3,022 research outputs found

    Exact braneworld cosmology induced from bulk black holes

    Get PDF
    We use a new, exact approach in calculating the energy density measured by an observer living on a brane embedded in a charged black hole spacetime. We find that the bulk Weyl tensor gives rise to non-linear terms in the energy density and pressure in the FRW equations for the brane. Remarkably, these take exactly the same form as the ``unconventional'' terms found in the cosmology of branes embedded in pure AdS, with extra matter living on the brane. Black hole driven cosmologies have the benefit that there is no ambiguity in splitting the braneword energy momentum into tension and additional matter. We propose a new, enlarged relationship between the two descriptions of braneworld cosmology. We also study the exact thermodynamics of the field theory and present a generalised Cardy-Verlinde formula in this set up.Comment: 17 pages, no figures; v3: Minor change, References added, Version to appear in CQ

    The Gravity Field, Orientation, and Ephemeris of Mercury from MESSENGER Observations After Three Years in Orbit

    Get PDF
    We have analyzed three years of radio tracking data from the MESSENGER spacecraft in orbit around Mercury and determined the gravity field, planetary orientation, and ephemeris of the innermost planet. With improvements in spatial coverage, force modeling, and data weighting, we refined an earlier global gravity field both in quality and resolution, and we present here a spherical harmonic solution to degree and order 50. In this field, termed HgM005, uncertainties in low-degree coefficients are reduced by an order of magnitude relative to the earlier global field, and we obtained a preliminary value of the tidal Love number k(sub 2) of 0.451+/-0.014. We also estimated Mercury's pole position, and we obtained an obliquity value of 2.06 +/- 0.16 arcmin, in good agreement with analysis of Earth-based radar observations. From our updated rotation period (58.646146 +/- 0.000011 days) and Mercury ephemeris, we verified experimentally the planet's 3: 2 spin-orbit resonance to greater accuracy than previously possible. We present a detailed analysis of the HgM005 covariance matrix, and we describe some near-circular frozen orbits around Mercury that could be advantageous for future exploration

    Ghosts in asymmetric brane gravity and the decoupled stealth limit

    Get PDF
    We study the spectrum of gravitational perturbations around a vacuum de Sitter brane in a 5D asymmetric braneworld model, with induced curvature on the brane. This generalises the stealth acceleration model proposed by Charmousis, Gregory and Padilla (CGP) which realises the Cardassian cosmology in which power law cosmic acceleration can be driven by ordinary matter. Whenever the bulk has infinite volume we find that there is always a perturbative ghost propagating on the de Sitter brane, in contrast to the Minkowski brane case analysed by CGP. We discuss the implication of this ghost for the stealth acceleration model, and identify a limiting case where the ghost decouples as the de Sitter curvature vanishes.Comment: 21 page

    Galileon Hairs of Dyson Spheres, Vainshtein's Coiffure and Hirsute Bubbles

    Full text link
    We study the fields of spherically symmetric thin shell sources, a.k.a. Dyson spheres, in a {\it fully nonlinear covariant} theory of gravity with the simplest galileon field. We integrate exactly all the field equations once, reducing them to first order nonlinear equations. For the simplest galileon, static solutions come on {\it six} distinct branches. On one, a Dyson sphere surrounds itself with a galileon hair, which far away looks like a hair of any Brans-Dicke field. The hair changes below the Vainshtein scale, where the extra galileon terms dominate the minimal gradients of the field. Their hair looks more like a fuzz, because the galileon terms are suppressed by the derivative of the volume determinant. It shuts off the `hair bunching' over the `angular' 2-sphere. Hence the fuzz remains dilute even close to the source. This is really why the Vainshtein's suppression of the modifications of gravity works close to the source. On the other five branches, the static solutions are all {\it singular} far from the source, and shuttered off from asymptotic infinity. One of them, however, is really the self-accelerating branch, and the singularity is removed by turning on time dependence. We give examples of regulated solutions, where the Dyson sphere explodes outward, and its self-accelerating side is nonsingular. These constructions may open channels for nonperturbative transitions between branches, which need to be addressed further to determine phenomenological viability of multi-branch gravities.Comment: 29+1 pages, LaTeX, 2 .pdf figure

    Solar System Expansion and Strong Equivalence Principle as Seen by the NASA MESSENGER Mission

    Get PDF
    The NASA MESSENGER mission explored the innermost planet of the solar system and obtained a rich dataset of range measurements for the determination of Mercury's ephemeris. Here we use these precise data collected over seven years to estimate parameters related to General Relativity and the evolution of the Sun. These results confirm the validity of the Strong Equivalence Principle with a significantly refined uncertainty of the Nordtvedt parameter eta=(-6.6 plus or minus 7.2)x10(exp -5) By assuming a metric theory of gravitation, we retrieved the Post-Newtonian parameter beta = 1 + (-1.6 plus or minus 1.8)x10(exp -5) and the Sun's gravitational oblateness, J(sub 2 solar)=(2.246 plus or minus 0.022)x10(exp -7). Finally, we obtain an estimate of the time variation of the Sun gravitational parameter, G (raised dot)solar mass/G solar mass =(-6.13 plus or minus 1.47)x10(exp -14), which is consistent with the expected solar mass loss due to the solar wind and interior processes. This measurement allows us to constrain |G(raised dot)|/G to be less than 4 x 10(exp -14) yr(exp -1)

    A short review of "DGP Specteroscopy"

    Get PDF
    In this paper we provide a short review of the main results developed in hep-th/0604086. We focus on linearised vacuum perturbations about the self-accelerating branch of solutions in the DGP model. These are shown to contain a ghost in the spectrum for any value of the brane tension. We also comment on hep-th/0607099, where some counter arguments have been presented.Comment: Minor typos correcte

    Stealth Acceleration and Modified Gravity

    Full text link
    We show how to construct consistent braneworld models which exhibit late time acceleration. Unlike self-acceleration, which has a de Sitter vacuum state, our models have the standard Minkowski vacuum and accelerate only in the presence of matter, which we dub ``stealth-acceleration''. We use an effective action for the brane which includes an induced gravity term, and allow for an asymmetric set-up. We study the linear stability of flat brane vacua and find the regions of parameter space where the set-up is stable. The 4-dimensional graviton is only quasi-localised in this set-up and as a result gravity is modified at late times. One of the two regions is strongly coupled and the scalar mode is eaten up by an extra symmetry that arises in this limit. Having filtered the well-defined theories we then focus on their cosmology. When the graviton is quasi-localised we find two main examples of acceleration. In each case, we provide an illustrative model and compare it to LambdaCDM.Comment: 32 pages, 5 figure

    Simulated recovery of Europa's global shape and tidal Love numbers from altimetry and radio tracking during a dedicated flyby tour

    Get PDF
    The fundamental scientific objectives for future spacecraft exploration of Jupiter's moon Europa include confirmation of the existence of subsurface ocean beneath the surface ice shell and constraints on the physical properties of the ocean. Here we conduct a comprehensive simulation of a multiple-flyby mission. We demonstrate that radio tracking data can provide an estimate of the gravitational tidal Love number k2 with sufficient precision to confirm the presence of a liquid layer. We further show that a capable long-range laser altimeter can improve determination of the spacecraft position, improve the k2 determination (2 (3-4% error), which is directly related to the amplitude of the surface tidal deformation. These measurements, in addition to the global shape accurately constrained by the long altimetric profiles, can yield further constraints on the interior structure of Europa. Key Points A multiple-flyby mission to Europa can recover key geophysical parameters Laser altimetry can uniquely and accurately recover the global shape of Europa Laser altimetry enables the recovery of h2 to constrain the ice shell thicknes

    Braneworld holography in Gauss-Bonnet gravity

    Full text link
    We investigate holography on an (n-1)-dimensional brane embedded in a background of AdS black holes, in n-dimensional Gauss-Bonnet gravity. We demonstrate that for a critical brane near the AdS boundary, the Friedmann equation corresponds to that of the standard cosmology driven by a CFT dual to the AdS bulk. We show that there is no holographic description for non-critical branes, or when the brane is further away from the AdS boundary. We then derive a Cardy-Verlinde formula for the dual CFT on the critical brane near the boundary. This gives us insight into the remarkable correspondence between Cardy-Verlinde formulae and Friedmann equations in Einstein gravity.Comment: 24 pages, no figures; references added, minor changes, version to appear in CQ
    • …
    corecore