440 research outputs found
Symmetrical Catalytically Active Colloids Collectively Induce Convective Flow
Although much attention has focused on self-motile asymmetrical catalytically active âJanusâ colloids as a route to enable new fluidic transport applications, the motion of symmetrical catalytically active colloids is less investigated. This is despite isotropically active colloids being more accessible and commonly used as supports for heterogeneous catalysis. Here, we addressed this by systematically investigating the motion of platinum-coated colloids capable of isotropically decomposing hydrogen peroxide. We observed the onset of collective convective flow as the colloidal volume fraction increased above a threshold. The ballistic velocities induced by the collective flow were quantified by particle tracking and were found to increase with the volume fraction. We also determined the associated increase in the PĂ©clet number as evidence of the potential to use convection as a simple method to enhance mass transport rates. By determining the persistence lengths, we were able to correlate the magnitude of convective flow with the overall catalytic activity per unit volume. This suggests that the mechanism for the collective flow is driven by chemical activity-induced local density differences. Finally, we discussed these results in the context of potential new fluidic applications and highlighted the role that activity-induced convection may play in experiments designed to investigate self-motile catalytic systems
Reactive inkjet printing of functional silk stirrers for enhanced mixing and sensing
Stirring small volumes of solution can reduce immunoassay readout time, homogenize cell cultures, and increase enzyme reactivity in bioreactors. However, at present many small scale stirring methods require external actuation, which can be cumbersome. To address this, here, reactive inkjet printing is shown to be able to produce autonomously rotating biocompatible silk-based microstirrers that can enhance fluid mixing. Rotary motion is generated either by release of a surface active agent (small molecular polyethylene glycol) resulting in Marangoni effect, or by catalytically powered bubble propulsion. The Marangoni driven devices do not require any chemicals to be added to the fluid as the "fuel," while the catalytically powered devices are powered by decomposing substrate molecules in solution. A comparison of Marangoni effect and enzyme powered stirrers is made. Marangoni effect driven stirrers rotate up to 600 rpm, 75-100-fold faster than enzyme driven microstirrers, however enzyme powered stirrers show increased longevity. Further to stirring applications, the sensitivity of the motion generation mechanisms to fluid properties allows the rotating devices to also be exploited for sensing applications, for example, acting as motion sensors for water pollution
Silk fibroin as a functional biomaterial for tissue engineering
Tissue engineering (TE) is the approach to combine cells with scaffold materials and appropriate growth factors to regenerate or replace damaged or degenerated tissue or organs. The scaffold material as a template for tissue formation plays the most important role in TE. Among scaffold materials, silk fibroin (SF), a natural protein with outstanding mechanical properties, biodegradability, biocompatibility, and bioresorbability has attracted significant attention for TE applications. SF is commonly dissolved into an aqueous solution and can be easily reconstructed into different material formats, including films, mats, hydrogels, and sponges via various fabrication techniques. These include spin coating, electrospinning, freeze drying, physical, and chemical crosslinking techniques. Furthermore, to facilitate fabrication of more complex SF-based scaffolds with high precision techniques including micro-patterning and bio-printing have recently been explored. This review introduces the physicochemical and mechanical properties of SF and looks into a range of SF-based scaffolds that have been recently developed. The typical TE applications of SF-based scaffolds including bone, cartilage, ligament, tendon, skin, wound healing, and tympanic membrane, will be highlighted and discussed, followed by future prospects and challenges needing to be addressed
Core Structure of Global Vortices in Brane World Models
We study analytically and numerically the core structure of global vortices
forming on topologically deformed brane-worlds with a single toroidally compact
extra dimension. It is shown that for an extra dimension size larger than the
scale of symmetry breaking the magnitude of the complex scalar field at the
vortex center can dynamically remain non-zero. Singlevaluedness and regularity
are not violated. Instead, the winding escapes to the extra dimension at the
vortex center. As the extra dimension size decreases the field magnitude at the
core dynamically decreases also and in the limit of zero extra dimension size
we reobtain the familiar global vortex solution. Extensions to other types of
defects and gauged symmetries are also discussed.Comment: 6 two column pages, 3 figure
High-energy gamma-ray emission from the inner jet of LS I+61 303: the hadronic contribution revisited
LS I+61 303 has been detected by the Cherenkov telescope MAGIC at very high
energies, presenting a variable flux along the orbital motion with a maximum
clearly separated from the periastron passage. In the light of the new
observational constraints, we revisit the discussion of the production of
high-energy gamma rays from particle interactions in the inner jet of this
system. The hadronic contribution could represent a major fraction of the TeV
emission detected from this source. The spectral energy distribution resulting
from p-p interactions is recalculated. Opacity effects introduced by the photon
fields of the primary star and the stellar decretion disk are shown to be
essential in shaping the high-energy gamma-ray light curve at energies close to
200 GeV. We also present results of Monte Carlo simulations of the
electromagnetic cascades developed very close to the periastron passage. We
conclude that a hadronic microquasar model for the gamma-ray emission in LS I
+61 303 can reproduce the main features of its observed high-energy gamma-ray
flux.Comment: 6 pages. Sligth improvements made. Accepted version by Astrophysics
and Space Scienc
Altering the bubble release of reactive inkjet printed silk micro-rockets
A novel approach of using layer-by-layer (LBL) reactive inkjet printing (RIJ) of regenerated silk fibroin (RSF) was used to generate micron-sized silk rockets which have the enzyme catalase immobilised inside the silk scaffold structure and use the catalase enzyme to drive their motion in samples containing H2O2 as a fuel. By using the LBL printing approach we show that is it possible to generate 3D structures where different materials can be incorporated into the structure at defined locations. The use of silk together with an inkjet printing method has great potential to easily incorporate different enzymes, proteins, chemicals or other biomolecules and build versatile devices by entrapping them into the silk scaffold. This allows us to generate small-scale devices that can generate thrust via catalytic reactions within fluidic environments for potential applications including environmental monitoring and remediation, in vivo drug delivery and repair, and lab-on-a-chip diagnostics. In contrast, current manufacturing processes of micromotors often use slow and lengthy production processes (e.g. evaporation) combined with expensive materials such as platinum. The location of catalyst on these devices has been shown to influence trajectory behaviour, which is not easy to control using conventional methods. Furthermore devices using platinum as a catalyst can undergo biofouling thus inhibiting their catalytic reactions. By using biocompatible silk scaffolds, created by RIJ, the devices generated here have the potential to overcome all these problems
Patterning the neuronal cells via inkjet printing of self-assembled peptides on silk scaffolds
The patterning of neuronal cells and guiding neurite growth are important for neuron tissue engineering and cell-based biosensors. In this paper, inkjet printing has been employed to pattern self-assembled I3QGK peptide nanofibers on silk substrates for guiding the growth of neuron-like PC12 cells. Atomic force microscopy (AFM) confirmed the dynamic self-assembly of I3QGK into nanofiber structures. The printed self-assembled peptide strongly adheres to regenerated silk fibroin (RSF) substrates through charge-charge interactions. It was observed that in the absence of I3QGK, PC12 cells exhibited poor attachment to RSF films, while for RSF surfaces coated or printed with peptide nanofibers, cellular attachment was significantly improved in terms of both cell density and morphology. AFM results revealed that peptide nanofibers can promote the generation of axons and terminal buttons of PC12 cells, indicating that I3QGK nanofibers not only promote cellular attachment but also facilitate differentiation into neuronal phenotypes. Inkjet printing allows complex patterning of peptide nanofibers onto RSF substrates, which enabled us to engineer cell alignment and provide an opportunity to direct axonal development in vitro. The live/dead assay showed that printed I3QGK patterns exhibit no cytotoxicity to PC12 cells demonstrating potential for future nerve tissue engineering applications
U(1) Gauge Field of the Kaluza-Klein Theory in the Presence of Branes
We investigate the zero mode dimensional reduction of the Kaluza-Klein
unifications in the presence of a single brane in the infinite extra dimension.
We treat the brane as fixed, not a dynamical object, and do not require the
orbifold symmetry. It seems that, contrary to the standard Kaluza-Klein models,
the 4D effective action is no longer invariant under the U(1) gauge
transformations due to the explicit breaking of isometries in the extra
dimension by the brane. Surprisingly, however, the linearized perturbation
analysis around the RS vacuum shows that the Kaluza-Klein gauge field does
possess the U(1) gauge symmetry at the linear level. In addition, the
graviscalar also behaves differently from the 4D point of view. Some physical
implications of our results are also discussed.Comment: 10 pages, revtex, no figure, version to appear in Phys. Rev. D,
possible caveats of our results due to the zero mode ansatz we used are
explained in more detai
Magnetic alginate/chitosan nanoparticles for targeted delivery of curcumin into human breast cancer cells.
Curcumin is a promising anti-cancer drug, but its applications in cancer therapy are limited, due to its poor solubility, short half-life and low bioavailability. In this study, curcumin loaded magnetic alginate/chitosan nanoparticles were fabricated to improve the bioavailability, uptake efficiency and cytotoxicity of curcumin to Human Caucasian Breast Adenocarcinoma cells (MDA-MB-231). Alginate and chitosan were deposited on FeâOâ magnetic nanoparticles based on their electrostatic properties. The nanoparticle size ranged from 120â»200 nm, within the optimum range for drug delivery. Controllable and sustained release of curcumin was obtained by altering the number of chitosan and alginate layers on the nanoparticles. Confocal fluorescence microscopy results showed that targeted delivery of curcumin with the aid of a magnetic field was achieved. The fluorescence-activated cell sorting (FACS) assay indicated that MDA-MB-231 cells treated with curcumin loaded nanoparticles had a 3â»6 fold uptake efficiency to those treated with free curcumin. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay indicated that the curcumin loaded nanoparticles exhibited significantly higher cytotoxicity towards MDA-MB-231 cells than HDF cells. The sustained release profiles, enhanced uptake efficiency and cytotoxicity to cancer cells, as well as directed targeting make MACPs promising candidates for cancer therapy
- âŠ