site at low

coverages. The energetics is expected to change

when two Te atoms are adjacent to each other due

to adsorbate induced interactions. In reaching the

stable structure, the Te atoms form directional

bonds with surface Si atoms while Si–Si dimer
bonds elongate and eventually break. Each Si–Si

dimer bond is broken to form four new Si–Te

bonds. In the final stable structure, Si atoms of the

broken dimer bond are pushed to their bulk po-

sitions, reforming the outermost, bulk-like Si(0 0 1)

atomic plane. Each adsorbed Te atom is connected

to the substrate by two Te–Si bonds of length 2.53
�AA. In the end, a Te(0 0 1) atomic plane forms 1.65
�AA above the Si substrate with a binding energy of
4.28 eV per Te atom. These values for the Te–Si

bond length, and the height of the Te layer from

the Si substrate are in very good agreement with

the surface extended X-ray absorption fine struc-

ture (SEXAFS) and X-ray standing wave (XSW)

spectroscopy experiments of Burgess et al. [20]

They find a Te–Si bond length of 2:52� 0:05 �AA
and a Te layer height of 1:65� 0:03 �AA. At a mono-
layer coverage, our calculations are also in agree-

ment with the results reported by Miwa et al [25].

Fig. 1(b) shows the atomic arrangement of this

ideal (1� 1) structure of the Te monolayer on the

Si surface. The charge density contour plots in Fig.

1(c) indicate that the bond is directional. The

maximum of the charge occurs between Si and Te,

but closer to Te. According to Pauling�s scale, Te
is more electronegative than Si, vTe ¼ 2:0 and vSi ¼
1:8. Therefore, one expects charge to be trans-

ferred from Si to Te. This is consistent with the

atomic configurations and occupancies, Te(5s25p4)

and Si(3s23p2).

At full monolayer Te coverage, other important

issues are the symmetry of the surface and the

possible dimerization of the Te adatoms. Given
the recent controversy, we attempted to examine

this issue thoroughly. Although some experiments

have reported missing Te rows and the saturation

of the Si(0 0 1) surface at H ¼ 0:8, there are others
[21] that do not find it. In the present work, we

ignore any strain-relaxing mechanisms of the

missing Te rows and further study the surface

reconstruction at 1 ML coverage.
To this end we calculate a free Te2 molecule

and find its binding energy to be 4.41 eV and bond

length of 2.56 �AA. The charge density plot for such
a Te2 molecule on a plane passing through the Te–

Te bond, shown in Fig. 2(a), reveals the covalent

nature of the bond between the two Te atoms. This

suggests the possibility that two adjacent Te atoms

on the Si(0 0 1) surface may experience an energy
benefit by forming a Te–Te dimer bond by mov-

ing towards each other in the y-direction (See
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Fig. 1(b)). Such a dimerization would lead to a

(1� 2) reconstruction as proposed by Wiame et al.

[21]. As a matter of fact, similar As–As and Al–Al

dimerizations have been explored on the As cov-

ered Si(0 0 1) and Ge(0 0 1) surfaces [35,36] and Al

covered Si(0 0 1) surface [37]. To test whether Te–
Te dimerization can occur, we examine the fol-

lowing two cases: (i) Starting from an ideal bulk

terminated Si(0 0 1) surface, we put Te atoms at

the T and B sites and relax the system. It should be

noted that on the ideal Si(0 0 1) surface the T and B

and relax the system. It should be noted that on

the ideal Si(0 0 1) surface the T and B sites are

equivalent. No forces on the Te atoms were de-
tected in this case and hence Te atoms did not

move from these symmetry sites. (ii) An initial

structure with a Te–Te distance of 3 �AA along y

(which is greater than the bond length of Te2, but

smaller than the undimerized distance in the (1� 1

structure) is relaxed at T ¼ 0 K. Upon relaxation,

Te atoms move away from each other, the tilted

Si–Te–Si planes become perpendicular to the sur-
face and the total energy of the system is lowered.

In both cases, all the Te atoms lie at the same

height above the Si(0 0 1) surface so that a possible

(1� 2) surface due to two adjacent Te atoms being

at different heights is also ruled out. (The Te–Te

dimers proposed by Wiame et al., for example, are

reported to be asymmetric in this fashion.) The

analysis of the charge density in a (0 0 1) (or xy)
plane passing through the Te atoms clearly shows

lack of any bonding between them (Fig. 2(b)) since

the minimum of the charge density occurs mid-

way between two Te atoms. Formation of strong

Si–Te–Si bonds excludes the bonding between two

adjacent Te atoms. Simple valence arguments also

suggest that Te, being divalent, would tend to

avoid bonding with three other atoms. By the same
argument, it is not surprising that As(4p3) and

Al(3s23p1) form dimers after bonding with two

substrate Si atoms.

An alternate (1� 2) structure has been pro-

posed (called the Si-deficit model) apparently

based on some features seen in an experiment [38].

In this structure, Te atoms in one row along the x-

direction, i.e., [1 1 0] occupy alternate T and B sites
(Fig. 1) (on an ideal Si(0 0 1) these sites are

equivalent). In the adjacent row, Te atoms simply

replace the top-layer Si atoms, creating a Si deficit;

it has 2 Si atoms less per (2� 2) surface cell. Al-

though the resultant symmetry is (1� 2), we use a

(2� 2) computational supercell. The alternate Te

rows are located at different heights. The surface

unit cell has 2 Si atoms and 4 Te atoms. The
‘‘surface’’ layer can be thought to consist of two

atomic planes of Te atoms at dierent heights but

the cell symmetry is indeed (1� 2). On optimizing

this geometry, Te atoms replacing the Si atoms

move along the [1 1 0] direction by about 0.27 �AA.
Since this structure has 2 Si atoms deficit, we have

to take into account this difference in the number

of atoms before comparing its energy to the (1� 1)
1 ML Te covered Si(0 0 1). To do so, in a system of

(2� 2) surface cell, we add twice the bulk cohesive

energy of Si (this has to be supplied to remove 2 Si

atoms) to the total energy of (1� 1) 1 ML Te

covered Si(0 0 1). This value has to be compared

with the total energy of the Si-deficit model plus

twice the isolated Si atom energy. We found the

(1� 1) structure to be more stable by 0.18 eV per
Te adatom, making the Si-deficit model energeti-

cally unfavorable.

Fig. 2. (a) Charge density contour plots of a Te2 molecule on a

plane passing through it. (b) Charge density contour plots on

the (0 0 1) plane passing through the Te atoms of a monolayer

covered Si(0 0 1) surface. Te atoms lie on a square grid of side

3.84 �AA.
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5. Finite temperature MD calculations

Our calculations have ruled out (2� 1) Te cov-

ered Si(0 0 1) surface for H ¼ 1 through the for-

mation of Te–Te dimers. We now consider the
possibility of such a surface reconstruction due to

correlated and concertedmotions of the surface and

substrate atoms at finite temperatures. Since a zero

temperature transition state analysis may not be

able to access all the phase space, we perform finite

temperature ab initio MD simulations to access

additional possible reconstructions. In particular,

to verify Tamiya et al.�s claim of a (2� 1) surface
reconstruction at T ¼ 873 K, we perform MD cal-

culations at T ¼ 600 and 1000 K using a (4� 1)

supercell. Needless to say, a (4� 1) supercell cannot

give us any large surface reconstructions. However,

experiments only report (1� 1) and (2� 1) surface

reconstructions at H � 1 and a (4� 1) cell is suffi-

ciently large for both these possibilities.

At finite temperatures, a definite surface re-
construction would be observed if the Te atoms

execute relatively small random thermal motions

around positions that are representative of the

reconstruction. For example, a possible (2� 1)

surface would have Te atoms in a zigzag ar-

rangement. The signature of such a pattern is one

in which every alternate atom in a Te chain along

x is moved in opposite directions along y (Fig.
1(b)) by the same amount, and oscillates around

that point. Another possibility is that alternate

atoms in a Te row along x execute oscillations

around their ideal (1� 1) positions with a phase

difference of p. In the first case, both STM and

diffraction experiments would indicate a (2� 1)

surface. In the second case, an STM experiment

will possibly not see a (2� 1) image as it will pick
up the time-averaged signal. However, diffraction

experiments (like LEED) would detect a (2� 1)

surface as the time scale of interaction of the in-

cident wave with the surface atoms is quite small

(�fs). In either case, such correlations in the mo-

tions of the adatoms would be evident from the

paths computed in our MD calculations. If, on the

other hand, they execute large uncorrelated mo-
tions centered around their ideal (1� 1) positions,

that would signify the absence of a definite surface

reconstruction.

Before examining the paths of the adsorbed Te

atoms, we must ensure that the system has ther-

malized with the thermostat at the specified tem-

perature. For this purpose, we look at the mean

squared displacements of the surface atoms in the

plane [39]. Fig. 3 shows the quantity

hu2kðtÞi
a2

¼ 1

4ta2
X4
i¼1

Z t

0

ðu2x;iðt0Þ þ u2y;iðt0ÞÞdt0

as a function of time t, where ux and uy are the

displacements of the 4 Te atoms from their ideal

positions along x and y respectively, and a is the

square lattice parameter of the surface. The system

Fig. 3. Time variation of the planar mean square displacements

of the Te atoms.

Fig. 4. The mean of z-coordinates of atoms in the top (Te,

denoted by the dashed line) and bottom layers (H, denoted by

the solid line) of the slab as a function of time. The positions of

the H atoms have been shifted vertically by an amount required

to show them on the same scale. The average drift velocity

dhzi=dt � 	0:7 �AA/ps.
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is seen to be sufficiently thermalized within �1 ps.
The corresponding motion of the surface Te atoms

and the bottom layer H atoms along z are shown

in Fig. 4. Due to its finite size, the whole system

acquires a spurious velocity along the z-direction
whose magnitude is dhzi=dt � 0:7 �AA/ps.

Fig. 5 illustrates the displacements of the Te

atoms along x and z in a (4� 1) supercell at

T ¼ 600 K. The displacements along the x-direc-

tion, ux;iðtÞ, are small, the maximum displacement

being � 0:3 �AA. This is because the displacements

along x involve stretching and compressing Te–Si

bonds, which are not favorable energetically. A
plot of uz;iðtÞ for all the Te atoms show that, in

addition to the spurious translation of the unit cell,

the displacement of each Te atom, uz;iðtÞ, oscillates

with decreasing amplitude and without any cor-

relation with the other Te atoms. This rules out the

hypothesis of a (2� 1) pattern originating from

alternate Te at different heights.

The displacement along the [1�110] (or y) direc-

tion, uy;iðtÞ, is large and can be relevant for a zigzag
reconstruction. After the thermalization of the

system, uy;iðtÞ becomes oscillatory and quasi peri-

odic with periods of the order of �1.0 ps. The

displacements of the Te atoms along y at T ¼ 600

and 1000 K are shown in Fig. 6. This is reminiscent

of the surface longitudinal acoustic mode due to

Te rows. The amplitudes of the oscillations vary

between 0.4 and 0.7 �AA resulting in lateral excur-
sions as large as 1.4 �AA of Te rows along the [1�110]
direction at T ¼ 600 K. As expected, the ampli-

Fig. 5. Time variation of the displacements, ux;i and uz;i, of Te atoms (i ¼ 1; . . . ; 4) in a (4� 1) supercell. Ab initio MD calculations

were performed at T ¼ 600 K. A (4� 1) supercell, rotated by 90� (note the horizontal axis is y and vertical axis is x) is shown in the left
panel for ease of comparison with the displacements of Te atoms.
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tudes are larger at T ¼ 1000 K. In this case the

excursion can be as large as �2 �AA. (See for ex-

ample, Te atom 4 in Fig. 6.) Such unusually large

lateral excursions of the Te adatoms explain the

small coherent fraction observed in the XSW
spectroscopy experiments on this surface [40]. As is

evident in Fig. 6, displacements of adjacent rows

do not display any correlation. The random and

uncorrelated nature of the displacements prevents

the development of any well-defined reconstruc-

tion pattern.

Adsorbed Te rows executing large amplitude

excursions with low frequency along the y-direc-
tion at finite temperatures is unusual and suggests

rather soft and non-Hookian (non-linear) force

constants in this direction. This is supported by

the total energy curves shown in Fig. 7. The total

energy remains practically unchanged for a dis-

placement of the Te rows of uy � �0:5 �AA. For the
displacement of adjacent rows in opposite direc-

tions, ETðuyÞ is like a double well potential with a

broad maximum at uy ¼0 and a shallow minimum

on both sides. The barrier between these two
minima is very small and is at the accuracy limit

of the present calculations (7 meV for a (2� 1)

supercell).

Interestingly, except for the disappearance of

the weak double well form, the variation of the

total energy with uy remains essentially unaltered,

if the adjacent Te rows are displaced in the same

direction. This implies that, at finite temperatures,
Te rows can easily go over the weak barrier. This is

precisely the reason we see the Te atoms executing

random (uncorrelated) motions along y in our fi-

nite temperatures MD calculations shown in Fig.

6. The total energy curves in Fig. 7 are fit to an

Fig. 6. Time variation of the displacement of atoms, uy;i, along the [1�110] direction calculated at T ¼ 600 and 1000 K.
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analytical form ETðuyÞ ¼ au2y þ bu4y þ cu6y þ du8y .
For displacements of all the Te atoms in the same
direction, the total energy can be fit with a ¼
0:2128 eV/�AA2, b ¼ 1:2976 eV/�AA4, c ¼ 	1:5531
eV/�AA6, and d ¼ 0:7607 eV/�AA8. On the other hand,

the total energy for zigzag displacements of the Te

atoms can be fit with a ¼ 	0:1379 eV/�AA2, b ¼
2:0978 eV/�AA4, c ¼ 	2:2809 eV/�AA6, and d ¼ 0:9313
eV/�AA8. In both these cases, strong anharmonicity

of the potential wells, wherein the Te atoms move,
are clear.

It is instructive to examine the band structure

of a (1� 1) and (2� 1) Te-covered surface due

to zigzag arrangement of the adatoms. We have

plotted in Fig. 8(a) the bands for (1� 1) structure

in a (2� 1) unit cell, so as to compare the folded

bands with the actually computed bands for the

(2� 1) structure. The only obvious effect of the full
self-consistency is to slightly shift the bands away

from the Fermi level. Although these shifts are at

the limit of accuracy of our calculations, there is a

hint that the band gap at C increases with respect

to the (1� 1) structure.

Large and random excursions of Te rows along

the [1�110] direction would not give rise to any re-

solvable pattern in the LEED and STM images.
For example, since the period of oscillations are

much shorter than the characteristic scan time of

STM, the STM images taken at finite temperature

would indicate disordered (1� 1) reconstruction.

Moreover, since the potential energy well is so flat,

positions of the Te atoms could be easily modified
by the tip-sample interaction in STM experiments.

This leads to additional complications in deducing

a surface reconstruction pattern from STM data.

We have also seen that the alternate (2� 1)

structure proposed is a higher energy one com-

pared to a (1� 1) structure. In view of this, it

seems that there are two possibilities as to why

some experiments see (2� 1) surface reconstruc-
tion. First, the surface atoms getting trapped in

some metastable state during the formation of the

Te adlayer. Second, the only major way in which

the experiments of Wiame et al. and others differ is

that in Wiame�s experiments, Te is deposited at

elevated temperatures (between 500 and 850 �C),
while the corresponding temperatures in all the

other experiments are relatively low (room tem-
perature to 200 �C). All the measurements are,

however, done at room temperature. While cool-

ing the system to room temperature from 500 �C,

Fig. 7. Variation of the total energy with the displacement of

the Te row, uy , calculated at T ¼ 0 K. Each data point corre-

sponds to a fully relaxed structure under a given displacement

of the Te rows along the [1�110] direction. The diamonds (}) are
for the adjacent rows moving in opposite directions forming a

zigzag pattern and the M�s are for the Te rows moving in the

same direction. The dashed and solid lines are fits to the dia-

monds and the M�s respectively, as discussed in the text.

Fig. 8. (a) Band structure of (1� 1) monolayer of Te covered

Si(0 0 1) system drawn in a (2� 1) unit cell. (b) Band structure

when the Te rows are displaced in a zigzag manner by 0.25 �AA.
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it is possible that because of their increased mo-

bility at high temperatures, the adatoms and sub-

strate can explore lower energy configurations

which are difficult to reach starting from a par-

ticular low-temperature configuration.

6. Summary

In summary, we have found that Te atoms

adsorb above the Si–Si dimer bonds on the Si(0 0 1)-

(2�1) surface at low coverage. At a half mono-

layer coverage, the Si–Si dimers on the surface

survive, though they are weakened slightly and
their asymmetry is removed. There is no energy

benefit for forming Te dimers at any coverage. At

monolayer coverage, the potential well for Te

atoms is rather flat and strongly anharmonic along

the [1�110] direction. There is almost no barrier for

the Te rows on the surface to make significant

excursions relative to their ideal positions along

this direction. Ab initio finite temperature MD
calculations indicate that the displacements of

Te rows are uncorrelated lacking any definitive

reconstruction pattern.
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