209 research outputs found

    MALDI Matrix Application Utilizing a Modified 3D Printer for Accessible High Resolution Mass Spectrometry Imaging

    Get PDF
    Successful matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) relies on the selection of the most appropriate matrix and optimization of the matrix application parameters. In order to achieve reproducible high spatial-resolution imaging data, several commercially available automated matrix application platforms have become available. However, the high cost of these commercial matrix sprayers is restricting access into this emerging research field. Here, we report an automated platform for matrix deposition, employing a converted commercially available 3D printer ($300) and other parts commonly found in an analytical chemistry lab alow-cost alternative to commercial sprayers. Using printed fluorescent rhodamine B microarrays and employing experimental design, the matrix deposition parameters were optimized to minimize surface analyte diffusion. Finally, the optimized matrix application method was applied to image three-dimensional MCF-7 cell culture spheroid sections (ca. 500 μm diameter tissue samples) and sections of mouse brain. Using this system, we demonstrate robust and reproducible observations of endogenous metabolite and steroid distributions with a high spatial resolution

    Electronic Structure and Dynamics of Higher-Lying Excited States in Light Harvesting Complex 1 from Rhodobacter sphaeroides

    Get PDF
    Light harvesting in photosynthetic organisms involves efficient transfer of energy from peripheral antenna complexes to core antenna complexes, and ultimately to the reaction center where charge separation drives downstream photosynthetic processes. Antenna complexes contain many strongly coupled chromophores, which complicates analysis of their electronic structure. Two-dimensional electronic spectroscopy (2DES) provides information on energetic coupling and ultrafast energy transfer dynamics, making the technique well suited for the study of photosynthetic antennae. Here, we present 2DES results on excited state properties and dynamics of a core antenna complex, light harvesting complex 1 (LH1), embedded in the photosynthetic membrane of Rhodobacter sphaeroides. The experiment reveals weakly allowed higher-lying excited states in LH1 at 770 nm, which transfer energy to the strongly allowed states at 875 nm with a lifetime of 40 fs. The presence of higher-lying excited states is in agreement with effective Hamiltonians constructed using parameters from crystal structures and atomic force microscopy (AFM) studies. The energy transfer dynamics between the higher- and lower-lying excited states agree with Redfield theory calculations

    Quantitation of endogenous metabolites in mouse tumors using mass-spectrometry imaging

    Get PDF
    Described is a quantitative-mass-spectrometryimaging (qMSI) methodology for the analysis of lactate and glutamate distributions in order to delineate heterogeneity among mouse tumor models used to support drug-discovery efficacy testing. We evaluate and report on preanalysisstabilization methods aimed at improving the reproducibility and efficiency of quantitative assessments of endogenous molecules in tissues. Stability experiments demonstrate that optimum stabilization protocols consist of frozen-tissue embedding, post-tissue-sectioning desiccation, and storage at −80 °C of tissue sections sealed in vacuum-tight containers. Optimized stabilization protocols are used in combination with qMSI methodology for the absolute quantitation of lactate and glutamate in tumors, incorporating the use of two different stable-isotope-labeled versions of each analyte and spectral-clustering performed on each tissue section using k-means clustering to allow region-specific, pixel-by-pixel quantitation. Region-specific qMSI was used to screen different tumor models and identify a phenotype that has low lactate heterogeneity, which will enable accurate measurements of lactate modulation in future drug-discovery studies. We conclude that using optimized qMSI protocols, it is possible to quantify endogenous metabolites within tumors, and region-specific quantitation can provide valuable insight into tissue heterogeneity and the tumor microenvironment

    Evaluation of formalin-fixed and FFPE tissues for spatially resolved metabolomics and drug distribution studies

    Get PDF
    Fixation of samples is broadly used prior to the histological evaluation of tissue samples. Though recent reports demonstrated the ability to use fixed tissues for mass spectrometry imaging (MSI) based proteomics, glycomics and tumor classification studies, to date comprehensive evaluation of fixation-related effects for spatially resolved metabolomics and drug disposition studies is still missing. In this study we used matrix assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) MSI to investigate the effect of formalin-fixation and formalin-fixation combined with paraffin embedding on the detectable metabolome including xenobiotics. Formalin fixation was found to cause significant washout of polar molecular species, including inorganic salts, amino acids, organic acids and carnitine species, oxidation of endogenous lipids and formation of reaction products between lipids and fixative ingredients. The slow fixation kinetics under ambient conditions resulted in increased lipid hydrolysis in the tissue core, correlating with the time-dependent progression of the fixation. Paraffin embedding resulted in subsequent partial removal of structural lipids resulting in the distortion of the elucidated biodistributions

    Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging

    Get PDF
    Mass spectrometry imaging (MSI) is an established analytical tool capable of defining and understanding complex tissues by determining the spatial distribution of biological molecules. Three-dimensional (3D) cell culture models mimic the pathophysiological environment of in vivo tumors and are rapidly emerging as a valuable research tool. Here, multimodal MSI techniques were employed to characterize a novel aggregated 3D lung adenocarcinoma model, developed by the group to mimic the in vivo tissue. Regions of tumor heterogeneity and the hypoxic microenvironment were observed based on the spatial distribution of a variety of endogenous molecules. Desorption electrospray ionization (DESI)-MSI defined regions of a hypoxic core and a proliferative outer layer from metabolite distribution. Targeted metabolites (e.g., lactate, glutamine, and citrate) were mapped to pathways of glycolysis and the TCA cycle demonstrating tumor metabolic behavior. The first application of imaging mass cytometry (IMC) with 3D cell culture enabled single-cell phenotyping at 1 μm spatial resolution. Protein markers of proliferation (Ki-67) and hypoxia (glucose transporter 1) defined metabolic signaling in the aggregoid model, which complemented the metabolite data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis localized endogenous elements including magnesium and copper, further differentiating the hypoxia gradient and validating the protein expression. Obtaining a large amount of molecular information on a complementary nature enabled an in-depth understanding of the biological processes within the novel tumor model. Combining powerful imaging techniques to characterize the aggregated 3D culture highlighted a future methodology with potential applications in cancer research and drug development

    Metabolic imaging across scales reveals distinct prostate cancer phenotypes

    Get PDF
    Hyperpolarised magnetic resonance imaging (HP-13C-MRI) has shown promise as a clinical tool for detecting and characterising prostate cancer. Here we use a range of spatially resolved histological techniques to identify the biological mechanisms underpinning differential [1-13C]lactate labelling between benign and malignant prostate, as well as in tumours containing cribriform and non-cribriform Gleason pattern 4 disease. Here we show that elevated hyperpolarised [1-13C]lactate signal in prostate cancer compared to the benign prostate is primarily driven by increased tumour epithelial cell density and vascularity, rather than differences in epithelial lactate concentration between tumour and normal. We also demonstrate that some tumours of the cribriform subtype may lack [1-13C]lactate labelling, which is explained by lower epithelial lactate dehydrogenase expression, higher mitochondrial pyruvate carrier density, and increased lipid abundance compared to lactate-rich non-cribriform lesions. These findings highlight the potential of combining spatial metabolic imaging tools across scales to identify clinically significant metabolic phenotypes in prostate cancer

    Targeted desorption electrospray ionization mass spectrometry imaging for drug distribution, toxicity, and tissue classification studies

    Get PDF
    With increased use of mass spectrometry imaging (MSI) in support of pharmaceutical research and development, there are opportunities to develop analytical pipelines that incorporate exploratory high-performance analysis with higher capacity and faster targeted MSI. Therefore, to enable faster MSI data acquisition we present analyte-targeted desorption electrospray ionization–mass spectrometry imaging (DESI-MSI) utilizing a triple-quadrupole (TQ) mass analyzer. The evaluated platform configuration provided superior sensitivity compared to a conventional time-of-flight (TOF) mass analyzer and thus holds the potential to generate data applicable to pharmaceutical research and development. The platform was successfully operated with sampling rates up to 10 scans/s, comparing positively to the 1 scan/s commonly used on comparable DESI-TOF setups. The higher scan rate enabled investigation of the desorption/ionization processes of endogenous lipid species such as phosphatidylcholines and a co-administered cassette of four orally dosed drugs—erlotininb, moxifloxacin, olanzapine, and terfenadine. This was used to enable understanding of the impact of the desorption/ionization processes in order to optimize the operational parameters, resulting in improved compound coverage for olanzapine and the main olanzapine metabolite, hydroxy-olanzapine, in brain tissue sections compared to DESI-TOF analysis or matrix-assisted laser desorption/ionization (MALDI) platforms. The approach allowed reducing the amount of recorded information, thus reducing the size of datasets from up to 150 GB per experiment down to several hundred MB. The improved performance was demonstrated in case studies investigating the suitability of this approach for mapping drug distribution, spatially resolved profiling of drug-induced nephrotoxicity, and molecular–histological tissue classification of ovarian tumors specimens
    • …
    corecore