
TranSID: an SGML document manipulation language –
Reference manual1

Jani Jaakkola
Pekka Kilpeläinen

Greger Lindén
Jyrki Niemi

Kimmo Paasiala

Department of Computer Science

University of Helsinki

Finland

June 3, 1999

Abstract

TranSID is a tree-based SGML transformation language, which can also be used for other
SGML processing: for performing queries and for limited formatting. An evaluator of
the TranSID language has been implemented, and tested to runin the Linux and Solaris
environments. This report serves as a reference manual of the TranSID language. The report
describes the syntax and informal semantics of the languageand its built-in functions, as of
version 0.038 of the evaluator.

1Automatically generated from SGML source by doc2tex.trs script.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14913694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Contents

1 Introduction 1

2 Notations 2

3 Running TranSID programs 2

4 Lexical syntax 3

4.1 Whitespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 3

4.2 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 3

4.3 Quoted strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 3

4.4 Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 3

4.5 Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 3

4.6 Reserved words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 4

5 Data types 4

5.1 Type conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 5

5.2 Converting list to string . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 5

5.3 Converting list to integer . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 5

5.4 Converting list to Boolean . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 6

6 TranSID output 6

7 Operators 7

7.1 Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 7

7.2 List concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 7

7.3 Equals (==) and not equals (!=) . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 7

7.4 Boolean operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 8

7.5 Arithmetic operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 8

7.6 Integer comparison operators . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 8

7.7 String comparison operators . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 8

7.8 Attribute assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 8

8 Expressions 8



8.1 Constant lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 9

8.2 Predefined constant lists . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10

8.3 Arithmetic expressions . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10

8.4 Creating tree structures . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 10

8.5 Examples of TranSID expressions . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 11

9 TranSID programs 11

9.1 Constant definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 12

9.2 Global variable definitions . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 12

9.3 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 12

9.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 12

9.5 Transformation rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 13

9.6 Named transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 14

9.7 Transformation specifications . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 14

9.8 Examples of transformation specifications . . . . . . . . . . .. . . . . . . . . . . . . . 16

10 Context variables 16

10.1 current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 16

10.2 source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 17

10.3 these . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 17

10.4 this . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 17

10.5 thisnum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 17

11 Local variables 17

11.1 .set(varname) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 17

11.2 Examples of using variables . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 18

12 Orientation functions 18

12.1 .ancestors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 18

12.2 .attribute(name) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 18

12.3 .attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 19

12.4 .children . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 19

12.5 .descendants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 19



12.6 .left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 19

12.7 .noderef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 19

12.8 .origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 19

12.9 .parent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 19

12.10.right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 20

13 List functions 20

13.1 .data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 20

13.2 .elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 20

13.3 .first and .first(number) . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 20

13.4 .last and .last(number) . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 20

13.5 .null . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 20

13.6 .sublist(m,n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 20

14 Ordering functions 21

14.1 .lexsort(key expression) . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 21

14.2 .numsort(key expression) . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 21

14.3 .reverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 21

15 List property functions 21

15.1 .count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 22

15.2 .name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 22

15.3 .nodeid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 22

15.4 .siblingnum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 22

15.5 .value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 22

16 Conditional functions 22

16.1 .case(condition expression -> action expression, ...) . . . . . . . . . . . . . . . . . . . . 22

16.2 .glue(start condition, end condition, action expression, [else action expression]) . . . . . 23

16.3 .group(condition expression, action expression [,else action expression]) . . . . . . . . . 23

16.4 .having(condition expression) . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 24

16.5 .if(condition expression, then action expression [,else action expression]) . . . . . . . . . 24

16.6 .map(condition expression, true action expression [,false action expression]) . . . . . . . 24



17 String functions 25

17.1 .strcat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 25

17.2 strcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 25

17.3 .tolower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 25

17.4 .toupper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 25

17.5 .find(string) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 25

17.6 .substr(m,n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 26

17.7 .strlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 26

17.8 .trim(string) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 27

17.9 .trimleft(string) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 27

17.10.trimright(string) . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 27

17.11.isXXX string functions . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 27

17.11.1 .islower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 27

17.11.2 .isupper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 27

17.11.3 .isdigit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 27

17.11.4 .isalpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 27

17.11.5 .isalnum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 28

17.11.6 .isspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 28

17.12Path name string functions . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 28

17.12.1 .filedir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 28

17.12.2 .filename . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 28

17.12.3 .filesuffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 28

17.13URL string functions . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 28

17.13.1 .urlprotocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 28

17.13.2 .urlserver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 28

17.13.3 .urldir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 29

17.13.4 .urlanchor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 29

18 Regular expression functions 29

18.1 Syntax of TranSID regular expressions . . . . . . . . . . . . . .. . . . . . . . . . . . . 29

18.2 .indices(regular expression) . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 31



18.3 .substrings(regular expression) . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 31

18.4 .matches(regular expression) . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 32

18.5 .matches_exact(regular expression) . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 32

18.6 .split(regular expression) . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 32

18.7 .clean(regular expression) . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 33

18.8 .match_replace(regular expression -> replacement expression, ...) . . . . . . . . . . . . 33

19 Accessing the environment 34

19.1 .linearize(filename) . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 34

19.2 .loadtext(filename1, filename2, ...) . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 34

19.3 .parse(file1, file2, ...) . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 35

19.4 .system(command) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 35

References 35



1 Introduction

TranSID is a tree-based SGML transformation language, which can also be used for performing queries
and for limited formatting. TranSID was designed and implemented in the research projectStructured
and Intelligent Documents(SID) at the Department of Computer Science of the University of Helsinki.

The TranSID language is a full-fledged SGML transformation language. The language is functional and
largely declarative. The basic constructs of the language are queries, function definitions, and unnamed
and named transformations. Queries and unnamed transformations are evaluated only once, when they
are encountered, while functions and named transformations are evaluated only when called by name,
which may be done multiple times. TranSID has also a comprehensive set of built-in functions, including
functions for navigating the source SGML tree, and functions for manipulating lists and strings.

The TranSID system consists of an SGML parser, a TranSID parser, a TranSID evaluator and a linearizer.
We use the SP parser as the SGML parser [Cla96]. A TranSID transformation or query process proceeds
as follows. First, the TranSID parser parses the TranSID program specifying the transformations or
queries to be applied to the source document. The parser constructs an internal representation of the
TranSID program. Second, the SGML parser parses the source SGML document and builds an internal
tree representation of the document, thesource tree. Third, the evaluator builds atarget treeby applying
to the source tree the transformations or queries specified in the TranSID program. Finally, the linearizer
linearizes the target tree, that is, it converts the tree into a linear form by traversing it in pre-order. The
linearizer may perform some formatting of the output: it mayoutput the target tree as SGML — with
special characters replaced with entities where necessary— or for example as text with SGML tags
stripped.

The TranSID process may be given more than one input documentand it may also produce more than
one output document. It is also possible to give to the process no input documents at all, in which case
transformations are useless but queries may be used to produce output. A TranSID transformation or
query program may refer to any part of the parse tree of the source SGML document. The semantics of
the TranSID transformations are described in [JKL97].

TranSID may also be used as a client/server system using a protocol implemented on top of TCP/IP. In
the client/server mode, the server is used to store a collection of documents and usually also user-defined
TranSID functions for accessing and transforming the documents. A client may then pose queries to the
server, which returns the linearized results to the client.

The rest of this report is organized as follows. Section 2 describes notational conventions used in this
manual. Section 3 contains instructions for running the TranSID evaluator and also lists available com-
mand line options. Section 4 describes the lexical syntax ofTranSID language. Section 5 describes
data types of TranSID language. The result of linearization, i.e., the result output format of TranSID is
described in Section 6. Section 7 describes operators of TranSID language. Section 8 describes expres-
sions, the building blocks of the TranSID language. Section9 describes different types of transformation
programs. Section 10 describes context variables. Section11 describes local variables. Section 12 de-
scribes orientation functions which are used to navigate inan SGML tree. Section 13 describes list
manipulation functions. Section 14 describes list ordering functions. Section 15 describes list property
functions. Section 16 describes list manipulation functions based on conditional expressions. Section
17 describes string manipulation functions. Section 18 describes string manipulation functions based on
regular expressions. Section 19 describes functions for accessing the operating system.

1



2 Notations

The following list describes the notational conventions used in this manual:

[optional] for optionality.

.funcname or .funcname(param1, param2) for a built-in or a user-defined function.

... for any number of parameters to a function.

A ! B for a production in Backus-Naur form.

A | B | C for multiple alternatives.

B* for zero or more occurrences ofB.

B? for zero or one occurrences ofB.

NTERM for a nonterminal.

"string" for a literal string.

´c´ for a literal character.

( ) for grouping.

3 Running TranSID programs

The TranSID evaluator is invoked as follows:

transid [options] transformation-program [SGML files]

The options are

-c hostname Evaluate the given TranSID program in a TranSID server instead of evaluating it locally.
In current version of TranSID, all given SGML documents are ignored when the-c option is used.
Also all constants defined with the-D option are ignored.

-q Do not output the target document

-l This option is useful only when used in conjunction with the-c option. This option asks the Tran-
SID client to output the server log to standard output duringthe evaluation of TranSID programs.
Note that the server log and query output are not synchronized in client mode because of the way
the TranSID protocol is implemented.

-s servermode Start server mode after parsing and evaluating the given documents and programs.
In server mode TranSID is waiting for clients to connect and to request evaluation of queries or
transformations. In server modeforeground TranSID stays on foreground and outputs the
server log to standard output. In server modedaemon TranSID starts as a daemon after parsing
and evaluating the programs and documents possibly given onthe command line. In server mode
it is possible to access operating system services using thefunctions described in Section 19. In

2



server modesecure all access to the operating system is denied. In server modeunsecure it
is possible to access the operating system, but the functions accessing the operating system must
have been defined in the transformation program passed to theserver at its startup.

-L debug level Select debugging level. Valid levels are 1–7 where level 7 produces vast amounts of
debugging output and level 1 produces output only when TranSID panics.

-L debug section Debug a certain section of the TranSID evaluator. Section may be the name of a C
source file or a section marked with C preprocessor macros.

-D name=(TranSID expression) This option defines the constantnameto have the constant value
specified byexpression. In current version of TranSID, the expression may contain also non-
constant values and still work; this is a bug and will be fixed some day.

4 Lexical syntax

This section describes the lexical syntax of TranSID language.

4.1 Whitespace

Space, horizontal tab and newline characters are whitespace characters in TranSID programs. Consec-
utive whitespace characters are regarded as one whitespacecharacter unless they are part of a quoted
string.

4.2 Comments

TranSID has C++-like comments. There are two forms of comments: sections starting with/* and
ending in*/, and sections starting with// and ending in a newline. TranSID comments cannot be
nested.

4.3 Quoted strings

A sequence of characters enclosed in double quotes forms a quoted string.

4.4 Integers

A sequence of one or more digits is interpreted as a 32-bit signed integer.

4.5 Identifiers

An identifier in TranSID language consists of a sequence of letters, digits and underscore characters.
The first character must be a letter or an underscore character. All identifiers in the TranSID language
are case-insensitive.

Note that in TranSID function definitions and calls the parenthesis preceding the parameter list must be
placed right after the function name. Use.first(2) instead of.first (2).

3



4.6 Reserved words

The following words are reserved and cannot be used as identifiers:� and� becomes� begin� const� current� false� function� not� null� oneof� or� query� set� source� strcmp� these� this� thisnum� transformation� true� var� when

5 Data types

TranSID has only one data type,list. A list consists of any number ofnodes. A list of zero nodes is
called an empty list or a null list.

A nodeis anything that can be located in an SGML tree, such as

4



� an element,� an attribute,� an entity,� a PI (processing instruction), or� content.

An element node consists of the name of the element, possibleattributes and the possible content of the
element. The name of the element is usually called ageneric identifier(GI) in SGML terminology. We
will use this term to refer to the name of an element later in this manual.

Content can be any of the following types:� a string of virtually unlimited length,� a 32-bit signed integer, or� a Boolean value.

In TranSID, integers, strings and Booleans are only specialcases of TranSIDlists having only onenode
of typecontent.

5.1 Type conversions

TranSID implements lazy type conversion. When a TranSID operator or function requests a list of type
integeras argument, an attempt is made to convert the argument list to an integer. If the requested type
conversion cannot be performed (e.g. trying to convert the string "HELLO" to integer), a warning is
given.

5.2 Converting list to string

Conversion from list to string uses the following rules:� Consecutive strings are not concatenated together.� Element nodes are converted to a string with their

GI as the value of the string.� Boolean nodes become either "TRUE" or "FALSE" according to their value.� Integer nodes get trivially converted:(1 2) becomes"12".

5.3 Converting list to integer

Conversion from list to integer uses the following rules:

5



� Empty lists and lists whose length is greater than one generate a warning and the type conversion
fails.� For element and attribute nodes, TranSID attempts to convert the name of the node to an integer.� ForPI, entityandcontentnodes, TranSID attempts to convert the content of the node toan integer.� If the type conversion fails, a warning is generated (e.g., when trying to convert("ONE") to
integer).

5.4 Converting list to Boolean

Conversion from list to Boolean uses the following rules:� An empty list is consideredFALSE.� A Boolean node isTRUE or FALSE according to its content.� All other lists areTRUE, including lists("0"), ("") and(0).

6 TranSID output

This section describes the result of TranSID linearization, i.e., the result output format. TranSID outputs
the result of a transformation and the value of a query as a linearized string. Linearization is a straight-
forward process obeying the following rules:� A line feed is appended to the end of the output. No other line breaks are added to the output.� An empty element is output as a start tag of the form<GI Attributes>.� A non-empty element is output in the form<GI Attributes>Content</GI>. Notice that the

content may be empty even though the element wasn’t declaredempty.� Each attribute node is preceded in the output by a space, and is represented asATTRNAME="Value".� Boolean nodes are represented as stringsTRUE andFALSE.

For example, consider the following query, which builds a small tree of three element nodes. The root
of the tree has two attributes, and it has a string, a Boolean node and two element nodes as its children.
The first of the subordinate elements is empty, while the other just has no content.

query <<"A" "False"=(2 <1) "k"=(1000+24 )>>
{ "This is true: " 1 < 2 <<"B">> <<"c">>{ } };

The result of the above query is:

<A False="FALSE" k="1024">This is true: TRUE<B><c></c></A>

6



7 Operators

All operators in the TranSID language can take any type of lists as their operands. Some operators (like
equals) function in different ways depending on the type of their operands. However, all list and operator
combinations are not meaningful. All operators are evaluated from left to right unless noted otherwise.

7.1 Precedence

All TranSID operators are in descending order of precedence:� () (parenthesis) for grouping lists,� . (a dot) followed by a function name,� = for attribute assignment,� not for negation,� * for multiplication and/ for integer division,� + for addition and- for subtraction,� == equals,!= not equals,<,>,<= and>= for integer comparison,� strcmp for string comparison,� and andor for Boolean expressions, and� whitespacefor list concatenation.

7.2 List concatenation

Two lists are concatenated by writing them consecutively and inserting one or more whitespace
characters between them. No string concatenation is performed however. Even though the lists
("one" "two") and ("onetwo") look identical when linearized, they are not equal:
("one" "two").count==2 but("onetwo").count==1.

7.3 Equals (==) and not equals (!=)

The equals and not equals operators function differently depending on the type of their operand lists.� Two empty lists are considered equal.� When only one list is empty, the operand lists are considerednot equal.� When the size of one or both of the lists exceeds one, the operands are considered not equal.� When both operands are elements, attributes or trees, they are considered equal only if they are
represented by the same physical object.� Comparing two nodes with different types (e.g. testing for equality of an attribute and an element)
generates a warning and the nodes are considered not equal.

7



� Comparison of two Boolean nodes works as expected:true == true andtrue != false.� If one of the nodes is of typeinteger, an integer comparison is attempted. If the other node cannot
be converted to an integer, the nodes are considered not equal.� Finally, an exact string comparison is attempted. (Whitespace is considered as part of a string:
" a "!="a").

7.4 Boolean operators

Boolean operatorsand, or andnot convert their operands to Boolean (See Section 5.1) and return
the result as a list which consists of one Boolean node. The evaluation of binary Boolean operators is
optimized by using so-called short-circuit evaluation: ifthe result of the expression is known without
evaluating the right-hand side of the expression, the right-hand side is not evaluated. Thus it is not safe
to call functions that cause side effects in Boolean expressions.

7.5 Arithmetic operators

Arithmetic operators (*, /, + and-) are evaluated exactly like their C-language counterpartsand they
follow the laws of integer arithmetics, i.e., 5 divided by 2 results in 2. If one or both of the operands
could not be converted to integer, an empty list is returned.

7.6 Integer comparison operators

Integer comparison operators compare two integers and return a Boolean node. If one or both of the
operands could not be converted to an integer, an empty list is returned. One should note that an empty
list is considered asFALSE, so one has to be careful when using integer comparison operators on lists
which possibly cannot be converted to integers.

7.7 String comparison operators

Two strings can be compared for equality (==), inequality (!=) and lexicographical order (strcmp).
Thestrcmp operator works similarly to the corresponding function in the C language (Section 17.2).

7.8 Attribute assignment

An attribute assignment returns anattribute node with the left-hand operand as the attribute name and
the right-hand operand as the attribute value. Both operands are converted to strings. One should
note that since the attribute assignment has a very high precedence, one has to use expressions like
"ATT"=(8+3) instead of"ATT"=8+3.

8 Expressions

A TranSID expression is a piece of program that returns a list. An expression has a type in the sense that
the expression returns a list which contains nodes of a certain type, e.g., an arithmetic expression returns
a list of integers nodes. TranSID expressions are usually built from constant lists, context variables,
variable references or function calls, which act as operands for the various operators presented in Section
7. Some examples:

8



1 2 3 // a constant list of three integers.
(1 2 3).count // the same list acting as input list to a function.
1 + 2 // arithmetic expression.
a and b // Boolean expression.
current.a.b.c("1") // a context variable followed by three function

// calls. The function called c takes one
// parameter, which in this case is a list of one
// string node.

A typical TranSID expression is a dot-separated sequence offunction calls, where each function takes
as its input list the result of the expression immediately preceding it. For an example

current.children.first(3)

is a TranSID expression which can be used in a transformationrule (Section 9.5). First,current
(Section 10.1) evaluates to the element being transformed.Then the function.childrengets this node
as its singleton input list and returns the list of its child nodes. Finally, the function call.first(3)
gets this list of nodes as its input list and returns the first three nodes of it, i.e. the first three children of
the current element.

8.1 Constant lists

Currently, TranSID supports constants of the following types:� integers,� strings,� Booleans and� empty lists (null).

Integer nodes are created by inserting an integer (Section 4.4) into a TranSID expression. A list consist-
ing of the integer value 3 is constructed like this:(3).

String nodes can be created by inserting a quoted string (Section 4.3) into a TranSID expression. A
list consisting of the string ‘Hello World!’ is constructedlike this: ("Hello World!"). Various
backslash escapes can be used inside strings. Unknown backslash escapes generate a warning during
program parsing. Currently implemented backslash escapesare:� \n for newline character,� \r for carriage return,� \t for horizontal tab,� \" for double quote, and� \\ for backslash.

9



An empty list can be created with the reserved wordnull. If the TranSID expression is used as a
conditional expression, then an empty list meansFALSE.

Here is a simple example which produces some CDATA content:

((1 ". Hello world!" "\n") (2 ". Once more " "hello world!\n"))

The above expression yields a list of six elements.

When the list is linearized, it produces the following output:

1. Hello world!
2. Once more hello world!

8.2 Predefined constant lists

The following predefined constant lists can be used in TranSID expressions:� false for the Boolean valueFALSE.� null for an empty list.� true for the Boolean valueTRUE.

8.3 Arithmetic expressions

Arithmetic expressions in TranSID language are evaluated using the standard infix notation. Operands
for arithmetic operators (Section 7.5) are converted to integers (Section 5.3) before evaluation.

8.4 Creating tree structures

TranSID expressions may be used to construct arbitrary SGMLtree structures. Tree structures are cre-
ated by creating element nodes. When an element node is created, itsGI and content must be specified.
The content of an element may also be empty. Also attributes may be specified for the element.

An element node is created with the following syntax:

<< GI Attributes >> { Content }
<< GI Attributes >> // creation of an EMPTY element

GI is the GI of the element to be created. It is a TranSID expression, which is converted to string.

Attributes is a whitespace separated list of TranSID expressions specifying the attributes of the ele-
ment.

Content is a TranSID expression specifying the content of the new element.

10



Creating an EMPTY element is different from creating an element with no content. An EMPTY element
is created by omitting the curly braces from the element definition.

Attributes are specified with TranSID expressions which evaluate toattributenodes. These expressions
include attribute assignments and fetching attributes from existing nodes. An attribute specification has
the following syntax:

Attribute name= Attribute value

whereAttribute nameandAttribute valueare both TranSID expressions interpreted as strings.

Theorientation function.attributes (Section 12.3) evaluates to all the attributes of all the elements
in its input list. The orientation function.attribute(attribute name) evaluates to all the
attributes having the nameattribute name of the elements in its input list.

8.5 Examples of TranSID expressions

The expression below creates an element node with the GIA, with the attributeHREF having the value
"http://www.cs.helsinki.fi/research/rati/transid/" and with the string content
"TranSID home page"

<<"A" "HREF"="http://www.cs.helsinki.fi/research/rati/transid/">> {
"TranSID home page"
}

The following expression creates an element with the GICURRENT and having the same attributes and
the same content as the element for which this rule is being evaluated. Thecontext variablecurrent
(Section 10.1) is used to refer to the node being processed.

<<"CURRENT" current.attributes>> {
current.children
}

Change the content of the element for which this rule is beingevaluated to "New content", but preserve
the GI and attributes:

<< current.name current.attributes>> {
"New content"
}

Another way of doing the same as above:

current {
"New content"
}

9 TranSID programs

A TranSID program is a sequence of any of the following constructs: constant definitions, global vari-
able definitions, queries, function definitions and transformation specifications. Transformation specifi-

11



cations may define either named or unnamed transformations.The TranSID evaluator executes queries
and unnamed transformations immediately. Calls to functions and named transformations may be used
in TranSID expressions.

Constant definitions, global variable definitions and queries must be terminated with a semicolon (;).
Function definitions and transformation specifications areenclosed inbegin-end groups and they may
not be followed by a semicolon.

9.1 Constant definitions

A constant definition defines a constant that can be used laterin the program. The definition consists of
the keywordconst followed by the name of the constant, an assignment operator(=) and an expression.
The value of the constant cannot be changed later in the program. An example:

const TSID = "TranSID";

9.2 Global variable definitions

A global variable definition defines a variable whose value can be used and changed later in the program.
A defined variable is visible to all parts of the program that follow the variable definition. The definition
consists of the keywordvar followed by the name of the variable, an assignment operator(=) and an
expression. An example:

var A = 3;

9.3 Queries

Queries are a simple and efficient way of doing small transformations or specifying small queries to
SGML trees. Only the parts of the source tree which are referred to in the query expression are processed,
which makes query evaluation fast. A query has the followingsyntax:

query expression;

The expression is evaluated and the result list is linearized to the standard output.

9.4 Functions

A TranSID function is a named section of code which performs some operation on itsinput list and
returns a new list as its result. A function can be thought as anamed query which can be reused when
needed. A function definition consists of the keywordfunction, the name of the function starting with
a single dot (.), an optional parameter list enclosed in parentheses and a function body enclosed in a
begin-end group. Parameters of a function are separated with commas. Inside the function body, the
input list is referred to via the context-variablethese. For example:

// return the sum of a and b
function .add(a,b) begin

a + b
end

12



// return the number of content nodes in the input list
function .countcontent begin

these.data.count
end

9.5 Transformation rules

A transformation is specified by a sequence oftransformation rules. A transformation ruleconsists of
asource clauseand atarget clause.

All TranSID transformation rules start with asource clause. The source clause locates a certain sub-
structure in the source SGML tree. The source clause consists of a node type and a string containing the
name of the node to which the rule is to be applied. An asterisk(*) in place of the node name in the
source clause means that the rule is to be applied to all nodesof the specified type. The reserved word
source in place of the node name means that the rule is to be applied tothe root of the SGML source
tree. The possible node types (Section 5) are:

attribute for attribute nodes,

data for content nodes,

element for element nodes,

entity for entity nodes,

node for any type of node, and

pi for PI nodes.

In addition to the source clause, acontext conditionmay be defined. The context condition can be used
to describe more specifically the context where thetarget clauseis to be applied. The context condition
is a TranSID expression which is interpreted as a Boolean value. A context condition begins with the
reserved wordwhen and is placed immediately following the source clause.

Thetarget clauseis a TranSID expression which evaluates to a target list. Thetarget clause replaces the
located substructure (SGML tree node) by the target list. The target clause is placed at the end of the
rule; it begins with the reserved wordbecomes and ends with a semicolon.

The reserved wordcurrent can be used in the transformation rules to point to the node which is
currently being processed. The keywordcurrent can be used in both the context condition and the
target clause to access the node currently being processed.The relatives ofcurrent are defined in a
special way:� The parent and the sibling nodes of thecurrent node are nodes in the source tree.� The children ofcurrent are nodes in the target tree, i.e., they are results of previously applied

transformation rules.� The original node in the source tree from which the current node was created can be accessed with
current.origin.

13



The above rules reflect the bottom-up order which TranSID applies in transformation: the children of
a node are transformed according to the transformation specification before their parent. The original
descendants of the current node can be accessed viacurrent.origin, which is a node in the source
tree.

The order in which the transformation rules are declared is significant. If two different rules match the
same node, then the rule declared earlier takes precedence.The declaration order of the rules is also
taken into account when the result of a transformation rule matches the source clause of another rule in
the transformation. If the rule matching the result is declared later than the rule producing the result,
then the rule will be applied, otherwise not. Enclosing a sequence of transformation rules in aoneof
- begin - end group disables this behavior, i.e. only the first matching rule is applied to the current
node. An example:

transformation begin
oneof begin
!element "A" becomes <<"B">>{current.children};
!element "B" becomes <<"C">>{current.children};
end // oneof

end // transformation

The transformation above transforms an element "A" into element "B", but doesn’t transform the result-
ing "B" element into element "C" because of theoneof - begin - end group.

9.6 Named transformations

A named transformation is a named sequence of transformation rules that are defined in the same way
as the rules of an unnamed transformation. Like functions, named transformations can have parameters.
A named transformation is analogous to a function in the sense that it is also a named code section
performing some action on its input list. Context variablesource is used to refer to the nodes in the
input list one at a time. An example:

transformation .test(a,b) begin
!element "A" becomes

<< a >>{current.children};
!element "B" becomes

<< b >>{current.children};
end

The above transformation renames the elements "A" and "B" using the names given in parametersa and
b.

9.7 Transformation specifications

The syntax of transformation specifications is as follows:

TransformationProgram -> "TRANSFORMATION" "BEGIN" (RuleSet)* "END"

14



RuleSet -> OneofRuleGroup
| RuleGroup

OneofRuleGroup -> "ONEOF" "BEGIN" (Rule)* "END"

RuleGroup -> (Rule)*

Rule -> SourceClause (ContextCondition)? "BECOMES" TargetClause ’;’

SourceClause -> ’!’ ElementType ElementName

ElementType -> "ATTRIBUTE"
| "DATA"
| "ELEMENT"
| "ENTITY"
| "NODE"
| "PI"

ElementName -> QuotedString
| ’*’
| "SOURCE"

ContextCondition -> "WHEN" Expression

TargetClause -> Expression

15



9.8 Examples of transformation specifications

Remove all elements with the GIssect:

TRANSFORMATION BEGIN // Start transformation specification
!ELEMENT "ssect" // source clause
BECOMES null; // target clause
END // End transformation specification

Remove allssect subtrees which have a parent namedsection:

TRANSFORMATION BEGIN
!ELEMENT "ssect"
WHEN current.parent.name=="SECTION"
BECOMES null;
END

The default transformation which copies the source tree to the target tree:

TRANSFORMATION BEGIN
!NODE * // source clause which matches all possible nodes
BECOMES current;
END

Convert a definition list into LaTeX. This example is a small fragment of a TranSID program that trans-
forms the TranSID documentation written in SGML into LaTeX.

TRANSFORMATION BEGIN
!ELEMENT "DLIST" BECOMES // A "DLIST" element is transformed into
"\\begin{description}\n" // \begin{description}
current.children // contents of "DLIST" element
"\\end{description}\n"; // \end{description} LaTeX construction.

!ELEMENT "D" BECOMES // A "D" element is transformed into
"\\item[" current.children "]"; // \item[ contents of "D" ] LaTeX command.

!ELEMENT "LI" // Matches an "LI" element only if it has
WHEN current.parent.name=="DLIST" // a "DLIST" element as its parent.
BECOMES current.children; // An "LI" element is replaced by the
END // character data it contains.

10 Context variables

Context variables are predefined lists which can be used in TranSID expressions. They are also a way to
access the node that is currently being transformed and the context of conditional expressions.

10.1 current

The context variablecurrent returns the node which is currently being transformed. The current node
is a copy of the original node in the source tree. The relatives of the current node are defined as follows:

16



� The parent, left siblings and right siblings are in the source tree.� The orientation function.origin points to the node in the source tree of which the current node
is a copy.� The children nodes of the current node are the results of the transformation rules already applied
to the original children of the current node.

10.2 source

The context variablesource returns the root node of the source tree. In a named transformation,
source refers at a time to the root node of each subtree in the input list.

10.3 these

In conditional expressions in which a TranSID expression isapplied to a list of nodes,these refers to
that list.These is also used in functions (Section 9.4) to refer to the input list.

10.4 this

In conditional expressions in which a TranSID expression isapplied to every node in a list,this refers
to the node to which the expression is currently being applied.

10.5 thisnum

Wheneverthis is defined, alsothisnum is defined.thisnum returns the number of the nodethis
in the original list. For example:

query
("ONE" "TWO" "THREE" "FOUR").map(true,
thisnum "=" this " ");

The result of the above query is:

1=ONE 2=TWO 3=THREE 4=FOUR

11 Local variables

TranSID offers local variables for saving the results of TranSID expressions temporarily. This is useful
when the result of a complex expression needs to be used many times. Local variables are local to a
query or a rule. The value of each variable is a list. There canbe an arbitrary number of variables, which
may contain arbitrary lists. Note that variables contain references to SGML tree nodes instead of copies
of nodes.

11.1 .set(varname)

Variables are assigned values with the function.set. This function assigns its input list to the given

17



variable. The.set function returns its input list unchanged; this it makes possible to set a variable in
the middle of an expression and to use the value of the variable immediately. If the same variable is
assigned a new value, the previous value is discarded. It is also possible to assign values to variables by
using regular expression string functions (see Section 18).

After a local variable is set, its name can be used in a TranSIDexpression. Using a variable which has
not been assigned a value generates a warning and returns an empty list.

11.2 Examples of using variables

Produce a list which contains the word "TranSID" eight times:

query
(("TranSID".set(v) v).set(v) v).set(v) v;

The result of the above query is:

TranSIDTranSIDTranSIDTranSIDTranSIDTranSIDTranSIDTranSID

12 Orientation functions

An SGML tree may be traversed using the TranSID orientation functions. Orientation functions get their
input list from the left-hand side of the expression which they are part of, apply the orientation to the list
and return a new list.

12.1 .ancestors

The orientation function.ancestors returns for each node in its input list a list of ancestors, which
consists of the nodes on the path from the parent of the node tothe root of the SGML tree. In the current
version of TranSID,.ancestors gives a warning if the size of its input list exceeds one. Duplicate
ancestors are not removed from the result, so the next query returns a list containing the root of input
tree possibly several times, once for each of its children.

query source.children.ancestors;

12.2 .attribute(name)

The orientation function.attribute(name) returns all attribute nodes of all the elements in its
input list such that the name of the attribute node isname. The value of an attribute node is obtained by
function.value (Section 15.5). Since.attribute returns theattributenode instead of the attribute
value, the following transformation rule makes sense:

!ELEMENT "TITLE" BECOMES
<<"A" current.attribute("HREF")>> {current.children};

18



12.3 .attributes

The orientation function.attributes returns allattribute nodes of all theelementnodes in its
input list. The value of an attribute node is obtained by function .value (Section 15.5). Since
.attributes returnsattribute nodes instead ofvalue nodes, the following transformation makes
sense:

!ELEMENT "REF" BECOMES
<<"REFERENCE" current.attributes>> {current.children};

12.4 .children

The orientation function.children returns all child nodes of all the elements in its input list.Note
that only elements can have children. The value of an attribute is not considered a child of the attribute.
Attributes are not considered children of element nodes. They can be obtained using orientation function
.attributes (Section 12.3).

12.5 .descendants

The orientation function.descendants returns all descendants of all the nodes in its input list
in pre-order. Note that the result may be bigger than the source document. An expression like
source.descendants.ancestors.descendants probably hangs or aborts the TranSID
evaluator.

12.6 .left

The orientation function.left returns the left sibling nodes of the nodes in its input list.Only a node
which is a child of an element can have left nodes. The expression current.left refers to the nodes
in the source tree. The left siblings are returned in order from left to right, i.e., the preceding sibling of
current is current.left.last.

12.7 .noderef

The orientation function.noderef returns a list of nodes, whosenodeididentifiers (Section 15.3) are
given in the input list.

12.8 .origin

The orientation function.origin returns the nodes from which the nodes of the input list orig-
inated. Currently these are always nodes in the source tree.If you want to access the original
children of the current node instead of the children generated by the transformation, you should use
current.origin.children.

12.9 .parent

The orientation function.parent returns the parent nodes of the nodes in its input list. The parent
node of the current node is a node in the source tree.

19



12.10 .right

The orientation function.right returns the right sibling nodes of the nodes in its input list. Only a
node which is a child of an element can have right nodes. The expressioncurrent.right refers to
nodes in the source tree. The right siblings are returned in order from left to right, i.e., the next sibling of
current is current.right.first.

13 List functions

List functions are used to select sublists from the input list.

13.1 .data

The list function.data returns thecontentnodes of its input list.String, integerandBooleannodes
are consideredcontentnodes. The content nodes which are immediately subordinateto thecurrentnode
can be obtained by expressioncurrent.children.data. The whole data content of thecurrent
node can be obtained by expressioncurrent.descendants.data .

13.2 .elements

The list function.elements returns allelementnodes in its input list. The element nodes which are
immediately subordinate to thecurrentnode can be obtained bycurrent.children.elements.

13.3 .first and .first(number)

The list function.first returns the first node in its input list. The function.first(number)
returns the firstnumber nodes in its input list.

13.4 .last and .last(number)

The list function.last returns the last node in its input list. The list function.last(number)
returns the lastnumber nodes in its input list.

13.5 .null

The.null list function discards whatever its input list contains andreturns an empty list.

13.6 .sublist(m,n)

The.sublist function takes two integer parameters. The semantics of thesublist boundaries follows
the HyTime dimension specifications [ISO92]. The numberingof nodes in a list starts from one. Below,
we denote a negative number by-n.

sublist(m,n) Selectn nodes starting from nodem from the beginning of the list.

sublist(-m,-n) Selectmnodes starting from nodem+n-1 from the end of the list.

20



sublist(m,-n) Select middle nodes starting from nodem from the beginning of the list and ending with
the noden from the end of the list

sublist(-m,n) Selectn nodes starting from nodem from the end of the list.

For example, assume that we have thatlist = (1, 2, 3, 4, 5, 6, 7, 8). Then we have� list.sublist(2,2) = (2, 3)� list.sublist(-2,-2) = (6, 7)� list.sublist(2,-2) = (2, 3, 4, 5, 6, 7)� list.sublist(-2,2) = (7, 8)

14 Ordering functions

Ordering functions are used to reorder the nodes in the inputlist.

14.1 .lexsort(key expression)

The function.lexsort returns its input list sorted in ascending lexicographicalorder. The sorting is
based on the value of the key expression. The key expression is a TranSID expression that is applied to
every node in the input list. The context variablethis refers to the nodes in the input list one at a time.
The key expression must be a string expression or at least convertible to string. The following example
performs a case–insensitive sort on a list of three string nodes.

query ("bA" "aa" "Ab").lexsort(this.toupper);

The result of the above query is:

aaAbbA

14.2 .numsort(key expression)

The function.numsort returns its input list sorted in ascending numerical order.The sorting is based
on the value of the key expression. The key expression must bean integer expression or at least convert-
ible to integer.

14.3 .reverse

The.reverse ordering function returns its input list in reverse order.

15 List property functions

Each of these functions returns a property of its input list.Typically the return value is either a string or
an integer.

21



15.1 .count

The.count function returns the number of nodes in its input list.

15.2 .name

For anelementnode the.name function returns theGI of the element. For anattributenode it returns
the name of the attribute. For acontentnode it returns the content of the node.

15.3 .nodeid

The.nodeid function returns a unique identifier for each node in its input list. These identifiers can be
used as references and they can dereferenced using the.noderef orientation function (Section 12.7).
In the current version of TranSID, these identifiers are of type string.

15.4 .siblingnum

For nodes which have an element node as a parent, the.siblingnum function returns the number
of the element among its siblings. The function returnsnull for nodes which do not have a parent
node. If the input list contains several nodes which had a valid sibling number, the function returns a list
containing all the numbers.

15.5 .value

The.value function returns the values of all the attribute nodes in itsinput list. Currently this is the
only way to access the value of an attribute.

16 Conditional functions

Conditional functions are used to manipulate lists based onconditional expressions. They can be used
to filter certain nodes from lists or to map list nodes to different kind of nodes. Two context variables,
these andthis, are visible inside conditional functions. The context variablethese is usually used
to refer to the whole input list of the function. In some conditional functions it is also used to refer to a
sublist of the input list that satisfies some condition. The context variablethis is used to refer to each
node in the input list, one at a time.

16.1 .case(condition expression -> action expression, ...)

The parameters for the conditional function.case consist ofcondition -> action rules. The
left-hand side of a rule is a condition expression and the right-hand side is a corresponding action ex-
pression. Inside the.case function the context variablethese refers to the input list of the function.
All the condition expressions are evaluated in the given order until a condition evaluates toTRUE. The
result of this function is then determined by the corresponding action expression. If none of the condition
expressions evaluates toTRUE, the result is the input list unmodified. An example:

.case(
these.name=="PARA" -> these.handlepara, // Handle paragraph elements.

22



these.name=="SECTION" -> these.handlesection, // Handle section elements.
true -> these.handlerest // Default rule.

)

16.2 .glue(start condition, end condition, action expression, [else action expression])

The function.glue maps sublists of the input list to another list..glue is one of the most powerful
of the conditional functions.

The conditional function.glue scans its input list and locates all sublists in the input list which start
with a node satisfying the start condition and continue to a node satisfying the end condition. The node
satisfying the end condition is not part of the located sublist. The end of the input list is considered
as a satisfied end condition. When such a sublist is located, the action expression is evaluated with
the context variablethese set to the located sublist andthis set to the node that satisfied the end
condition (null if the satisfying condition was the end of list). The located sublist is then replaced with
the result of the action expression. If the optional else action expression is present, then all consecutive
nodes that are not part of any sublist satisfying the start and end conditions are grouped into a sublist.
This sublist is then replaced with the result of the else action expression.

For example: find sublists which start with "[" and end with "]".

query
// Create a simple demonstration list
("1" " [ " "2" " ] " "3" "4" " [ " "5" " ][ " "6")
.glue(
this==" [ " or this == " ][ ", // start condition
this==" ] " or this == " ][ ", // end condition
" <GROUP> " these " </GROUP> " // action expression
);

The result of the above query is:

1 <GROUP> [ 2 </GROUP> ] 34 <GROUP> [ 5 </GROUP> <GROUP> ][ 6 </GROUP>

16.3 .group(condition expression, action expression [,else action expression])

The conditional function.group is used to group consecutive nodes of a list into sublists. The.group
function operates as follows: First the condition expression is evaluated with the context variablethis
pointing to the first node of the input list and with the context variablethese pointing to an empty
list. If the condition expression evaluates toTRUE, the node is added to the list in the variablethese.
All the remaining nodes in the input list are tested with the condition expression and as long as the
expression evaluates toTRUE, the nodes are added to the list in the variablethese. Once the condition
expression evaluates toFALSE, the action expression is evaluated with the context variable these
pointing to the list collected earlier. The context variable this points to the first node that did not
satisfy the condition expression (null if the end of the input list was encountered). Once the condition
expression has evaluated toFALSE, all consecutive nodes in the input list that do not satisfy the condition
expression are collected into a list. The else action expression is evaluated with the context variable
these set to this list once the condition expression evaluates into TRUE.

Example: Group a list to sublists of at most three nodes:

23



var list = 1 1 1 2 2 2 3 3 3;
query list.group(these.count<3,<<"THREE">> {these},"NEVER");

The result of the above query is:

<THREE>111</THREE><THREE>222</THREE><THREE>333</THREE>

Example: Group a list of integers to sublists of even and odd numbers:

var list = 1 1 2 2 3 3;
query list.group((this/2)*2==this,<<"EVEN">> {these},<<"ODD">> {these});

The result of the above query is:

<ODD>11</ODD><EVEN>22</EVEN><ODD>33</ODD>

16.4 .having(condition expression)

The conditional function.having applies the condition expression to every node in its input list and
returns only the nodes for which the condition isTRUE. In the condition expression one may usethis
andthisnum to refer to the node to which the condition expression is currently being applied.

Example: Select the first three title nodes from the input list:

.having(this.name=="TITLE").having(thisnum<=3)

16.5 .if(condition expression, then action expression [,else action expression])

The conditional function.if applies the condition expression to the whole input list. Ifthe condition
expression evaluates totrue, the result of the then action expression is the result of thefunction.
Otherwise the result is the value of the optional else actionexpression. If the else part is missing, the
result is the input list unchanged. An example:

.if(these.count > 1, <<"MANY">>{these}, <<"ONE">>{these})

16.6 .map(condition expression, true action expression [,false action expression])

The conditional function.map applies the condition expression to every node in its input list and re-
places the nodes for which the condition isTRUEwith the result of the true action expression. If present,
the optional false action is applied to all the nodes not satisfying the condition expression.

Example: Change each child of aBODY element into anA element if the child has an attributeIDREF.

24



TRANSFORMATION BEGIN
!element "BODY" becomes
current {
current.children.map(
this.attribute("IDREF"),
<<"A" this.attributes>> {this.children}
)
};
END

17 String functions

String functions are used to manipulate strings. All these functions form theirinput stringby performing
an implicit.strcat operation on their input list.

17.1 .strcat

The.strcat string function concatenates all string nodes in its input list into a single string node.

query ("one" "two").strcat;

The result of the above query is:

onetwo

17.2 strcmp

The string comparison operatorstrcmp compares two strings and returns a signed integer value
depending on the lexicographical order of the operand strings. If the first string is "less" than
the second string, a negative value is returned. A positive value is returned if the first string is
"greater" than the second string. A zero is returned if the strings are identical. For example:
query ("foo" strcmp "bar"); results in:4 query ("bar" strcmp "foo"); results in:-4

and query ("bar" strcmp "bar"); results in:0.

17.3 .tolower

The.tolower string function converts its input string to lower case.

17.4 .toupper

The.toupper string function converts its input string to upper case.

17.5 .find(string)

The string function.find takes one parameter, the pattern string which is searched for in the input
string. The result is a list of integer nodes, each indicating the starting position of a matching substring.
An empty list is returned if the pattern does not occur in the input string. More powerful string searching
is possible with regular expression functions (Section 18).

25



17.6 .substr(m,n)

The .substr string function takes integer parameters. The semantics ofthe substring boundaries
follows the HyTime dimension specifications [ISO92]. The numbering of characters in a string starts
from one. Below, we denote a negative number by-n.

substr(m,n) Selectn characters starting from characterm from the beginning of the string.

substr(-m,-n) Selectm characters starting from characterm+n-1 from the end of the string.

substr(m,-n) Select middle characters starting from characterm from the beginning of the string and
ending with the charactern from the end of the string

substr(-m,n) Selectn characters starting from characterm from the end of the string.

For example:

query "abcdefgh".substr(2,2);

The result of the above query is:

bc

query "abcdefgh".substr(-2,-2);

The result of the above query is:

fg

query "abcdefgh".substr(2,-2);

The result of the above query is:

bcdefg

query "abcdefgh".substr(-2,2);

The result of the above query is:

gh

17.7 .strlen

The.strlen string function returns the length of its input string.

26



17.8 .trim(string)

The.trim string function returns the input string with the characters occurring in the parameterstring
removed from its beginning and end. The removing of the characters ends when a character not present
in the parameterstring is encountered.

query ("aa textb b").trim(" ba");

The result of the above query is:

text

17.9 .trimleft(string)

The.trimleft string function is similar to.trim, but characters are removed only from the begin-
ning of the input string.

17.10 .trimright(string)

The.trimright string function is similar to.trim, but characters are removed only from the end
of the input string.

17.11 .isXXX string functions

These functions are used to test if the input string containscertain types of characters.

17.11.1 .islower

The .islower function returnsTRUE if its input string contains only lower-case characters, and
FALSE otherwise.

17.11.2 .isupper

The .isupper function returnsTRUE if its input string contains only upper-case characters, and
FALSE otherwise.

17.11.3 .isdigit

The.isdigit function returnsTRUE if its input string contains only digits, andFALSE otherwise.

17.11.4 .isalpha

The .isalpha function returnsTRUE if its input string contains only alphabetic characters, and
FALSE otherwise.

27



17.11.5 .isalnum

The.isalnum function returnsTRUE if its input string contains only alpha-numeric characters, and
FALSE otherwise.

17.11.6 .isspace

The .isspace function returnsTRUE if its input string contains only whitespace characters, and
FALSE otherwise.

17.12 Path name string functions

The following three functions are used to manipulate file system path names. The result of these opera-
tions depends on the type of the operating system used. Currently the only supported path name syntax
is the one used in the UNIX operating system. A warning is issued and an empty list is returned if the
input string cannot be interpreted as a path name.

17.12.1 .filedir

The.filedir function returns the directory path of its input string interpreted as a path name.

17.12.2 .filename

The.filename function returns the file name of its input string interpreted as a path name.

17.12.3 .filesuffix

The.filesuffix function returns the suffix part of the filename in its input string interpreted as a
path name.

17.13 URL string functions

The following functions assume that the input string can be interpreted as a URL. A warning is issued if
the string is not a valid URL and an empty list is returned.

17.13.1 .urlprotocol

The.urlprotocol function returns the protocol name of the URL.

17.13.2 .urlserver

The.urlserver function returns the server name of the URL.

28



17.13.3 .urldir

The.urldir function returns the directory path of the URL.

17.13.4 .urlanchor

The.urlanchor function returns the anchor of the URL.

18 Regular expression functions

Regular expression functions are used for searching patterns in the input string and also for complex
string operations like substitutions.

18.1 Syntax of TranSID regular expressions

The syntax of TranSID regular expressions is very similar tothe one used in the UNIX program egrep
[Bel82]. One notable difference between TranSID and egrep regular expressions is the escape character,
which is a backslash (’\’) in egrep and a percent sign (’%’) in TranSID regular expressions. The
syntax of TranSID regular expressions is described in the following.

A single character All characters match themselves except characters.*+?|()^$[]% which have
a special meaning in TranSID regular expressions. The character’%’ is the escape character in
TranSID regular expressions. To match a plain’%’ character one has to write"%%". The same
escape convention applies to the other special characters.A percent sign followed by anything
else but an alphabetic character or an underscore character(’_’) is taken as single character, i.e.
"%=" means a single’=’ -character.

Matching any single character A single dot (’.’) matches any single character of the alphabet.

Character sets Characters enclosed in brackets (’[’ and’]’) form a character set. A character set
matches any single character in the character list between the brackets. If the first character of the
list is a caret (’^’), the character set is complemented: it matches any character not present in the
list. The list may contain character ranges that are given inthe form"a-z". If the list contains
characters’]’, ’^’ or ’-’, they have to be placed in predefined places in the list. The character
’]’ has to be the first character in the list, except when it is partof a complement in which case
it has to be the second character. The’^’ character is taken as a regular caret character if it is not
the first character in the list. A regular’-’ character can be included in the list by writing it at
the beginning (after’^’ and’]’) or at the end of the list.

Concatenation Two regular expressions are concatenated by writing them consecutively. To match an
’a’ followed by a’b’, one writes"ab".

Grouping Parentheses’(’ and’)’ can be used to group regular expressions.

Alternatives A regular expression matching either the regular expression a or the regular expressionb
is formed by writing a vertical bar character (’|’) between them. A regular expression"bb|bc"
matches all strings that contain either"bb" or "bc" or both.

29



Zero or more occurrences A star (’*’) following a regular expression means that the regular expres-
sion can be repeated in the matching substring zero or more times. Note that the star has a higher
precedence than concatenation, so in order to repeat the regular expression"aa" one has to use
grouping:"(aa)*".

One or more occurrences A plus (’+’) operates like the star, but a string accepted by the regular
expression must be repeated at least once in a matching substring.

Optionality A question mark (’?’) marks optionality of a regular expression and it is used in the
same way as the star is.

Beginning of string A caret (’^’) at the beginning of a regular expression means that the matching
substring must start from the beginning of the input string.

End of string A dollar (’$’) at the end of a regular expression means that the matching substring
must end at the end of the input string.

Variable assignments A variable assignment in a TranSID regular expression is a subexpression of
the form"%name=(regex)", where"name" is a valid TranSID identifier (Section 4.5). If the
input string contains a match for the whole regular expression, the match for the subexpression is
assigned to the variable, and the value of this variable can be used later in the program.

Examples:
"a" // matches a single ’a’
"%%" // matches a regular ’%’
"." // matches any character including newline
"%." // matches a regular ’.’ -character.
"[a-zA-Z0-9]" // matches an alphanumeric character
"[^0-9]" // matches any character except a digit
"[-a-z]" // matches ’-’ and all lower-case letters
"[a-z-]" // same as above
"[]a]" // matches ’]’ and ’a’
"[^]-0-1]" // matches all characters except ’]’, ’-’, ’0’ and ’1’
"ab" // matches ’a’ followed by ’b’
"a|b" // matches ’a’ or ’b’
"a*" // matches any number of the character ’a’ ("" "a", "aa", ...)
"(ab)*" // matches repeated "ab":s ("" "ab", "abab", "ababab", ...)
"ab*c" // matches "ac" ,"abc", "abbc", "abbbc", ...
"ab+c" // same as above but does not match "ac"
"ab?c" // matches "ac" and "abc", nothing else
"^ab" // matches "ab" at the beginning of string
"ab$" // matches "ab" at the end of string
"a^$b" // matches "a^$b"
"%foo=(a+)b+ // matches "aaabbb" and assigns "aaa" into variable foo
"%protocol=(http|ftp|telnet)://%server=([a-zA-Z0-9]+(%.[a-zA-Z0-9]+)*)/"

// matches a valid URL and extracts the protocol and server
// parts into variables protocol and server

"%a=(%b=(c))" // Nested variable assignments. String "c" is assigned to both
// variables a and b

Matching a regular expression against a string follows so-called leftmost-longest rule: If there are mul-
tiple overlapping substrings that could be used for the match, only the leftmost (having the smallest
starting position) is chosen. If there are more than one possible matches starting from the same po-
sition, the longest one is chosen. For example, assume that we have a strings = "abcd" and we

30



have a regular regular expressionsr = "ab|bcd". In this case the match for the regular expression
r is "ab" because the "ab" has a smaller starting position than"bcd". If the regular expressionr is
"a|ab*", then the match for this regular expression is"ab". This is because the strings contains
a match for both of the alternatives starting from the same position, but the match for the expression
"ab*" is longer than the match for the expression"a".

18.2 .indices(regular expression)

The.indices function locates longest leftmost matches of the regular expression, given as its param-
eter, in the input string. For each match, two integers nodesare returned. The first node indicates the
starting positions of the match, and the second node gives the position of the first character following
the match. Note that a pair of integer nodes (n, n) where n is any position, represents a zero-length
match. An empty list is returned if the regular expression did not match the string at all. If the regular
expression contains variable assignments, only the first match of the whole regular expression is used
for assignments. If the given regular expression is not syntactically correct, an empty list is returned and
a warning is issued. Examples:

query "aabbcc".indices("a+|b+|d*").map(true, this " ");

The result of the above query is:

1 3 3 5 5 5 6 6

The next example demonstrates how the variable assignmentsare performed when there are multiple
choices for the assignment.

query "aabbabb".indices("%foo=(a+)bb").null foo;

The result of the above query is:

aa

18.3 .substrings(regular expression)

The.substrings function returns the actual matches (substrings of the input string matching the
regular expression) as a list of string nodes. If the regularexpression contains variable assignments, only
the first match of the whole regular expression is used for assignments. If the given regular expression
is not syntactically correct, an empty list is returned and awarning is issued.

query "aabbcc".substrings("a+|b+|d*").map(true, <<"match">> {this});

The result of the above query is:

<match>aa</match><match>bb</match><match></match><match></match>

31



18.4 .matches(regular expression)

The.matches function returns a Boolean node: aTRUE node if the regular expression matches any
substring of the input string, and aFALSE node otherwise. If the regular expression contains variable
assignments, only the first match of the whole regular expression is used for assignments. If the given
regular expression is not syntactically correct, an empty list is returned and a warning is issued.

query "abc".matches("ab*c");

The result of the above query is:

TRUE

query "ac".matches("ab+c");

The result of the above query is:

FALSE

18.5 .matches_exact(regular expression)

The .matches_exact function returns a Boolean node: aTRUE node if the regular expression
matches the whole input string, aFALSE node otherwise. If the regular expression contains variable
assignments, only the first match of the whole regular expression is used for assignments. If the given
regular expression is not syntactically correct, an empty list is returned and a warning is issued.

query "abc".matches_exact("b");

The result of the above query is:

FALSE

18.6 .split(regular expression)

The.split function splits its input string into a list of strings, where matches of the regular expression
and non–matching substrings are separated from each other.If the regular expression contains variable
assignments, only the first match of the whole regular expression is used for assignments. If the given
regular expression is not syntactically correct, an empty list is returned and a warning is issued.

query "axbxc".split("x+").map(true,<<"TMP">>{this});

The result of the above query is:

<TMP>a</TMP><TMP>x</TMP><TMP>b</TMP><TMP>x</TMP><TMP>c</TMP>

32



18.7 .clean(regular expression)

The.clean function returns a string where all the matches of the regular expression are removed from
the input string. If the regular expression contains variable assignments, only the first match of the whole
regular expression is used for assignments. If the given regular expression is not syntactically correct,
an empty list is returned and a warning is issued.

query "axbxc".clean("x+").map(true, <<"TMP">>{this});

The result of the above query is:

<TMP>a</TMP><TMP>b</TMP><TMP>c</TMP>

18.8 .match_replace(regular expression -> replacement expression, ...)

The.match_replace function returns a string where all the matches of each givenregular expression
have been replaced using the corresponding match-replace rule. The left-hand side of a match-replace
rule is a regular expression and the right-hand side is an expression to be evaluated when the actual
replacement is done. The context variablethis can be used in the replacement expression to refer
to the actual substring matching the regular expression. Itis also possible to use the results of variable
assignments in the replacement expression. When multiple overlapping matches are found, the following
rule is used to decide which match-replace rule is applied: Amatch with the smallest starting position
is always considered first; if there are multiple matches starting from the same position, then the longest
match is chosen. In the case of two or more identical matches,the rule declared first in the parameter
list is chosen. If one or more of the given regular expressions are not syntactically correct, an empty list
is returned and a warning is issued. Examples:

query "aaxbbxxccxxxdd".match_replace("x+"->"XXX");

The result of the above query is:

aaXXXbbXXXccXXXdd

query "This is a line of text".match_replace("[a-zA-Z]+$" -> this.toupper);

The result of the above query is:

This is a line of TEXT

query "aabcc".match_replace("ab" -> "1", "aab" -> "2", "ab*c" -> "3");

The result of the above query is:

2cc

33



query "http://www.cs.helsinki.fi/"
.match_replace("%prot=(http|ftp|telnet)://%svr=([a-zA-Z0-9]+(%.[a-zA-Z0-
9]+)*)/"
->
"<URL \"PROTOCOL\"=\"" prot "\" \"SERVER\"=\"" svr "\"></URL>" ) ;

The result of the above query is:

<URL "PROTOCOL"="http" "SERVER"="www.cs.helsinki.fi"></URL>

19 Accessing the environment

TranSID provides access to the services of the underlying operating system by reading and writing
SGML and text files and by executing subprocesses using pipes. However, by default these features
cannot be used when running the TranSID evaluator in server mode, because of obvious security reasons.
It is possible to use these features in server mode if the TranSID evaluator is started in theunsecure
server mode. In theunsecure server mode functions defined during the startup of the server are
considered "safe" and these functions have access to the features described above. All other functions
are considered "unsafe".

19.1 .linearize(filename)

The function.linearize allows the programmer to output SGML trees while evaluatinga transfor-
mation. It is useful for debugging and for splitting big SGMLtrees into multiple files. The input list is
linearized to the given file. Since the file name is given as a TranSID expression, one can generate the
file name "on the fly" using the current transformation context.

For example, the following rule writes every section of the source document to a different file and outputs
a line like "processed section n" when it has processed a section.

TRANSFORMATION BEGIN
!element "SECTION" becomes
// Count the section number
(current.left.having(this.name=="SECTION").count+1).set(num).null
// Write section to file "section-n"
current.linearize("section-" num).null
// Inform the user
("processed section " num).linearize("/dev/tty").null
;
END

19.2 .loadtext(filename1, filename2, ...)

The.loadtext function reads the specified text files and returns a list witheach line of text as a string
node. Loadtext can be used to handle other file formats than SGML. Loadtext can also be used to read
SGML files without parsing them.

34



19.3 .parse(file1, file2, ...)

The.parse function makes it possible to parse SGML documents also froma TranSID program, not
only from the command line. The specified files are passed to the SGML parsing module and a document
tree is constructed from them. The function returns the nodefor the root element of the parsed document
tree. Possible parse errors are reported by the logging system using debugging level 6 (see Section 3). If
there are any errors,.parse returns an empty list.

Normal memory management applies also to trees created withthe.parse function. The complete
document will be available only as long as there is a variableor an executing expression referencing the
root of the parsed tree.

19.4 .system(command)

The.system function is used to execute arbitrary subprocesses from a TranSID program..system
linearizes its input list to the standard input of the subprocess, and reads the output of the subprocesses
as text, like.loadtext does. The parametercommand is passed to the command interpreter of the
operating system, which enables a TranSID programmer to useall the power of the underlying operating
system.

Using.system to get the current date:

query null.system("date");

The result of the above query is:

Thu Jun 3 14:31:22 EET DST 1999

References

[Bel82] Bell Telephone Laboratories, Inc.UNIX Time-Sharing System: UNIX Programmer’s Manual,
Vol. 1. Holt, Rinehart and Winston, 1982.

[Cla96] James Clark. An SGML system confining to International Standard ISO 8879 – Standard
Generalized Markup Language, 1996. url: http://www.jclark.com/sp/.

[ISO92] Information technology — Hypermedia — Time-based Structuring Language (HyTime),
ISO/IEC 10744,ISO and IEC, 1992.

[JKL97] J. Jaakkola, P. Kilpeläinen, and G. Lindén.TranSID: An SGML tree transformation language.
In J. Paakki, editor,Proceedings of the Fifth Symposium on Programming Languages and
Software Tools, pages 72–83, Jyväskylä, Finland, June 1997. Technical Report C-1997-37,
University of Helsinki, Department of Computer Science, Finland.

35


