16 research outputs found

    Technology use in everyday life: Implications for designing for older users

    Get PDF
    This study examines the experience and attitudes of older adults towards technology and how they compare with younger age groups. Two hundred and thirty seven participants completed an extensive questionnaire exploring their daily lifestyle, use of technology, attitudes towards technology, and perceived difficulty of household devices. The main findings from the study were; (1) there was a strong motivation to learn or to continue learning to use computers by the older group; (2) social connectedness influenced how the older group used or would like to use technology and also why some preferred not to use it; and finally (3) there was an age-related increase in perceived difficulty for many household devices, however some devices maintained intergenerational usability. These finding can be used to inform the design of future intergenerational household technologies

    Engineering ambient visual sensors

    Get PDF
    Visual sensors are an indispensable prerequisite for those AmI environments that require a surveillance component. One practical issue concerns maximizing the operational longevity of such sensors as the operational lifetime of an AmI environment itself is dependent on that of its constituent components. In this paper, the intelligent agent paradigm is considered as a basis for managing a camera collective such that the conflicting demands of power usage optimization and system performance are reconciled

    Views from the coalface: chemo-sensors, sensor networks and the semantic sensor web

    Get PDF
    Currently millions of sensors are being deployed in sensor networks across the world. These networks generate vast quantities of heterogeneous data across various levels of spatial and temporal granularity. Sensors range from single-point in situ sensors to remote satellite sensors which can cover the globe. The semantic sensor web in principle should allow for the unification of the web with the real-word. In this position paper, we discuss the major challenges to this unification from the perspective of sensor developers (especially chemo-sensors) and integrating sensors data in real-world deployments. These challenges include: (1) identifying the quality of the data; (2) heterogeneity of data sources and data transport methods; (3) integrating data streams from different sources and modalities (esp. contextual information), and (4) pushing intelligence to the sensor level

    Intelligent middleware for adaptive sensing of tennis coaching sessions

    Get PDF
    In professional tennis training matches, the coach needs to be able to view play from the most appropriate angle in order to monitor players activities. In this paper, we present a system which can adapt the operation of a series of cameras in order to maintain optimal system performance based on a set of wireless sensors. This setup is used as a testbed for an agent based intelligent middleware that can correlate data from many different wired and wireless sensors and provide effective in-situ decision making. The proposed solution is flexible enough to allow the addition of new sensors and actuators. Within this setup we also provide details of a case study for the embedded control of cameras through the use of Ubisense data

    The CLARITY modular ambient health and wellness measurement platform

    Get PDF
    Emerging healthcare applications can benefit enormously from recent advances in pervasive technology and computing. This paper introduces the CLARITY Modular Ambient Health and Wellness Measurement Platform:, which is a heterogeneous and robust pervasive healthcare solution currently under development at the CLARITY Center for Sensor Web Technologies. This intelligent and context-aware platform comprises the Tyndall Wireless Sensor Network prototyping system, augmented with an agent-based middleware and frontend computing architecture. The key contribution of this work is to highlight how interoperability, expandability, reusability and robustness can be manifested in the modular design of the constituent nodes and the inherently distributed nature of the controlling software architecture.Emerging healthcare applications can benefit enormously from recent advances in pervasive technology and computing. This paper introduces the CLARITY Modular Ambient Health and Wellness Measurement Platform:, which is a heterogeneous and robust pervasive healthcare solution currently under development at the CLARITY Center for Sensor Web Technologies. This intelligent and context-aware platform comprises the Tyndall Wireless Sensor Network prototyping system, augmented with an agent-based middleware and frontend computing architecture. The key contribution of this work is to highlight how interoperability, expandability, reusability and robustness can be manifested in the modular design of the constituent nodes and the inherently distributed nature of the controlling software architecture

    Radio sleep mode optimization in wireless sensor networks

    Get PDF
    Energy efficiency is a central challenge in sensor networks, and the radio is a major contributor to overall energy node consumption. Current energy-efficient MAC protocols for sensor networks use a fixed low-power radio mode for putting the radio to sleep. Fixed low-power modes involve an inherent trade-off: deep sleep modes have low current draw and high energy cost and latency for switching the radio to active mode, while light sleep modes have quick and inexpensive switching to active mode with a higher current draw. This paper proposes adaptive radio low-power sleep modes based on current traffic conditions in the network. It first introduces a comprehensive node energy model, which includes energy components for radio switching, transmission, reception, listening, and sleeping, as well as the often disregarded microcontroller energy component for determining the optimal sleep mode and MAC protocol to use for given traffic scenarios. The model is then used for evaluating the energy-related performance of our recently proposed RFIDImpulse protocol enhanced with adaptive low-power modes, and comparing it against BMAC and IEEE 802.15.4, for both MicaZ and TelosB platforms under varying data rates. The comparative analysis confirms that RFIDImpulse with adaptive low-power modes provides up to 20 times lower energy consumption than IEEE 802.15.4 in low traffic scenario. The evaluation also yields the optimal settings of low-power modes on the basis of data rates for each node platform, and provides guidelines and a simple algorithm for the selection of appropriate MAC protocol, low-power mode, and node platform for a given set of traffic requirements of a sensor network application. © 2010 IEEE

    Agricultural and urban practices are correlated to changes in the resistome of riverine systems

    No full text
    The objective of this study was to comprehensively characterise the resistome, the collective set of antimicrobial resistance genes in a given environment, of two rivers, from their source to discharge into the sea, as these flow through areas of different land use. Our findings reveal significant differences in the riverine resistome composition in areas of different land uses, with increased abundance and diversity of AMR in downstream agricultural and urban locations, with the resistome in urban areas more similar to the resistome in wastewater. The changes in resistome were accompanied by changes in microbial communities, with a reduction in microbial diversity in downstream agricultural and urban affected areas, driven mostly by increased relative abundance in the phyla, Bacteroidetes and Proteobacteria. These results provide insight into how pollution associated with agricultural and urban activities affects microbial communities and influences AMR in aquatic water bodies. These results add valuable insights to form effective strategies for mitigating and preserving aquatic ecosystems. Overall, our study highlights the critical role of the environment in the development and dissemination of AMR and underscores the importance of adopting a One Health approach to address this global public health threat.</p

    Identifying Sources of Faecal Contamination in a Small Urban Stream Catchment: A Multiparametric Approach

    Get PDF
    Small urban streams discharging in the proximity of bathing waters may significantly contribute to the deterioration of water quality, yet their impact may be overlooked. This study focuses on the Elm Park stream in the city of Dublin that is subject to faecal contamination by unidentified sources. The aim of the study was to identify a minimum number of “sentinel” sampling stations in an urban catchment that would provide the maximum amount of information regarding faecal pollution in the catchment. Thus, high-resolution sampling within the catchment was carried out over the course of 1 year at 11 stations. Faecal indicator bacteria were enumerated and microbial source tracking (MST) was employed to evaluate human pollution. In addition, ammonium, total oxidised nitrogen, and phosphorus levels were monitored to determine if these correlated with faecal indicator and the HF183 MST marker. In addition, the effect of severe weather events on water quality was assessed using automated sampling at one of the identified “sentinel” stations during baseflow and high flow conditions over a 24-h period. Our results show that this urban stream is at times highly contaminated by point source faecal pollution and that human faecal pollution is pervasive in the catchment. Correlations between ammonium concentrations and faecal indicator bacteria (FIB) as well as the human MST marker were observed during the study. Cluster analysis identified four “sentinel” stations that provide sufficient information on faecal pollution in the stream, thus reducing the geographical complexity of the catchment. Furthermore, ammonium levels strongly correlated with FIB and the human HF183 MST marker under high flow conditions at key “sentinel” stations. This work demonstrates the effectiveness of pairing MST, faecal indicators, and ammonium monitoring to identify “sentinel” stations that could be more rapidly assessed using real-time ammonium readouts to assess remediation efforts.European Commission - European Regional Development Fun

    Remote Electricity Actuation and Monitoring mote

    No full text
    This work presents the design and evaluation of the REAM (Remote Electricity Actuation and Monitoring) node based around the modular Tyndall Mote platform. The REAM node enables the user to remotely actuate power to a mains power extension board while sampling the current, voltage, power and power factor of the attached load. The node contains a current transformer interfaced to an Energy Metering IC which continuously samples current and voltage. These values are periodically read from the part by a PIC24 microcontroller, which calculates the RMS current and voltage, power factor and overall power. The resultant values can then be queried wirelessly employing the Tyndall 802.15.4 compliant wireless module
    corecore