160 research outputs found

    Application of Topographic Analyses for Mapping Spatial Patterns of Soil Properties

    Get PDF
    Landscape topography is a key parameter impacting soil properties on the earth surface. Strong topographic controls on soil morphological, chemical, and physical properties have been reported. This chapter addressed applications of topographical information for mapping spatial patterns of soil properties in recent years. Objectives of this chapter are to provide an overview of (1) impacts of topographic heterogeneity on the spatial variability in soil properties and (2) commonly used topography-based models in soil science. A case study was provided to demonstrate the feasibility of applying topography-based models developed in field sites to predict soil property over a watershed scale. A large-scale soil property map can be obtained based on topographic information derived from high-resolution remotely sensed data, which would benefit studies in areas with limited data accesses or needed to extrapolate findings from representative sites to larger regions

    Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States

    Get PDF
    AbstractWinter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012–2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2=0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2=0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops

    Use of Airborne Hyperspectral Imagery to Map Soil Properties in Tilled Agricultural Fields

    Get PDF
    Soil hyperspectral reflectance imagery was obtained for six tilled (soil) agricultural fields using an airborne imaging spectrometer (400–2450 nm, ∼10 nm resolution, 2.5 m spatial resolution). Surface soil samples (n=315) were analyzed for carbon content, particle size distribution, and 15 agronomically important elements (Mehlich-III extraction). When partial least squares (PLS) regression of imagery-derived reflectance spectra was used to predict analyte concentrations, 13 of the 19 analytes were predicted with R2>0.50, including carbon (0.65), aluminum (0.76), iron (0.75), and silt content (0.79). Comparison of 15 spectral math preprocessing treatments showed that a simple first derivative worked well for nearly all analytes. The resulting PLS factors were exported as a vector of coefficients and used to calculate predicted maps of soil properties for each field. Image smoothing with a 3×3 low-pass filter prior to spectral data extraction improved prediction accuracy. The resulting raster maps showed variation associated with topographic factors, indicating the effect of soil redistribution and moisture regime on in-field spatial variability. High-resolution maps of soil analyte concentrations can be used to improve precision environmental management of farmlands

    Modeling sediment diagenesis processes on riverbed to better quantify aquatic carbon fluxes and stocks in a small watershed of the Mid-Atlantic region

    Get PDF
    Despite the widely recognized importance of aquatic processes for bridging gaps in the global carbon cycle, there is still a lack of understanding of the role of riverbed processes for carbon flows and stocks in aquatic environments. Here, we added a sediment diagenesis and sediment carbon (C) resuspension module into the SWAT-C model and tested it for simulating both particulate organic C (POC) and dissolved organic C (DOC) fluxes using 4 years of monthly observations (2014–2017) in the Tuckahoe watershed (TW) in the U.S. Mid-Atlantic region. Sensitivity analyses show that parameters that regulate POC deposition in river networks are more sensitive than those that determine C resuspension from sediments. Further analyses indicate that allochthonous contributions to POC and DOC are about 36.6 and 46 kgC ha−1 year−1, respectively, while autochthonous contributions are less than 0.72 kgC ha−1 year−1 for both POC and DOC (less than 2% of allochthonous sources). The net deposition of POC on the riverbed (i.e., 11.4 kgC ha−1 year−1) retained ca. 31% of terrestrial inputs of POC. In addition, average annual buried C was 0.34 kgC ha−1 year−1, accounting for only 1% of terrestrial POC inputs or 3% of net POC deposition. The results indicate that about 79% of deposited organic C was converted to inorganic C (CH4 and CO2) in the sediment and eventually released into the overlying water column. This study serves as an exploratory study on estimation of C fluxes from terrestrial to aquatic environments at the watershed scale. We demonstrated capabilities of the SWAT-C model to simulate C cycling from uplands to riverine ecosystems and estimated C sinks and sources in aquatic environments. Overall, the results highlight the importance of including carbon cycle dynamics within the riverbed in order to accurately estimate aquatic carbon fluxes and stocks. The new capabilities of SWAT-C are expected to serve as a useful tool to account for those processes in watershed C balance assessment.https://doi.org/10.1186/s13021-020-00148-

    The General Ensemble Biogeochemical Modeling System (GEMS) and its Applications to Agricultural Systems in the United States

    Get PDF
    The General Ensemble Biogeochemical Modeling System (GEMS) (Liu, 2009; Liu et al., 2004c) was developed to integrate well-established ecosystem biogeochemical models with various spatial databases for the simulations of biogeochemical cycles over large areas. Figure 18.1 shows the overall structure of the GEMS. Some of the key components are described below. General Ensemble Biogeochemical Modeling System (GEMS) 310 Multiple Underlying Biogeochemical Models 310 Monte Carlo Simulations 311 Model Inputs: Management Practices and Others 311 Model Outputs 311 Data Assimilation 311 Simulation of Agricultural Practices: EDCM as an Example 312 Net Primary Production (NPP) and Improvements in Crop Genetics and Agronomics 312 Soil Carbon Dynamics 312 Impacts of Soil Erosion and Deposition 313 CH4 and N2O Fluxes 313 Study Areas and Modeling Design 314 Study Areas 314 Nebraska Eddy Flux Tower Sites 314 Regional Applications: Mississippi Valley and Prairie Potholes 315 Modeling Design 315 Results 316 Impacts of Management Practices on SOC at Site Scale 316 Quantification of Regional Carbon Stocks and GHG Fluxes 317 Prairie Pothole Region 317 Mississippi Valley 319 Discussion 32

    Praxes of “The Human” and “The Digital”: Spatial Humanities and the Digitization of Place

    Get PDF
    The spatial humanities have evolved much in the last ten years or so, and much of this evolution has been driven by project and problem-based GIS applications. It is argued here that the field lacks a theoretical framework analogous to Critical GIS in human geography. I argue that, just as Critical GIS drew on the intellectual hinterlands of human and hybrid geography, so must the spatial humanities draw on the intellectual hinterlands of how humanities discourse have always formed and transmitted concepts of place. Rhetoric, and especially the rhetorical devices of ekphrasis are given as an example of this; a project co-led by the author, the Heritage Gazetteer of Cyprus, is given as an example of how the digitzation of (humanistic) place has been operationalized

    Subsequent Surgery After Revision Anterior Cruciate Ligament Reconstruction: Rates and Risk Factors From a Multicenter Cohort

    Get PDF
    BACKGROUND: While revision anterior cruciate ligament reconstruction (ACLR) can be performed to restore knee stability and improve patient activity levels, outcomes after this surgery are reported to be inferior to those after primary ACLR. Further reoperations after revision ACLR can have an even more profound effect on patient satisfaction and outcomes. However, there is a current lack of information regarding the rate and risk factors for subsequent surgery after revision ACLR. PURPOSE: To report the rate of reoperations, procedures performed, and risk factors for a reoperation 2 years after revision ACLR. STUDY DESIGN: Case-control study; Level of evidence, 3. METHODS: A total of 1205 patients who underwent revision ACLR were enrolled in the Multicenter ACL Revision Study (MARS) between 2006 and 2011, composing the prospective cohort. Two-year questionnaire follow-up was obtained for 989 patients (82%), while telephone follow-up was obtained for 1112 patients (92%). If a patient reported having undergone subsequent surgery, operative reports detailing the subsequent procedure(s) were obtained and categorized. Multivariate regression analysis was performed to determine independent risk factors for a reoperation. RESULTS: Of the 1112 patients included in the analysis, 122 patients (11%) underwent a total of 172 subsequent procedures on the ipsilateral knee at 2-year follow-up. Of the reoperations, 27% were meniscal procedures (69% meniscectomy, 26% repair), 19% were subsequent revision ACLR, 17% were cartilage procedures (61% chondroplasty, 17% microfracture, 13% mosaicplasty), 11% were hardware removal, and 9% were procedures for arthrofibrosis. Multivariate analysis revealed that patients aged <20 years had twice the odds of patients aged 20 to 29 years to undergo a reoperation. The use of an allograft at the time of revision ACLR (odds ratio [OR], 1.79; P = .007) was a significant predictor for reoperations at 2 years, while staged revision (bone grafting of tunnels before revision ACLR) (OR, 1.93; P = .052) did not reach significance. Patients with grade 4 cartilage damage seen during revision ACLR were 78% less likely to undergo subsequent operations within 2 years. Sex, body mass index, smoking history, Marx activity score, technique for femoral tunnel placement, and meniscal tearing or meniscal treatment at the time of revision ACLR showed no significant effect on the reoperation rate. CONCLUSION: There was a significant reoperation rate after revision ACLR at 2 years (11%), with meniscal procedures most commonly involved. Independent risk factors for subsequent surgery on the ipsilateral knee included age <20 years and the use of allograft tissue at the time of revision ACLR

    Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma

    Get PDF
    Optic nerve degeneration caused by glaucoma is a leading cause of blindness worldwide. Patients affected by the normal-pressure form of glaucoma are more likely to harbor risk alleles for glaucoma-related optic nerve disease. We have performed a meta-analysis of two independent genome-wide association studies for primary open angle glaucoma (POAG) followed by a normal-pressure glaucoma (NPG, defined by intraocular pressure (IOP) less than 22 mmHg) subgroup analysis. The single-nucleotide polymorphisms that showed the most significant associations were tested for association with a second form of glaucoma, exfoliation-syndrome glaucoma. The overall meta-analysis of the GLAUGEN and NEIGHBOR dataset results (3,146 cases and 3,487 controls) identified significant associations between two loci and POAG: the CDKN2BAS region on 9p21 (rs2157719 [G], OR = 0.69 [95%CI 0.63–0.75], p = 1.86×10−18), and the SIX1/SIX6 region on chromosome 14q23 (rs10483727 [A], OR = 1.32 [95%CI 1.21–1.43], p = 3.87×10−11). In sub-group analysis two loci were significantly associated with NPG: 9p21 containing the CDKN2BAS gene (rs2157719 [G], OR = 0.58 [95% CI 0.50–0.67], p = 1.17×10−12) and a probable regulatory region on 8q22 (rs284489 [G], OR = 0.62 [95% CI 0.53–0.72], p = 8.88×10−10). Both NPG loci were also nominally associated with a second type of glaucoma, exfoliation syndrome glaucoma (rs2157719 [G], OR = 0.59 [95% CI 0.41–0.87], p = 0.004 and rs284489 [G], OR = 0.76 [95% CI 0.54–1.06], p = 0.021), suggesting that these loci might contribute more generally to optic nerve degeneration in glaucoma. Because both loci influence transforming growth factor beta (TGF-beta) signaling, we performed a genomic pathway analysis that showed an association between the TGF-beta pathway and NPG (permuted p = 0.009). These results suggest that neuro-protective therapies targeting TGF-beta signaling could be effective for multiple forms of glaucoma

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore