59 research outputs found

    The Interspersed Spin Boson Lattice Model

    Full text link
    We describe a family of lattice models that support a new class of quantum magnetism characterized by correlated spin and bosonic ordering [Phys. Rev. Lett. 112, 180405 (2014)]. We explore the full phase diagram of the model using Matrix-Product-State methods. Guided by these numerical results, we describe a modified variational ansatz to improve our analytic description of the groundstate at low boson frequencies. Additionally, we introduce an experimental protocol capable of inferring the low-energy excitations of the system by means of Fano scattering spectroscopy. Finally, we discuss the implementation and characterization of this model with current circuit-QED technology.Comment: Submitted to EPJ ST issue on "Novel Quantum Phases and Mesoscopic Physics in Quantum Gases

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    Searches for exclusive Higgs boson decays into D⁎γ and Z boson decays into D0γ and Ks0γ in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Searches for exclusive decays of the Higgs boson into D⁎γ and of the Z boson into D0γ and Ks0γ can probe flavour-violating Higgs boson and Z boson couplings to light quarks. Searches for these decays are performed with a pp collision data sample corresponding to an integrated luminosity of 136.3 fb−1 collected at s=13TeV between 2016–2018 with the ATLAS detector at the CERN Large Hadron Collider. In the D⁎γ and D0γ channels, the observed (expected) 95% confidence-level upper limits on the respective branching fractions are B(H→D⁎γ)<1.0(1.2)×10−3, B(Z→D0γ)<4.0(3.4)×10−6, while the corresponding results in the Ks0γ channel are B(Z→Ks0γ)<3.1(3.0)×10−6

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at √s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into diferent pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at √s = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, tt¯, and tb) or third-generation leptons (τν and τ τ ) are included in this kind of combination for the frst time. A simplifed model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confdence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Measurement of vector boson production cross sections and their ratios using pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    Abstract available from publisher's website

    Beam-induced backgrounds measured in the ATLAS detector during local gas injection into the LHC beam vacuum

    Get PDF
    Inelastic beam-gas collisions at the Large Hadron Collider (LHC), within a few hundred metres of the ATLAS experiment, are known to give the dominant contribution to beam backgrounds. These are monitored by ATLAS with a dedicated Beam Conditions Monitor (BCM) and with the rate of fake jets in the calorimeters. These two methods are complementary since the BCM probes backgrounds just around the beam pipe while fake jets are observed at radii of up to several metres. In order to quantify the correlation between the residual gas density in the LHC beam vacuum and the experimental backgrounds recorded by ATLAS, several dedicated tests were performed during LHC Run 2. Local pressure bumps, with a gas density several orders of magnitude higher than during normal operation, were introduced at different locations. The changes of beam-related backgrounds, seen in ATLAS, are correlated with the local pressure variation. In addition the rates of beam-gas events are estimated from the pressure measurements and pressure bump profiles obtained from calculations. Using these rates, the efficiency of the ATLAS beam background monitors to detect beam-gas events is derived as a function of distance from the interaction point. These efficiencies and characteristic distributions of fake jets from the beam backgrounds are found to be in good agreement with results of beam-gas simulations performed with theFluka Monte Carlo programme

    Functional diversity of single stem cell clones in patients&#39; acute lymphoblastic leukemia growing in mice: An adverse subclone with distinct DNA-methylation pattern, slow growth<em> in vivo </em>and drug resistance.

    No full text
    Acute lymphoblastic leukemia (ALL) consists of genetically heterogeneous cell subpopulations, but little is known about how genetic differences lead to functional differences between the clones. Of major clinical importance, aggressive, treatment-resistant and putatively relapse-inducing subclones need to be identified and require effective eradication by treatment. The most aggressive subpopulation likely determines prognosis and outcome in each patient. We aimed at characterizing on a functional as well as on a genetic level single stem cell clones derived from patients&#39; samples growing in mice and to combine the results of both levels in order to learn which genetic characteristics are associated with adverse functional behavior. We transplanted primary tumor cells from a 5-year old girl with hyperdiploid ALL involving a trisomic X chromosome at first relapse into severely immune-compromised mice and lentivirally modified them to express the fluorochromes red, blue and green at different amounts and combinations (RGB marking, Weber et al., 2012). Eight single stem cell clones were generated by limiting dilution transplantation and their uniqueness was verified by ligation-mediated (LM) PCR. We functionally compared the single stem cell clones between each other by re-mixing them in a single mouse for in vivo assays; analysis was performed one-by-one for each clone by flow cytometry where they could be distinguished from each other using their unique color codes. Clones showed clear differences in proliferation rate with faster and slower growing clones, independently whether 2 or 5 clones were mixed. When mice harboring clone mixtures were treated with conventional chemotherapy, clonal composition changed markedly and resistant clones overgrew sensitive clones indicating selective clonal responses and clonal advantage. A clone which showed especially slow growth in vivo was most resistant to in vivo treatment with Glucocorticoids. The slowly proliferating, Glucocorticoid-resistant clone had lost the additional X chromosome, which was present in all other clones and the bulk and showed a distinct DNA-methylation pattern analyzed by 450K arrays (illumina). In exome analysis, the clone showed 11 unique alterations including a single nucleotide variant in the oncogene USP6. We are currently performing RNA sequencing analysis to assess the differential gene expression in the clones. Taken together, genetic multicolor marking PDX ALL cells in the individualized xenograft mouse model allowed generating viable single cell clones for genetic functional characterization in vivo. Within the heterogeneous tumor bulk, an subclone existed which showed slow tumor growth and drug resistance which was associated with distinct genetic characteristics. Our studies allow the challenging functional characterization of subclones in vivo in order to develop efficient novel treatment approaches to eliminate aggressive stem cell clones in ALL

    The leukemogenic CALM/AF10 fusion protein alters the subcellular localization of the lymphoid regulator Ikaros.

    No full text
    The t(10;11)(p13;q14) translocation leads to the fusion of the CALM and AF10 genes. This translocation can be found as the sole cytogenetic abnormality in acute lymphoblastic leukemia, acute myeloid leukemia and in malignant lymphomas. The expression of CALM/AF10 in primary murine bone marrow cells results in the development of an aggressive leukemia in a murine bone marrow transplantation model. Using a yeast two-hybrid screen, we identified the lymphoid regulator Ikaros as an AF10 interacting protein. Interestingly, Ikaros is required for normal development of lymphocytes, and aberrant expression of Ikaros has been found in leukemia. In a murine model, the expression of a dominant negative isoform of Ikaros causes leukemias and lymphomas. The Ikaros interaction domain of AF10 was mapped to the leucine zipper domain of AF10, which is required for malignant transformation both by the CALM/AF10 and the MLL/AF10 fusion proteins. The interaction between AF10 and Ikaros was confirmed by GST pull down and co-immunoprecipitation. Coexpression of CALM/AF10 but not of AF10 alters the subcellular localization of Ikaros in murine fibroblasts. The transcriptional repressor activity of Ikaros is reduced by AF10. These results suggest that CALM/AF10 might interfere with normal Ikaros function, and thereby block lymphoid differentiation in CALM/AF10 positive leukemias
    corecore