11 research outputs found

    Die Evolution des Proteinimports in die komplexen Plastiden der Chromalveolaten

    Get PDF
    Chromalveolaten sind eine komplexe Gruppe von heterogenen Protisten. Die phototrophen Vertreter und apicomplexen Parasiten weisen ein spezielles Organell – die komplexe Plastide – auf, die ihren Ursprung in einer ehemals freilebenden Rotalge findet. Diese Arbeit trägt maßgeblich zum Verständnis der Evolution des Präproteinimports in „rote“ komplexe Plastiden bei. (1) Es konnte demonstriert werden, dass E. huxleyi ein SELMA-System exprimiert und dieses somit in Cryptophyten, Heterokontophyten, Apicomplexen und Haptophyten existiert. Es wurde gezeigt, dass heterologe Lokalisationsstudien haptophytischer Sequenzen prinzipiell in P. tricornutum möglich sind. Phylogenetische Analysen anhand von h/sCdc48 und h/sUba1 deuten auf einen Rotalgenursprung von SELMA hin. Die ERAD-Sequenzen zeigen keine Monophylie der Wirte und widersprechen demzufolge der Chromalveolaten-Hypothese. (2) Die Identifikation der Deubiquininase ptDUP unterstützt die Annahme einer mechanistischen Konservierung des Transports via SELMA. ptDUP wurde als PPC-lokalisiert und in vitro funktionell nachgewiesen. Wahrscheinlich entfernt ptDUP die Ubiquitinmodifikationen an importierten SELMA-Substraten, was vermutlich für die Reifung und den weiteren Import von Präproteinen essentiell ist. (3) Nucleus-codierte plastidäre Proteine benötigen Zielsteuerungssignale zum plastidären Import. Hier wurde gezeigt, dass dieser in Diatomeen abhängig von positiven Ladungen ist. Diese kritischen Aminosäuren müssen nicht Teil des physikalischen Transitpeptids sein, sondern können auch N-terminal im maturen Protein vorliegen. Dadurch kann dieses den eigenen Import fördern. Das Resultat hat Implikationen für die Etablierung des Gentransfers. Die Akquirierung von Import-vermittelnden Präsequenzen könnte unter jenen Voraussetzungen leichter zu bewerkstelligen sein, da die Anforderungen an Transitpeptide vermindert werden. Transitpeptide, die nur in Verbindung mit dem maturen Protein Import vermitteln, könnten so als Importsignale rekrutiert worden sein, deren Funktionalität erst durch fortwährende Mutation evolviert ist

    ERAD Components in Organisms with Complex Red Plastids Suggest Recruitment of a Preexisting Protein Transport Pathway for the Periplastid Membrane

    Get PDF
    The plastids of cryptophytes, haptophytes, and heterokontophytes (stramenopiles) (together once known as chromists) are surrounded by four membranes, reflecting the origin of these plastids through secondary endosymbiosis. They share this trait with apicomplexans, which are alveolates, the plastids of which have been suggested to stem from the same secondary symbiotic event and therefore form a phylogenetic clade, the chromalveolates. The chromists are quantitatively the most important eukaryotic contributors to primary production in marine ecosystems. The mechanisms of protein import across their four plastid membranes are still poorly understood. Components of an endoplasmic reticulum-associated degradation (ERAD) machinery in cryptophytes, partially encoded by the reduced genome of the secondary symbiont (the nucleomorph), are implicated in protein transport across the second outermost plastid membrane. Here, we show that the haptophyte Emiliania huxleyi, like cryptophytes, stramenopiles, and apicomplexans, possesses a nuclear-encoded symbiont-specific ERAD machinery (SELMA, symbiont-specific ERAD-like machinery) in addition to the host ERAD system, with targeting signals that are able to direct green fluorescent protein or yellow fluorescent protein to the predicted cellular localization in transformed cells of the stramenopile Phaeodactylum tricornutum. Phylogenies of the duplicated ERAD factors reveal that all SELMA components trace back to a red algal origin. In contrast, the host copies of cryptophytes and haptophytes associate with the green lineage to the exclusion of stramenopiles and alveolates. Although all chromalveolates with four membrane-bound plastids possess the SELMA system, this has apparently not arisen in a single endosymbiotic event. Thus, our data do not support the chromalveolate hypothesis

    A Single Peroxisomal Targeting Signal Mediates Matrix Protein Import in Diatoms

    Get PDF
    Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1

    Die Evolution des Proteinimports in die komplexen Plastiden der Chromalveolaten

    No full text
    Chromalveolaten sind eine komplexe Gruppe von heterogenen Protisten. Die phototrophen Vertreter und apicomplexen Parasiten weisen ein spezielles Organell – die komplexe Plastide – auf, die ihren Ursprung in einer ehemals freilebenden Rotalge findet. Diese Arbeit trägt maßgeblich zum Verständnis der Evolution des Präproteinimports in „rote“ komplexe Plastiden bei. (1) Es konnte demonstriert werden, dass E. huxleyi ein SELMA-System exprimiert und dieses somit in Cryptophyten, Heterokontophyten, Apicomplexen und Haptophyten existiert. Es wurde gezeigt, dass heterologe Lokalisationsstudien haptophytischer Sequenzen prinzipiell in P. tricornutum möglich sind. Phylogenetische Analysen anhand von h/sCdc48 und h/sUba1 deuten auf einen Rotalgenursprung von SELMA hin. Die ERAD-Sequenzen zeigen keine Monophylie der Wirte und widersprechen demzufolge der Chromalveolaten-Hypothese. (2) Die Identifikation der Deubiquininase ptDUP unterstützt die Annahme einer mechanistischen Konservierung des Transports via SELMA. ptDUP wurde als PPC-lokalisiert und in vitro funktionell nachgewiesen. Wahrscheinlich entfernt ptDUP die Ubiquitinmodifikationen an importierten SELMA-Substraten, was vermutlich für die Reifung und den weiteren Import von Präproteinen essentiell ist. (3) Nucleus-codierte plastidäre Proteine benötigen Zielsteuerungssignale zum plastidären Import. Hier wurde gezeigt, dass dieser in Diatomeen abhängig von positiven Ladungen ist. Diese kritischen Aminosäuren müssen nicht Teil des physikalischen Transitpeptids sein, sondern können auch N-terminal im maturen Protein vorliegen. Dadurch kann dieses den eigenen Import fördern. Das Resultat hat Implikationen für die Etablierung des Gentransfers. Die Akquirierung von Import-vermittelnden Präsequenzen könnte unter jenen Voraussetzungen leichter zu bewerkstelligen sein, da die Anforderungen an Transitpeptide vermindert werden. Transitpeptide, die nur in Verbindung mit dem maturen Protein Import vermitteln, könnten so als Importsignale rekrutiert worden sein, deren Funktionalität erst durch fortwährende Mutation evolviert ist

    The physical and functional borders of transit peptide-like sequences in secondary endosymbionts

    Get PDF
    Background: Plastids rely on protein supply by their host cells. In plastids surrounded by two membranes (primary plastids) targeting of these proteins is facilitated by an N-terminal targeting signal, the transit peptide. In secondary plastids (surrounded by three or four membranes), transit peptide-like regions are an essential part of a bipartite topogenic signal sequence (BTS), and generally found adjacent to a N-terminally located signal peptide of the plastid pre-proteins. As in primary plastids, for which no wealth of functional information about transit peptide features exists, the transit peptide-like regions used for import into secondary ones show some common features only, which are also poorly characterised. Results: We modified the BTS (in the transit peptide-like region) of the plastid precursor fucoxanthin-chlorophyll a/c binding protein D (FcpD) fused to GFP as model substrate for the characterisation of pre-protein import into the secondary plastids of diatoms. Thereby we show that (i) pre-protein import is highly charge dependent. Positive net charge is necessary for transport across the plastid envelope, but not across the periplastid membrane. Acidic net charge perturbs pre-protein import within the ER. Moreover, we show that (ii) the mature domain of the pre-protein can provide intrinsic transit peptide functions. Conclusions: Our results indicate important characteristics of targeting signals of proteins imported into secondary plastids surrounded by four membranes. In addition, we show a self-targeting mechanism, in which the mature protein domain contributes to the transit peptide function. Thus, this phenomenon lowers the demand for pre-sequences evolved during the course of endosymbiosis
    corecore