216 research outputs found

    Space-Borne Electron Accelerator Design

    Get PDF
    Renewed interest in active experiments with relativistic particle beams in space has led to the development of solid-state radio-frequency (RF) linear accelerators (linac) that can deliver MeV electron beams but operate with low-voltage DC power supplies. The solid-state RF amplifiers used to drive the accelerator are known as high-electron mobility transistors (HEMTs), and at C-band (5–6 GHz) are capable of generating up to 500 watts of RF power at 10% duty factor in a small package, i.e., the size of a postage stamp. In operation, the HEMTs are powered with 50 V DC as their bias voltage; they thus can tap into the spacecraft batteries or electrical bus as the primary power source. In this paper we describe the initial testing of a compact space-borne RF accelerator consisting of individual C-band cavities, each independently powered by a gallium nitride (GaN) HEMT. We show preliminary test results that demonstrate the beam acceleration in a single C-band cavity powered by a single HEMT operating at 10% duty factor. An example of active beam experiments in space that could benefit from the HEMT-powered accelerators is the proposed Magnetosphere-Ionosphere Connection (CONNEX) experiment (Dors et al., 2017)

    Allocation under dictatorship : research in Stalin’s archives

    Get PDF
    We survey recent research on the Soviet economy in the state, party, and military archives of the Stalin era. The archives have provided rich new evidence on the economic arrangements of a command system under a powerful dictator including Stalin’s role in the making of the economic system and economic policy, Stalin’s accumulation objectives and the constraints that limited his power to achieve them, the limits to administrative allocation, the information flows and incentives that governed the behavior of economic managers, the scope and significance of corruption and market-oriented behavior, and the prospects for economic reform

    Virtual worlds in Australian and New Zealand higher education: remembering the past, understanding the present and imagining the future

    Get PDF
    3D virtual reality, including the current generation of multi-user virtual worlds, has had a long history of use in education and training, and it experienced a surge of renewed interest with the advent of Second Life in 2003. What followed shortly after were several years marked by considerable hype around the use of virtual worlds for teaching, learning and research in higher education. For the moment, uptake of the technology seems to have plateaued, with academics either maintaining the status quo and continuing to use virtual worlds as they have previously done or choosing to opt out altogether. This paper presents a brief review of the use of virtual worlds in the Australian and New Zealand higher education sector in the past and reports on its use in the sector at the present time, based on input from members of the Australian and New Zealand Virtual Worlds Working Group. It then adopts a forward-looking perspective amid the current climate of uncertainty, musing on future directions and offering suggestions for potential new applications in light of recent technological developments and innovations in the area

    NASA's Robotic Lunar Lander Development Program

    Get PDF
    NASA Marshall Space Flight Center and the Johns Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed

    Influence of lateral and top boundary conditions on regional air quality prediction: A multiscale study coupling regional and global chemical transport models

    Get PDF
    The sensitivity of regional air quality model to various lateral and top boundary conditions is studied at 2 scales: a 60 km domain covering the whole USA and a 12 km domain over northeastern USA. Three global models (MOZART-NCAR, MOZART-GFDL and RAQMS) are used to drive the STEM-2K3 regional model with time-varied lateral and top boundary conditions (BCs). The regional simulations with different global BCs are examined using ICARTT aircraft measurements performed in the summer of 2004, and the simulations are shown to be sensitive to the boundary conditions from the global models, especially for relatively long-lived species, like CO and O3. Differences in the mean CO concentrations from three different global-model boundary conditions are as large as 40 ppbv, and the effects of the BCs on CO are shown to be important throughout the troposphere, even near surface. Top boundary conditions show strong effect on O3 predictions above 4 km. Over certain model grids, the model’s sensitivity to BCs is found to depend not only on the distance from the domain’s top and lateral boundaries, downwind/upwind situation, but also on regional emissions and species properties. The near-surface prediction over polluted area is usually not as sensitive to the variation of BCs, but to the magnitude of their background concentrations. We also test the sensitivity of model to temporal and spatial variations of the BCs by comparing the simulations with time-varied BCs to the corresponding simulations with time-mean and profile BCs. Removing the time variation of BCs leads to a significant bias on the variation prediction and sometime causes the bias in predicted mean values. The effect of model resolution on the BC sensitivity is also studied
    corecore