200 research outputs found

    Rational design of monolayers for improved water evaporation mitigation

    Full text link
    Seven chemically designed monolayer compounds were synthesized and investigated with comparison to the properties and water evaporation suppression ability of 1-hexadecanol and 1-octadecanol. Increasing the molecular weight and polarity of the compound headgroup drastically altered the characteristics and performance of the monolayer at the air/water interface. Contrary to the common expectation the monolayer\u27s lifetime on the water surface decreased with increasing number of ethylene oxy moieties, thus optimal performance for water evaporation suppression was achieved when only one ethylene oxy moiety was used. Replacing the hydroxyl headgroup with a methyl group and with multiple ethylene oxy moieties resulted in a loss of suppression capability, while an additional hydroxyl group provided a molecule with limited performance against water evaporation. Theoretical molecular simulation demonstrated that for exceptional performance, a candidate needs to possess a high equilibrium spreading pressure, the ability to sustain a highly ordered monolayer with a stable isotherm curve, and low tilt angle over the full studied range of surface pressures by simultaneously maintaining H-bonding to the water surface and between the monolayer chains

    MicroRNAs Are Involved in the Development of Morphine-Induced Analgesic Tolerance and Regulate Functionally Relevant Changes in Serpini1.

    Get PDF
    Long-term opioid treatment results in reduced therapeutic efficacy and in turn leads to an increase in the dose required to produce equivalent pain relief and alleviate break-through or insurmountable pain. Altered gene expression is a likely means for inducing long-term neuroadaptations responsible for tolerance. Studies conducted by our laboratory (Tapocik et al., 2009) revealed a network of gene expression changes occurring in canonical pathways involved in neuroplasticity, and uncovered miRNA processing as a potential mechanism. In particular, the mRNA coding the protein responsible for processing miRNAs, Dicer1, was positively correlated with the development of analgesic tolerance. The purpose of the present study was to test the hypothesis that miRNAs play a significant role in the development of analgesic tolerance as measured by thermal nociception. Dicer1 knockdown, miRNA profiling, bioinformatics, and confirmation of high value targets were used to test the proposition. Regionally targeted Dicer1 knockdown (via shRNA) had the anticipated consequence of eliminating the development of tolerance in C57BL/6J (B6) mice, thus supporting the involvement of miRNAs in the development of tolerance. MiRNA expression profiling identified a core set of chronic morphine-regulated miRNAs (miR\u27s 27a, 9, 483, 505, 146b, 202). Bioinformatics approaches were implemented to identify and prioritize their predicted target mRNAs. We focused our attention on miR27a and its predicted target serpin peptidase inhibitor clade I (Serpini1) mRNA, a transcript known to be intricately involved in dendritic spine density regulation in a manner consistent with chronic morphine\u27s consequences and previously found to be correlated with the development of analgesic tolerance. In vitro reporter assay confirmed the targeting of the Serpini1 3ā€²-untranslated region by miR27a. Interestingly miR27a was found to positively regulateSerpini1 mRNA and protein levels in multiple neuronal cell lines. Lastly, Serpini1 knockout mice developed analgesic tolerance at a slower rate than wild-type mice thus confirming a role for the protein in analgesic tolerance. Overall, these results provide evidence to support a specific role for miR27a and Serpini1 in the behavioral response to chronic opioid administration (COA) and suggest that miRNA expression and mRNA targeting may underlie the neuroadaptations that mediate tolerance to the analgesic effects of morphine

    Domestic Pigs and Japanese Encephalitis Virus Infection, Australia

    Get PDF
    To determine whether relocating domestic pigs, the amplifying host of Japanese encephalitis virus (JEV), decreased the risk for JEV transmission to humans in northern Australia, we collected mosquitoes for virus detection. Detection of JEV in mosquitoes after pig relocation indicates that pig relocation did not eliminate JEV risk

    Intercomparison of Large-Eddy Simulations of Arctic Mixed-Phase Clouds: Importance of Ice Size Distribution Assumptions

    Get PDF
    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP), in agreement with earlier studies. In contrast to previous intercomparison studies, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSDs) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case. Sensitivity tests indicate LWP and IWP are much closer to the bin model simulations when a modified shape factor which is similar to that predicted by bin model simulation is used in bulk scheme. These results demonstrate the importance of representation of ice PSD in determining the partitioning of liquid and ice and the longevity of mixed-phase clouds

    Community based intervention to optimize osteoporosis management: randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoporosis-related fractures are a significant public health concern. Interventions that increase detection and treatment of osteoporosis are underutilized. This pragmatic randomised study was done to evaluate the impact of a multifaceted community-based care program aimed at optimizing evidence-based management in patients at risk for osteoporosis and fractures.</p> <p>Methods</p> <p>This was a 12-month randomized trial performed in Ontario, Canada. Eligible patients were community-dwelling, aged ā‰„55 years, and identified to be at risk for osteoporosis-related fractures. Two hundred and one patients were allocated to the intervention group or to usual care. Components of the intervention were directed towards primary care physicians and patients and included facilitated bone mineral density testing, patient education and patient-specific recommendations for osteoporosis treatment. The primary outcome was the implementation of appropriate osteoporosis management.</p> <p>Results</p> <p>101 patients were allocated to intervention and 100 to control. Mean age of participants was 71.9 Ā± 7.2 years and 94% were women. Pharmacological treatment (alendronate, risedronate, or raloxifene) for osteoporosis was increased by 29% compared to usual care (56% [29/52] vs. 27% [16/60]; relative risk [RR] 2.09, 95% confidence interval [CI] 1.29 to 3.40). More individuals in the intervention group were taking calcium (54% [54/101] vs. 20% [20/100]; RR 2.67, 95% CI 1.74 to 4.12) and vitamin D (33% [33/101] vs. 20% [20/100]; RR 1.63, 95% CI 1.01 to 2.65).</p> <p>Conclusions</p> <p>A multi-faceted community-based intervention improved management of osteoporosis in high risk patients compared with usual care.</p> <p>Trial Registration</p> <p>This trial has been registered with clinicaltrials.gov (ID: NCT00465387)</p

    Genomic and molecular characterization of preterm birth.

    Get PDF
    Preterm birth (PTB) complications are the leading cause of long-term morbidity and mortality in children. By using whole blood samples, we integrated whole-genome sequencing (WGS), RNA sequencing (RNA-seq), and DNA methylation data for 270 PTB and 521 control families. We analyzed this combined dataset to identify genomic variants associated with PTB and secondary analyses to identify variants associated with very early PTB (VEPTB) as well as other subcategories of disease that may contribute to PTB. We identified differentially expressed genes (DEGs) and methylated genomic loci and performed expression and methylation quantitative trait loci analyses to link genomic variants to these expression and methylation changes. We performed enrichment tests to identify overlaps between new and known PTB candidate gene systems. We identified 160 significant genomic variants associated with PTB-related phenotypes. The most significant variants, DEGs, and differentially methylated loci were associated with VEPTB. Integration of all data types identified a set of 72 candidate biomarker genes for VEPTB, encompassing genes and those previously associated with PTB. Notably, PTB-associated genes RAB31 and RBPJ were identified by all three data types (WGS, RNA-seq, and methylation). Pathways associated with VEPTB include EGFR and prolactin signaling pathways, inflammation- and immunity-related pathways, chemokine signaling, IFN-Ī³ signaling, and Notch1 signaling. Progress in identifying molecular components of a complex disease is aided by integrated analyses of multiple molecular data types and clinical data. With these data, and by stratifying PTB by subphenotype, we have identified associations between VEPTB and the underlying biology
    • ā€¦
    corecore