455 research outputs found
Evaluation of early childhood education quality across Europe
The aim of the current study was to present the initial results of the evaluation of early childhood education (ECE) quality in six European countries. This study discusses various aspects of the ECE quality in different educational systems. Such comparisons can create a fertile ground for communication and collaboration among the educational communities of different European countries and promote open education. Implications and future recommendations are also discussed
Comparing Aspects Of The Process Quality In Six European Early Childhood Educational Settings
The European project ‘Early Change’ (http://earlychange.teithe.gr) attempts to evaluate the quality of early childhood education (ECE) environments of six European countries, Greece, Portugal, Finland, Denmark, Cyprus and Romania. The purpose of this paper is to compare the level of two dimensions of the process quality of these environments a) Space & Furnishings, and b) Personal Care Routines.
Theorists, practitioners and researchers agree that in order to provide qualitative education to young children, one of the basic needs of all children must be met; that need is the protection of their health and their safety. A high quality early childhood education program must contain a safe and stimulating environment for the child (Lindsey, 1998). Such an environment includes indoor space, outdoor space, furniture, and room arrangement, and it is considered an integral part of a high quality early childhood program. 117 early educators from the six participating countries attended the training seminars about the evaluation of ECE quality using the Early Childhood Environmental Rating Scale-R (ECERS-R). The trained educators evaluated the 8 indicators of the subscale ‘space & furnishings’ and the six
indicators of the subscale ‘personal care routines’ in approximately 600 early childhood classrooms from six European countries.
The results of this study highlight the similarities and differences concerning the specific dimensions of
the process quality of ECE environments in six European countries, and reflect the diversity of ECE environment across these countries. The findings of this study may provide a valuable insight to researchers and educational policy makers for an enhanced understanding of the cultural diversities and the strengthening of the common values and targets of the European Union
Small Cationic DDA:TDB Liposomes as Protein Vaccine Adjuvants Obviate the Need for TLR Agonists in Inducing Cellular and Humoral Responses
Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes - including size, antigen association and addition of TLR agonists – to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFNγ responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes
CD206-Targeted Liposomal Myelin Basic Protein Peptides in Patients with Multiple Sclerosis Resistant to First-Line Disease-Modifying Therapies: A First-in-Human, Proof-of-Concept Dose-Escalation Study
© 2016, The Author(s).Previously, we showed that CD206-targeted liposomal delivery of co-encapsulated immunodominant myelin basic protein (MBP) sequences MBP46–62, MBP124–139 and MBP147–170 (Xemys) suppressed experimental autoimmune encephalomyelitis in dark Agouti rats. The objective of this study was to assess the safety of Xemys in the treatment of patients with relapsing-remitting multiple sclerosis (MS) and secondary progressive MS, who failed to achieve a sustained response to first-line disease-modifying therapies. In this phase I, open-label, dose-escalating, proof-of-concept study, 20 patients with relapsing-remitting or secondary progressive MS received weekly subcutaneously injections with ascending doses of Xemys up to a total dose of 2.675 mg. Clinical examinations, including Expanded Disability Status Scale score, magnetic resonance imaging results, and serum cytokine concentrations, were assessed before the first injection and for up to 17 weeks after the final injection. Xemys was safe and well tolerated when administered for 6 weeks to a maximum single dose of 900 μg. Expanded Disability Status Scale scores and numbers of T2-weighted and new gadolinium-enhancing lesions on magnetic resonance imaging were statistically unchanged at study exit compared with baseline; nonetheless, the increase of number of active gadolinium-enhancing lesions on weeks 7 and 10 in comparison with baseline was statistically significant. During treatment, the serum concentrations of the cytokines monocyte chemoattractant protein-1, macrophage inflammatory protein-1β, and interleukin-7 decreased, whereas the level of tumor necrosis factor-α increased. These results provide evidence for the further development of Xemys as an antigen-specific, disease-modifying therapy for patients with MS
CD206-Targeted Liposomal Myelin Basic Protein Peptides in Patients with Multiple Sclerosis Resistant to First-Line Disease-Modifying Therapies: A First-in-Human, Proof-of-Concept Dose-Escalation Study
© 2016 The Author(s)Previously, we showed that CD206-targeted liposomal delivery of co-encapsulated immunodominant myelin basic protein (MBP) sequences MBP46–62, MBP124–139 and MBP147–170 (Xemys) suppressed experimental autoimmune encephalomyelitis in dark Agouti rats. The objective of this study was to assess the safety of Xemys in the treatment of patients with relapsing-remitting multiple sclerosis (MS) and secondary progressive MS, who failed to achieve a sustained response to first-line disease-modifying therapies. In this phase I, open-label, dose-escalating, proof-of-concept study, 20 patients with relapsing-remitting or secondary progressive MS received weekly subcutaneously injections with ascending doses of Xemys up to a total dose of 2.675 mg. Clinical examinations, including Expanded Disability Status Scale score, magnetic resonance imaging results, and serum cytokine concentrations, were assessed before the first injection and for up to 17 weeks after the final injection. Xemys was safe and well tolerated when administered for 6 weeks to a maximum single dose of 900 μg. Expanded Disability Status Scale scores and numbers of T2-weighted and new gadolinium-enhancing lesions on magnetic resonance imaging were statistically unchanged at study exit compared with baseline; nonetheless, the increase of number of active gadolinium-enhancing lesions on weeks 7 and 10 in comparison with baseline was statistically significant. During treatment, the serum concentrations of the cytokines monocyte chemoattractant protein-1, macrophage inflammatory protein-1β, and interleukin-7 decreased, whereas the level of tumor necrosis factor-α increased. These results provide evidence for the further development of Xemys as an antigen-specific, disease-modifying therapy for patients with MS
Detection of peptide-based nanoparticles in blood plasma by ELISA
Aims: The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. Materials & Methods: A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. Results: The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl meth-acrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. Conclusions: We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions
Therapeutic and immunomodulatory activities of short-course treatment of murine visceral leishmaniasis with KALSOME™10, a new liposomal amphotericin B
Visceral leishmaniasis (VL), a potentially fatal disease, is most prevalent in the Indian subcontinent,
East Africa and South America. Since the conventional antileishmanial drugs have many limitations we evaluated a
new ergosterol rich liposomal amphotericin B formulation, KALSOME™10 for its leishmanicidal efficacy, tolerability
and immunomodulatory activity. Normal healthy mice were treated with 3.5 mg/kg single and 7.5 mg/kg single and double doses ofKALSOME™10. Liver and kidney function tests were performed fourteen days after treatment. Next, normal mice were infected with Leishmania donovani amastigotes. Two months post infection they were treated with the above
mentioned doses of KALSOME™10 and sacrificed one month after treatment for estimation of parasite burden in
the liver and spleen by Limiting Dilution Assay. Leishmanial antigen stimulated splenocyte culture supernatants were collected for cytokine detection through ELISA. Flow cytometric studies were performed on normal animals treated with KALSOME™10, Amphotericin B (AmB) and AmBiosome to compare their immunomodulatory activities.
The drug was found to induce no hepato- or nephrotoxicities at the studied doses. Moreover, at all doses,
it led to significant reduction in parasite burden in two month infected BALB/c mice, with 7.5 mg/kg double dose
resulting in almost complete clearance of parasites from both liver and spleen. Interestingly, the drug at 7.5 mg/kg
double dose could almost completely inhibit the secretion of disease promoting cytokines, IL-10 and TGFβ, and
significantly elevate the levels of IFNγ and IL-12, cytokines required for control of the disease. Mice treated with KALSOME™10 showed elevated levels of IFNγ and suppressed IL-10 secretion from both CD4+ and CD8+ subsets
of T cells, as well as from culture supernatants of splenocytes, compared to that of normal, AmB and AmBisome
treated animal Treatment of infected mice with 7.5 mg/kg double dose of KALSOME™10 was safe and effective in
clearing the parasites from the sites of infection. The drug maintains the inherent immunomodulatory activities of
AmB by effectively suppressing disease promoting cytokines IL-10 and TGFβ, thereby boosting IL-12 and IFNγ levels.
This emphasizes KALSOME™10 as a promising drug alternative for lifelong protection from VL
Antiproliferative effect of immunoliposomes containing 5-fluorodeoxyuridine-dipalmitate on colon cancer cells
We have investigated the antiproliferative action towards CC531 colon adenocarcinoma cells of target cell-specific immunoliposomes containing the amphiphilic dipalmitoyl derivative of 5-fluorodeoxyuridine (FUdR-dP). FUdR-dP incorporated in immunoliposomes caused a 13-fold stronger inhibition of CC531 cell growth in vitro, during a 72-h treatment, than FUdR-dP in liposomes without antibody, demonstrating that the prodrug is efficiently hydrolysed to yield the active drug, FUdR, intracellularly. The intracellular release of active FUdR was confirmed by determining the fate of H-3-labelled immunoliposomal FUdR-dP. Treatments shorter than 72 h with FUdR-dP in immunoliposomes resulted in anti-tumour activities comparable to, or even higher than, that of free FUdR. The shorter treatments reflect more closely the in vivo situation and illustrate the potential advantage of the use of immunoliposomes over non-targeted liposomal FUdR-dP or free FUdR. Association of tumour cell-specific immunoliposomes with CC531 cells was up to tenfold higher than that of liposomes without antibody or with irrelevant IgG coupled, demonstrating a specific interaction between liposomes and target cells which causes an efficient intracellular delivery of the drug. Since biochemical evidence indicates a lack of internalization or degradation of the liposomes as such; we postulate that entry of the drug most likely involves the direct transfer of the prodrug from the immunoliposome to the cell membrane during its antigen-specific interaction with the cells. followed by hydrolysis of FUdR-dP leading to relatively high intracellular FUdR-levels. In conclusion, we describe a targeted liposomal formulation for the anticancer drug FUdR, which is able to deliver the active drug to colon carcinoma cells with high efficiency, without the need for the cells to internalize the liposomes as such
Small Angle Scattering and Zeta Potential of Liposomes Loaded with Octa(carboranyl)porphyrazine
In this work the physicochemical characterization of liposomes loaded with a
newly synthesised carboranyl porphyrazine (H2HECASPz) is described. This
molecule represents a potential drug for different anticancer therapies, such
as Boron Neutron Capture Therapy, Photodynamic Therapy and Photothermal
Therapy. Different loading methods and different lipid mixtures were tested.
The corresponding loaded vectors were studied by Small Angle Scattering (SANS
and SAXS), light scattering and zeta potential. The combined analysis of
structural data at various length scales and the measurement of the surface
charge allowed to obtain a detailed characterization of the investigated
systems. The mechanisms underlying the onset of differences in relevant
physicochemical parameters (size, polydispersity and charge) were also
critically discussed
- …