4,635 research outputs found

    CHARACTERISTICS OF MANGROVE DIAMONDBACK TERRAPINS (MALACLEMYS TERRAPIN RHIZOPHORARUM) INHABITING ALTERED AND NATURAL MANGROVE ISLANDS

    Get PDF
    The Mangrove Diamondback Terrapin, (Malaclemys terrapin rhizophorarum) is dependent on a very broad array of the services provided by the mangrove ecosystem. We sought to evaluate both the turtles and their habitat by an integrated assessment of physical, chemical, and physiological parameters. Extreme site fidelity of the turtles to mangrove habitat was evident along with a strong female biased sex ratio. We provide blood serum values and microbial cultures as baselines from these turtles in the wild. Salmonella sp., a potentially zoonotic pathogen, was isolated from one female. Ultimately, the health of these turtle populations may be reflective of the integrity of the mangrove system on which they depend

    Estimation of the Normal Boiling Points of Haloalkanes Using Molecular Similarity

    Get PDF
    A molecular similarity measure has been used to estimate the normal boiling points of a set of 267 haloalkanes with 1-4 carbon atoms. Molecular similarity/dissimilarity was quantified in terms of Euclidean distances of molecules in the eight dimensional principal component space derived from fifty-nine topological indices. Correlation coefficients between the experimental and estimated boiling points ranged from 0.854 to 0.943 in the K-nearest neighbor estimation of boiling points using a different number of nearest neighbors (K = 1-10, 15, 20, 25)

    Note on paramoudra-like carbonate concretions in the Urenui Formation, North Taranaki: possible plumbing system for a Late Miocene methane seep field

    Get PDF
    A reconnaissance study of calcitic and dolomitic tubular concretions in upper slope mudstone of the Late Miocene Urenui Formation exposed along the north Taranaki coastline indicates that they have a complex diagenetic history involving different phases of carbonate cementation and likely hydrofracturing associated with build up of fluid/gas pressures. The concretions resemble classical paramoudra in the European chalk, but are not siliceous and do not have a trace fossil origin. Stable oxygen and carbon isotope data suggest that the micritic carbonate cements in the Urenui paramoudra were probably sourced primarily from ascending methane fluid/gases, and that they precipitated entirely within the host mudstone below the seafloor. We suggest the paramoudra may mark the subsurface plumbing networks of a Late Miocene cold seep system, in which case they have relevance to the evolution and migration of hydrocarbons in Taranaki Basin, at this site perhaps focussed along the Taranaki Fault. The presence of dislodged and mass-emplaced paramoudra in the axial conglomerate of channels within the Urenui mudstone suggests there could be a connection between the loci of seep field development and slope failure and canyon cutting on the Late Miocene Taranaki margin

    Quantitative Assessment of the Anatomical Footprint of the C1 Pedicle Relative to the Lateral Mass: A Guide for C1 Lateral Mass Fixation

    Get PDF
    Study Design: Anatomic study. Objectives: To determine the relationship of the anatomical footprint of the C1 pedicle relative to the lateral mass (LM). Methods: Anatomic measurements were made on fresh frozen human cadaveric C1 specimens: pedicle width/height, LM width/height (minimum/maximum), LM depth, distance between LM’s medial aspect and pedicle’s medial border, distance between LM’s lateral aspect to pedicle’s lateral border, distance between pedicle’s inferior aspect and LM’s inferior border, distance between arch’s midline and pedicle’s medial border. The percentage of LM medial to the pedicle and the distance from the center of the LM to the pedicle’s medial wall were calculated. Results: A total of 42 LM were analyzed. The C1 pedicle’s lateral aspect was nearly confluent with the LM’s lateral border. Average pedicle width was 9.0 ± 1.1 mm, and average pedicle height was 5.0 ± 1.1 mm. Average LM width and depth were 17.0 ± 1.6 and 17.2 ± 1.6 mm, respectively. There was 6.9 ± 1.5 mm of bone medial to the medial C1 pedicle, which constituted 41% ± 9% of the LM’s width. The distance from C1 arch’s midline to the medial pedicle was 13.5 ± 2.0 mm. The LM’s center was 1.6 ± 1 mm lateral to the medial pedicle wall. There was on average 3.5 ± 0.6 mm of the LM inferior to the pedicle inferior border. Conclusions: The center of the lateral mass is 1.6 ± 1 mm lateral to the medial wall of the C1 pedicle and approximately 15 mm from the midline. There is 6.9 ± 1.5 mm of bone medial to the medial C1 pedicle. Thus, the medial aspect of C1 pedicle may be used as an anatomic reference for locating the center of the C1 LM for screw fixation

    Retention Issues of Mature Students: A Comparative Higher Education Analysis of Programs in the United States and Ireland

    Get PDF
    Retention of students is an issue that challenges colleges and universities around the world and South Africa is no exception. A comparative look at Ireland and the United States shows that there are many similar tools used to retain mature students, and, at the same time, many different ones are used depending on particular situations. A brief retention literature review dealing with mature students is provided as well as examples of retention strategies used in both countries. While these strategies may not fit for South Africa, they may serve as a point of departure for similar activities there

    High-Throughput Identification of Long-Range Regulatory Elements and Their Target Promoters in the Human Genome

    Get PDF
    Enhancer elements are essential for tissue-specific gene regulation during mammalian development. Although these regulatory elements are often distant from their target genes, they affect gene expression by recruiting transcription factors to specific promoter regions. Because of this long-range action, the annotation of enhancer element–target promoter pairs remains elusive. Here, we developed a novel analysis methodology that takes advantage of Hi-C data to comprehensively identify these interactions throughout the human genome. To do this, we used a geometric distribution-based model to identify DNA–DNA interaction hotspots that contact gene promoters with high confidence. We observed that these promoter-interacting hotspots significantly overlap with known enhancer-associated histone modifications and DNase I hypersensitive sites. Thus, we defined thousands of candidate enhancer elements by incorporating these features, and found that they have a significant propensity to be bound by p300, an enhancer binding transcription factor. Furthermore, we revealed that their target genes are significantly bound by RNA Polymerase II and demonstrate tissue-specific expression. Finally, we uncovered that these elements are generally found within 1 Mb of their targets, and often regulate multiple genes. In total, our study presents a novel high-throughput workflow for confident, genome-wide discovery of enhancer–target promoter pairs, which will significantly improve our understanding of these regulatory interactions

    Genome-Wide Mapping of Uncapped and Cleaved Transcripts Reveals a Role for the Nuclear mRNA Cap-Binding Complex in Cotranslational RNA Decay in Arabidopsis

    Get PDF
    RNA turnover is necessary for controlling proper mRNA levels posttranscriptionally. In general, RNA degradation is via exoribonucleases that degrade RNA either from the 5′ end to the 3′ end, such as XRN4, or in the opposite direction by the multisubunit exosome complex. Here, we use genome-wide mapping of uncapped and cleaved transcripts to reveal the global landscape of cotranslational mRNA decay in the Arabidopsis thaliana transcriptome. We found that this process leaves a clear three nucleotide periodicity in open reading frames. This pattern of cotranslational degradation is especially evident near the ends of open reading frames, where we observe accumulation of cleavage events focused 16 to 17 nucleotides upstream of the stop codon because of ribosomal pausing during translation termination. Following treatment of Arabidopsis plants with the translation inhibitor cycloheximide, cleavage events accumulate 13 to 14 nucleotides upstream of the start codon where initiating ribosomes have been stalled with these sequences in their P site. Further analysis in xrn4 mutant plants indicates that cotranslational RNA decay is XRN4 dependent. Additionally, studies in plants lacking CAP BINDING PROTEIN80/ABA HYPERSENSITIVE1, the largest subunit of the nuclear mRNA cap binding complex, reveal a role for this protein in cotranslational decay. In total, our results demonstrate the global prevalence and features of cotranslational RNA decay in a plant transcriptome

    Xenosurveillance reflects traditional sampling techniques for the identification of human pathogens: A comparative study in West Africa

    Get PDF
    BACKGROUND: Novel surveillance strategies are needed to detect the rapid and continuous emergence of infectious disease agents. Ideally, new sampling strategies should be simple to implement, technologically uncomplicated, and applicable to areas where emergence events are known to occur. To this end, xenosurveillance is a technique that makes use of blood collected by hematophagous arthropods to monitor and identify vertebrate pathogens. Mosquitoes are largely ubiquitous animals that often exist in sizable populations. As well, many domestic or peridomestic species of mosquitoes will preferentially take blood-meals from humans, making them a unique and largely untapped reservoir to collect human blood. METHODOLOGY/PRINCIPAL FINDINGS: We sought to take advantage of this phenomenon by systematically collecting blood-fed mosquitoes during a field trail in Northern Liberia to determine whether pathogen sequences from blood engorged mosquitoes accurately mirror those obtained directly from humans. Specifically, blood was collected from humans via finger-stick and by aspirating bloodfed mosquitoes from the inside of houses. Shotgun metagenomic sequencing of RNA and DNA derived from these specimens was performed to detect pathogen sequences. Samples obtained from xenosurveillance and from finger-stick blood collection produced a similar number and quality of reads aligning to two human viruses, GB virus C and hepatitis B virus. CONCLUSIONS/SIGNIFICANCE: This study represents the first systematic comparison between xenosurveillance and more traditional sampling methodologies, while also demonstrating the viability of xenosurveillance as a tool to sample human blood for circulating pathogens
    corecore