25,372 research outputs found

    Beryllium 7 and Lead 210 in the western hemisphere Arctic atmosphere: Observations from three recent aircraft-based sampling programs

    Get PDF
    Concentrations of the natural radionuclides 7Be and 210Pb were determined in aerosol samples collected in the western hemisphere Arctic during the recent NOAA Arctic Gas and Aerosol Sampling Program (AGASP 3) and NASA Global Tropospheric Experiment/Arctic Boundary Layer Expeditions (GTE/ABLE 3A and ABLE 3B) missions. Beryllium 7 showed a free tropospheric concentration maximum between 4 and 5 km in the summer of 1990. Previous 7Be data obtained in the late 1950s and early 1960s also indicated a similar vertical distribution of 7Be near 70°N. Injection of stratospheric air through tropopause folds associated with the Arctic jet near 70°N appears to explain the presence of a layer of air near 4–5 km in the high Arctic free troposphere with elevated 7Be concentrations. The vertical distribution of 210Pb showed a distinct difference between the high-Arctic and sub-Arctic in the summer of 1988. At latitudes greater than 65°N, 210Pb concentrations at 3–6 km were elevated compared to those below 1 km. The reverse of this trend was observed near 60°N. These same vertical distributions were also apparent in aerosol SO42−, determined in separate aerosol samples collected on the same flights (Talbot et al., this issue). The results for 210Pb suggest that some of the difference between the summer troposphere in the high- and sub-Arctic is also due to enhanced stratosphere-troposphere exchange in the vicinity of the Arctic jet. These observations, and other findings from ABLE 3A presented in this issue, suggest that for some species the stratosphere may be a principal source influencing their distribution in the Arctic summer troposphere. For example, intrusions of stratospheric air constitute the dominant source term for tropospheric budgets of 7Be and ozone, and may be important in the 210Pb, SO42−, and NOybudgets. Further investigation, including determination of detailed 7Be and 210Pb distributions, is needed to quantify the stratospheric impact on the chemistry of the Arctic troposphere during the summer

    Building top management muscle in a slow growth environment: How different is better at Greyhound Financial Corporation

    Get PDF
    The turbulence experienced in the 1980s in the U.S. business environment has led to something of a motivational crisis among corporate managers. Increased competition, budget constraints, and changing demographics are forcing companies into adopting strategies geared toward downsizing and flatter organizational structures. While corporate America probably has begun to accept its leaner profile, it has not yet successfully addressed the issue of how to keep the best managerial talent tuned in and turned on in an era of dwindling resources. This article describes and assesses one corporation\u27s efforts to maintain top-managerial motivation through a unique form of job swapping called the Muscle Building program at Greyhound Financial Corporation in Phoenix, Arizona. Muscle building. a top-management job rotation program, helps prevent career gridlock, fosters management diversity, and provides for top-management succession. Hidden costs and benefits of the program and issues concerning its implementation are discussed

    The preservation of atmospheric nitrate in snow at Summit, Greenland

    Get PDF
    There is great interest in using nitrate NO3 isotopic composition in ice cores to track the history of precursor nitrogen oxides (NOx = NO + NO2) in the atmosphere. Nitrate NO3 however can be lost from the snow by surface processes, such as photolysis back to NOx upon exposure to sunlight, making it difficult to interpret records of NO3 as a tracer of atmospheric NOx loading. In a campaign consisting of two field seasons (May–June) at Summit, Greenland, high temporal frequency surface snow samples were collected and analyzed for the oxygen isotopic composition of NO3. The strong, linear relationship observed between the oxygen isotopes of NO3 in both 2010 and 2011, is difficult to explain in the presence of significant post depositional processing of NO3 unless several unrelated variables change in concert. Therefore, the isotopic signature of NO3 in the snow at Summit is most feasibly explained as preserved atmospheric NO3 deposition

    Resource-Constrained Adaptive Search and Tracking for Sparse Dynamic Targets

    Full text link
    This paper considers the problem of resource-constrained and noise-limited localization and estimation of dynamic targets that are sparsely distributed over a large area. We generalize an existing framework [Bashan et al, 2008] for adaptive allocation of sensing resources to the dynamic case, accounting for time-varying target behavior such as transitions to neighboring cells and varying amplitudes over a potentially long time horizon. The proposed adaptive sensing policy is driven by minimization of a modified version of the previously introduced ARAP objective function, which is a surrogate function for mean squared error within locations containing targets. We provide theoretical upper bounds on the performance of adaptive sensing policies by analyzing solutions with oracle knowledge of target locations, gaining insight into the effect of target motion and amplitude variation as well as sparsity. Exact minimization of the multi-stage objective function is infeasible, but myopic optimization yields a closed-form solution. We propose a simple non-myopic extension, the Dynamic Adaptive Resource Allocation Policy (D-ARAP), that allocates a fraction of resources for exploring all locations rather than solely exploiting the current belief state. Our numerical studies indicate that D-ARAP has the following advantages: (a) it is more robust than the myopic policy to noise, missing data, and model mismatch; (b) it performs comparably to well-known approximate dynamic programming solutions but at significantly lower computational complexity; and (c) it improves greatly upon non-adaptive uniform resource allocation in terms of estimation error and probability of detection.Comment: 49 pages, 1 table, 11 figure

    Apollo Saturn 511 effluent measurements from the Apollo 16 launch operations: An experiment

    Get PDF
    An experiment was performed in conjunction with the Apollo 16 launch to define operational and instrumentational problems associated with launch-vehicle exhaust effluent monitoring. Ground and airborne sampling were performed for CO, CO2, hydrocarbons, and particulates. Sampling systems included filter pads and photometers for particulates and whole-air grab samples for gases. Launch debris was identified in the particulate samples at ground level(taken immediately after launch) and in the airborne measurements (taken 40 to 50 minutes after launch approximately 40 km downwind of the pad). Operational problems were identified and included the need for higher instrumentation mobility and the need for real-time sampling instrumentation as opposed to collection-type samples such as the whole-air grab sample

    Launch vehicle effluent measurements during the September 5, 1977, Titan 3 launch at Air Force eastern test range

    Get PDF
    Airborne effluent measurements and cloud physical behavior data are presented. The monitoring program included airborne effluent measurements in situ in the launch cloud, visible and infrared photography of cloud growth and physical behavior, and limited surface collection of rain samples. Effluent measurements included concentrations of HCl, Cl2, NO, nitric oxide, and particles as a function of time in the exhaust cloud. In situ particle mass concentration and number density were measured as a function of time and size in the range of 0.05 micron m to 30 micron m diameter. Measurement results were similar to those of previous launch monitorings. Maximum HCl and nitric oxide concentrations of Cl2 were maximum about 2 minutes after launch and by 10 to 15 minutes had decayed to less than 10 ppb (detection limit). Particle measurements showed most of the particles present to be below about 3-micron m diameter. Postlaunch analyses of collected particle samples showed significant amounts of Al (some cases Cl) from about 3-micron m to 0.04-micron m diameter

    Fragment Coupling and the Construction of Quaternary Carbons Using Tertiary Radicals Generated From tert-Alkyl N-Phthalimidoyl Oxalates By Visible-Light Photocatalysis.

    Get PDF
    The coupling of tertiary carbon radicals with alkene acceptors is an underdeveloped strategy for uniting complex carbon fragments and forming new quaternary carbons. The scope and limitations of a new approach for generating nucleophilic tertiary radicals from tertiary alcohols and utilizing these intermediates in fragment coupling reactions is described. In this method, the tertiary alcohol is first acylated to give the tert-alkyl N-phthalimidoyl oxalate, which in the presence of visible-light, catalytic Ru(bpy)3(PF6)2, and a reductant fragments to form the corresponding tertiary carbon radical. In addition to reductive coupling with alkenes, substitution reactions of tertiary radicals with allylic and vinylic halides is described. A mechanism for the generation of tertiary carbon radicals from tert-alkyl N-phthalimidoyl oxalates is proposed that is based on earlier pioneering investigations of Okada and Barton. Deuterium labeling and competition experiments reveal that the reductive radical coupling of tert-alkyl N-phthalimidoyl oxalates with electron-deficient alkenes is terminated by hydrogen-atom transfer
    • …
    corecore