4,518 research outputs found

    Radiation reaction in strong field QED

    Full text link
    We derive radiation reaction from QED in a strong background field. We identify, in general, the diagrams and processes contributing to recoil effects in the average momentum of a scattered electron, using perturbation theory in the Furry picture: we work to lowest nontrivial order in the electromagnetic coupling alpha. For the explicit example of scattering in a plane wave background, we compare QED with classical electrodynamics in the limit h-bar goes to zero, finding agreement with the Lorentz-Abraham-Dirac and Landau-Lifshitz equations, and with Larmor's formula. The first quantum corrections are also presented.Comment: Version2: 7 pages, 2 figures. Discussion of related results and applications extended, references added. Matches version to appear in Phys.Lett.

    Radiation reaction from QED: lightfront perturbation theory in a plane wave background

    Get PDF
    We derive dynamical, real time radiation reaction effects from lightfront QED. Combining the Hamiltonian formalism with a plane wave background field, the calculation is performed in the Furry picture for which the background is treated exactly while interactions between quantum fields are treated in perturbation theory as normal. We work to a fixed order in perturbation theory, but no other approximation is made. The literature contains many proposals for the correct classical equation describing a radiating particle; we take the classical limit of our results and identify which equations are consistent with QED.Comment: 33 pages, 5 pdf figures. Version 3: corrected typographical mistakes and presentation issues in equations 4.10--4.14 and accompanying discussion. Results and conclusions unaffected and unchange

    Critical Schwinger pair production

    Get PDF
    We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws. An appropriate design of the electric background field can interpolate between power-law scaling, essential BKT-type scaling and a power-law scaling with log corrections. The corresponding critical exponents only depend on the large-scale features of the electric background, whereas the microscopic details of the background play the role of irrelevant perturbations not affecting criticality.Comment: 6 pages, 1 figur

    Emergence of a common energy scale close to the orbital-selective Mott transition

    Full text link
    We calculate the spectra and spin susceptibilities of a Hubbard model with two bands having different bandwidths but the same on-site interaction, with parameters close to the orbital-selective Mott transition, using dynamical mean-field theory. If the Hund's rule coupling is sufficiently strong, one common energy scale emerges which characterizes both the location of kinks in the self-energy and extrema of the diagonal spin susceptibilities. A physical explanation of this energy scale is derived from a Kondo-type model. We infer that for multi-band systems local spin dynamics rather than spectral functions determine the location of kinks in the effective band structure.Comment: 5 pages, 5 figure

    Isosbestic Points: Theory and Applications

    Full text link
    We analyze the sharpness of crossing ("isosbestic") points of a family of curves which are observed in many quantities described by a function f(x,p), where x is a variable (e.g., the frequency) and p a parameter (e.g., the temperature). We show that if a narrow crossing region is observed near x* for a range of parameters p, then f(x,p) can be approximated by a perturbative expression in p for a wide range of x. This allows us, e.g., to extract the temperature dependence of several experimentally obtained quantities, such as the Raman response of HgBa2CuO4+delta, photoemission spectra of thin VO2 films, and the reflectivity of CaCu3Ti4O12, all of which exhibit narrow crossing regions near certain frequencies. We also explain the sharpness of isosbestic points in the optical conductivity of the Falicov-Kimball model and the spectral function of the Hubbard model.Comment: 12 pages, 11 figure

    TranSID: an SGML document manipulation language : Reference Manual

    Get PDF
    • …
    corecore